Near polygons

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: De Bruyn, Bart 1974- (VerfasserIn)
Format: Buch
Sprache:English
Veröffentlicht: Basel u. a. Birkhäuser 2006
Schriftenreihe:Frontiers in mathematics
Schlagworte:
Online-Zugang:Inhaltsverzeichnis
Klappentext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nam a2200000 c 4500
001 BV035163803
003 DE-604
005 20081125
007 t|
008 081117s2006 gw |||| 00||| eng d
015 |a 05,N50,0824  |2 dnb 
015 |a 06,A23,0946  |2 dnb 
016 7 |a 977132331  |2 DE-101 
020 |a 9783764375522  |c flexibler Kunststoffeinband : EUR 40.66 (freier Pr.)  |9 978-3-7643-7552-2 
020 |a 3764375523  |c flexibler Kunststoffeinband : EUR 40.66 (freier Pr.)  |9 3-7643-7552-3 
024 3 |a 9783764375522 
028 5 2 |a 11600411 
035 |a (OCoLC)64898223 
035 |a (DE-599)BVBBV035163803 
040 |a DE-604  |b ger  |e rakddb 
041 0 |a eng 
044 |a gw  |c XA-DE 
049 |a DE-384  |a DE-703  |a DE-188 
050 0 |a QA166.3 
082 0 |a 516/.154  |2 22 
084 |a SK 380  |0 (DE-625)143235:  |2 rvk 
084 |a 510  |2 sdnb 
100 1 |a De Bruyn, Bart  |d 1974-  |e Verfasser  |0 (DE-588)131586491  |4 aut 
245 1 0 |a Near polygons  |c Bart De Bruyn 
264 1 |a Basel u. a.  |b Birkhäuser  |c 2006 
300 |a XI, 263 S.  |c 24 cm 
336 |b txt  |2 rdacontent 
337 |b n  |2 rdamedia 
338 |b nc  |2 rdacarrier 
490 0 |a Frontiers in mathematics 
500 |a Literaturverz. S. 253 - 259 
650 4 |a Finite geometries 
650 4 |a Graph theory 
650 4 |a Steiner systems 
650 0 7 |a Polygon  |0 (DE-588)4175197-8  |2 gnd  |9 rswk-swf 
689 0 0 |a Polygon  |0 (DE-588)4175197-8  |D s 
689 0 |5 DE-604 
856 4 2 |m Digitalisierung UB Bayreuth  |q application/pdf  |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016970877&sequence=000003&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA  |3 Inhaltsverzeichnis 
856 4 2 |m Digitalisierung UB Bayreuth  |q application/pdf  |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016970877&sequence=000004&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA  |3 Klappentext 
943 1 |a oai:aleph.bib-bvb.de:BVB01-016970877 

Datensatz im Suchindex

_version_ 1819748588051234816
adam_text Contents Preface їх 1 Introduction 1 1.1 Definition of near polygon ....................... 1 1.2 Genesis ................................. 2 1.3 Near polygons with an order ..................... 3 1.4 Parallel lines .............................. 3 1.5 Substructures .............................. 4 1.6 Product near polygons ......................... 7 1.7 Existence of quads ........................... 12 1.8 The point-quad and line-quad relations ................ 14 1.9 Some classes of near polygons ..................... 17 1.10 Generalized quadrangles of order (2, í) ................ 21 2 Dense near polygons 27 2.1 Main results ............................... 27 2.2 The existence of convex subpolygons ................. 28 2.3 Proof of Theorem 2.6.......................... 37 2.4 Upper bound for the diameter of Td{x) ................ 38 2.5 Upper bounds for t + 1 in the case of slim dense near polygons . . 40 2.6 Slim dense near polygons with a big convex subpolygon ...... 41 3 Regular near polygons 47 3.1 Introduction ............................... 47 3.2 Some restrictions on the parameters ................. 47 3.3 Eigenvalues of the collinearity matrix ................. 50 3.4 Upper bounds for í ........................... 54 3.5 Slim dense regular near hexagons ................... 55 3.6 Slim dense regular near octagons ................... 56 vi Contents 4 Glued near polygons 57 4.1 Characterizations of product near polygons ............. 57 4.2 Admissible á-spreads .......................... 62 4.3 Construction and elementary properties of glued near polygons . . 63 4.4 Basic characterization result for glued near polygons ........ 68 4.5 Other characterizations of glued near polygons ........... 71 4.6 Subpolygons ............................... 75 4.7 Glued near polygons of type б Є {0,1}................ 77 5 Valuations 93 5.1 Nice near polygons ........................... 93 5.2 Valuations of nice near polygons ................... 94 5.3 Characterizations of classical and ovoidal valuations ........ 96 5.4 The partial linear space G f ...................... 98 5.5 A property of valuations ........................ 98 5.6 Some classes of valuations ....................... 99 5.7 Valuations of dense near hexagons .................. 109 5.8 Proof of Theorem 5.29......................... Ill 5.9 Proof of Theorem 5.30......................... 115 5.10 Proof of Theorem 5.31......................... 115 5.11 Proof of Theorem 5.32......................... 116 6 The known slim dense near polygons 121 6.1 The classical near polygons DQ(2n, 2) and DH(2n- 1,4)..... 121 6.2 The class И„ .............................. 127 6.3 The class Gn .............................. 129 6.4 The class I„ ............................... 140 6.5 The near hexagon Ei .......................... 143 6.6 The near hexagon E2 .......................... 152 6.7 The near hexagon E3 .......................... 159 6.8 The known slim dense near polygons ................. 161 6.9 The elements of C3 and C4 ...................... 162 7 Slim dense near hexagons 167 7.1 Introduction ............................... 167 7.2 Elementary properties of slim dense near hexagons ......... 168 7.3 Case I: S is a regular near hexagon .................. 170 7.4 Case II: S contains grid- and W(2)-qaads but no Q(5,2)-quads . . 171 7.5 Case III: S contains grid- and Q(5,2)-quads but no W(2)-quads . . 175 7.6 Case IV: S contains W (2)- and Q(5, 2)-quads but no grid-quads .. 176 7.7 Case V: <S contains grid-quads, VF(2)-quads and Q(5,2)-quads . 177 7.8 Appendix ................................ 181 Contents vii 8 Slim dense near polygons with a nice chain of subpolygons 187 8.1 Overview ................................ 187 8.2 Proof of Theorem 8.1.......................... 189 8.3 Proof of Theorem 8.2.......................... 190 8.4 Proof of Theorem 8.3.......................... 193 8.5 Proof of Theorem 8.4.......................... 197 8.6 Proof of Theorem 8.5.......................... 197 8.7 Proof of Theorem 8.6.......................... 204 8.8 Proof of Theorem 8.7.......................... 204 8.9 Proof of Theorem 8.8.......................... 205 8.10 Proof of Theorem 8.9.......................... 208 9 Slim dense near octagons 211 9.1 Some properties of slim dense near octagons ............. 211 9.2 Existence of big hexes ......................... 212 9.3 Classification of the near octagons .................. 219 10 Nondense slim near hexagons 225 10.1 A few lemmas .............................. 225 10.2 Slim near hexagons with special points ................ 226 10.3 Slim near hexagons without special points .............. 228 10.4 Proof of Theorem 10.8......................... 230 10.5 Proof of Theorem 10.9......................... 233 10.6 Proof of Theorem 10.10........................ 235 10.7 Slim near hexagons with an order ................... 243 A Dense near polygons of order (3, t) 247 A.I Generalized quadrangles of order (3,i) ................ 247 A. 2 Dense near hexagons of order (3, t) .................. 248 A.3 Dense near octagons of order (3, í) .................. 249 A. 4 Some properties of dense near 2á-gons of order (3, í) ........ 250 A. 5 Dense near polygons of order (3. ť) with a nice chain of subpolygons 251 Bibliography 253 Index 261 Bart De Bruyn Near Polygons Near polygons were introduced about ¿ъ years ago ana stuaiea intensive^ the 1980s. In recent years the subject has regained interest. This monograph gives an extensive overview of the basic theory of general near polygons. The first part of the book includes a discussion of the classes of dense near polygons, regular near polygons, and glued near polygons. Also valuations, one of the most important tools for classifying dense near polygons, are treated in detail. The second part of the book discusses the classification of dense near polygons with three points per line. The book is self-contained and almost all theorems are accompanied with proofs. Several new results are presented. Many known results occur in a more general form and the proofs are often more streamlined than their original versions. The volume is aimed at advanced graduate students and researchers in the fields of combinatorics and finite geometry. ISBN-1Q:3-7ó¿3-7552-3 ISBN-13: 978-3-7643-7552-2 www.birkhauser.ch lathematics
any_adam_object 1
author De Bruyn, Bart 1974-
author_GND (DE-588)131586491
author_facet De Bruyn, Bart 1974-
author_role aut
author_sort De Bruyn, Bart 1974-
author_variant b b d bb bbd
building Verbundindex
bvnumber BV035163803
callnumber-first Q - Science
callnumber-label QA166
callnumber-raw QA166.3
callnumber-search QA166.3
callnumber-sort QA 3166.3
callnumber-subject QA - Mathematics
classification_rvk SK 380
ctrlnum (OCoLC)64898223
(DE-599)BVBBV035163803
dewey-full 516/.154
dewey-hundreds 500 - Natural sciences and mathematics
dewey-ones 516 - Geometry
dewey-raw 516/.154
dewey-search 516/.154
dewey-sort 3516 3154
dewey-tens 510 - Mathematics
discipline Mathematik
format Book
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01987nam a2200505 c 4500</leader><controlfield tag="001">BV035163803</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20081125 </controlfield><controlfield tag="007">t|</controlfield><controlfield tag="008">081117s2006 gw |||| 00||| eng d</controlfield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">05,N50,0824</subfield><subfield code="2">dnb</subfield></datafield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">06,A23,0946</subfield><subfield code="2">dnb</subfield></datafield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">977132331</subfield><subfield code="2">DE-101</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783764375522</subfield><subfield code="c">flexibler Kunststoffeinband : EUR 40.66 (freier Pr.)</subfield><subfield code="9">978-3-7643-7552-2</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">3764375523</subfield><subfield code="c">flexibler Kunststoffeinband : EUR 40.66 (freier Pr.)</subfield><subfield code="9">3-7643-7552-3</subfield></datafield><datafield tag="024" ind1="3" ind2=" "><subfield code="a">9783764375522</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">11600411</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)64898223</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV035163803</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">gw</subfield><subfield code="c">XA-DE</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-188</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA166.3</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">516/.154</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 380</subfield><subfield code="0">(DE-625)143235:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">510</subfield><subfield code="2">sdnb</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">De Bruyn, Bart</subfield><subfield code="d">1974-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)131586491</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Near polygons</subfield><subfield code="c">Bart De Bruyn</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Basel u. a.</subfield><subfield code="b">Birkhäuser</subfield><subfield code="c">2006</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XI, 263 S.</subfield><subfield code="c">24 cm</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Frontiers in mathematics</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Literaturverz. S. 253 - 259</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Finite geometries</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Graph theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Steiner systems</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Polygon</subfield><subfield code="0">(DE-588)4175197-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Polygon</subfield><subfield code="0">(DE-588)4175197-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Bayreuth</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&amp;doc_library=BVB01&amp;local_base=BVB01&amp;doc_number=016970877&amp;sequence=000003&amp;line_number=0001&amp;func_code=DB_RECORDS&amp;service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Bayreuth</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&amp;doc_library=BVB01&amp;local_base=BVB01&amp;doc_number=016970877&amp;sequence=000004&amp;line_number=0002&amp;func_code=DB_RECORDS&amp;service_type=MEDIA</subfield><subfield code="3">Klappentext</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-016970877</subfield></datafield></record></collection>
id DE-604.BV035163803
illustrated Not Illustrated
indexdate 2024-12-23T21:19:49Z
institution BVB
isbn 9783764375522
3764375523
language English
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-016970877
oclc_num 64898223
open_access_boolean
owner DE-384
DE-703
DE-188
owner_facet DE-384
DE-703
DE-188
physical XI, 263 S. 24 cm
publishDate 2006
publishDateSearch 2006
publishDateSort 2006
publisher Birkhäuser
record_format marc
series2 Frontiers in mathematics
spellingShingle De Bruyn, Bart 1974-
Near polygons
Finite geometries
Graph theory
Steiner systems
Polygon (DE-588)4175197-8 gnd
subject_GND (DE-588)4175197-8
title Near polygons
title_auth Near polygons
title_exact_search Near polygons
title_full Near polygons Bart De Bruyn
title_fullStr Near polygons Bart De Bruyn
title_full_unstemmed Near polygons Bart De Bruyn
title_short Near polygons
title_sort near polygons
topic Finite geometries
Graph theory
Steiner systems
Polygon (DE-588)4175197-8 gnd
topic_facet Finite geometries
Graph theory
Steiner systems
Polygon
url http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016970877&sequence=000003&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA
http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016970877&sequence=000004&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA
work_keys_str_mv AT debruynbart nearpolygons