Combustion engineering issues for solid fuel systems
Gespeichert in:
Format: | Buch |
---|---|
Sprache: | English |
Veröffentlicht: |
Amsterdam [u.a.]
Elsevier [u.a.]
2008
|
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
MARC
LEADER | 00000nam a2200000zc 4500 | ||
---|---|---|---|
001 | BV035156388 | ||
003 | DE-604 | ||
005 | 20090618 | ||
007 | t | ||
008 | 081112s2008 xxuad|| |||| 00||| eng d | ||
010 | |a 2008020724 | ||
020 | |a 9780123736116 |c hardcover |9 978-0-12-373611-6 | ||
035 | |a (OCoLC)227328514 | ||
035 | |a (DE-599)BVBBV035156388 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
044 | |a xxu |c US | ||
049 | |a DE-92 |a DE-634 | ||
050 | 0 | |a TJ254.5 | |
082 | 0 | |a 621.402/3 | |
084 | |a ZP 3270 |0 (DE-625)157949: |2 rvk | ||
245 | 1 | 0 | |a Combustion engineering issues for solid fuel systems |c ed. Bruce G. Miller... |
264 | 1 | |a Amsterdam [u.a.] |b Elsevier [u.a.] |c 2008 | |
300 | |a XXIV, 496 S. |b Ill., graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
500 | |a Includes bibliographical references and index | ||
650 | 4 | |a Combustion engineering | |
650 | 4 | |a Coal |x Combustion | |
650 | 4 | |a Fuelwood |x Combustion | |
650 | 4 | |a Waste products as fuel |v Combustion | |
650 | 0 | 7 | |a Verbrennung |0 (DE-588)4062656-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Fester Brennstoff |0 (DE-588)4154170-4 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Fester Brennstoff |0 (DE-588)4154170-4 |D s |
689 | 0 | 1 | |a Verbrennung |0 (DE-588)4062656-8 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Miller, Bruce G. |e Sonstige |0 (DE-588)135969085 |4 oth | |
856 | 4 | 2 | |m OEBV Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016963566&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-016963566 |
Datensatz im Suchindex
_version_ | 1804138317333135360 |
---|---|
adam_text | IMAGE 1
CONTENTS
PREFACE XIX
LIST OF AUTHORS XXIII
1. INTRODUCTION 1
1.1 OVERVIEW 1
1.1.1 A PERSPECTIVE ON SOLID FUEL UTILIZATION 2
1.1.2 FUELS AND COMBUSTION TECHNOLOGY DEVELOPMENT 4 1.2 SOLID FUELS USED
IN ELECTRICITY GENERATION AND PROCESS INDUSTRY APPLICATIONS 5
1.2.1 CHARACTERISTICS OF SOLID FUELS 5
1.2.2 SOME ECONOMIC CONSIDERATIONS OF SOLID FUELS 8 1.3 THE COMBUSTION
PROCESS FOR SOLID FUELS 11
1.3.1 COMBUSTION MECHANISM OVERVIEW 12
1.3.2 HEATING AND DRYING 12
1.3.3 PYROLYSIS OR DEVOLATILIZATION 15
1.3.4 VOLATILE OXIDATION REACTIONS 18
1.3.5 CHAR OXIDATION REACTIONS 19
1.3.6 FORMATION OF AIRBORNE EMISSIONS 21
1.3.7 REACTIONS OF INORGANIC MATTER 22
1.3.8 COMBUSTION AND HEAT RELEASE 24
1.4 THE COMBUSTION SYSTEM 26
1.4.1 FUEL QUALITY AND FUEL MANAGEMENT 26
1.4.2 FUEL PREPARATION 27
1.4.3 BUMERS AND THE COMBUSTION SYSTEMS 28
1.4.4 POST-COMBUSTION CONTROLS 29
1.5 ORGANIZATION OF THIS BOOK 30
1.6 REFERENCES 30
2. COAL CHARACTERISTICS 33
2.1 INTRODUCTION TO COAL 33
2.1.1 COAL FORMATION AND COALIFICATION 34
VII
IMAGE 2
VIII CONTENTS
2.2 COAL CLASSIFICATION 37
2.2.1 COAL RANK 37
2.2.2 COAL TYPE 38
2.2.3 COAL GRADE 41
2.2.4 COAL CLASSIFICATION 41
2.2.4.1 ASTM CLASSIFICATION SYSTEM 41
2.2.4.2 INTERNATIONAL CLASSIFICATION SYSTEM 41 2.3 COAL
RESERVES/RESOURCES 44
2.3.1 WORLD COAL RESERVES 44
2.3.2 UNITED STATES COAL RESOURCES AND RESERVES 47
2.4 COAL PRODUCTION 48
2.4.1 WORLD COAL PRODUCTION 51
2.4.2 UNITED STATES COAL PRODUCTION 52
2.5 TRADITIONAL COAL CHARACTERIZATION METHODS AND THEIR INDUSTRIAL
APPLICATION 61
2.5.1 PROXIMATE ANALYSIS 69
2.5.2 ULTIMATE ANALYSIS 70
2.5.3 HEATING VALUE 70
2.5.4 SULFUR FORMS 71
2.5.5 CHLORINE 71
2.5.6 GRINDABILITY 71
2.5.7 ASH COMPOSITION 71
2.5.8 TRACE ELEMENT CHARACTERIZATION 72
2.5.9 ASH FUSION 72
2.5.10 FREE-SWELLING INDEX (FSI) 72
2.5.11 PETROGRAPHY/COAL REFLECTANCE 73
2.6 NONTRADITIONAL CHARACTERIZATION METHODS AND THEIR INDUSTRIAL
APPLICATION 73
2.6.1 COAL STRUCTURE 74
2.6.2 COAL REACTIVITY 74
2.6.3 VOLATILE MATTER EVOLUTION PATTERNS 77
2.7 REFERENCES 80
3. CHARACTERISTICS OF ALTERNATIVE FUELS 83
3.1 INTRODUCTION 83
3.1.1 TYPICAL ALTERNATIVE FUEL APPLICATIONS 84
3.1.1.1 THE USE OF ALTERNATIVE FUELS IN ELECTRIC UTILITY BOILERS 84
3.1.1.2 COFIRING ALTERNATIVE FUELS IN PROCESS INDUSTRIES AND INDEPENDENT
POWER PRODUCERS 86
3.2 PETROLEUM COKE 87
3.2.1 PETROLEUM COKE PRODUCTION PROCESSES 88
IMAGE 3
CONTENTS IX
3.2.2 FUEL CHARACTERISTICS OF PETROLEUM COKE 88
3.2.2.1 PROXIMATE AND LJLTIMATE ANALYSIS OF PETROLEUM COKE 89
3.2.2.2 ASH CHARACTERISTICS OF PETROLEUM COKE 90 3.2.3 PETROLEUM COKE
UTILIZATION IN CYCLONE BOILERS 92 3.2.4 COFIRING PETROLEUM COKE IN
PULVERIZED COAL BOILERS 93 3.2.5 PETROLEUM COKE UTILIZATION IN
FLUIDIZED-BED
BOILERS 94
3.3 WOODY BIOMASS 96
3.3.1 TYPES OF WOODY BIOMASS FUELS 98
3.3.2 PHYSICAL AND CHEMICAL CHARACTERISTICS OF WOODY BIOMASS FUELS 99
3.3.2.1 PROXIMATE AND ULTIMATE ANALYSIS OF WOODY BIOMASS 100
3.3.2.2 INORGANIC MATTER IN WOODY BIOMASS 100 3.3.2.3 TRACE METAL
CONCENTRATIONS 101
3.3.3 USING WOODY BIOMASS IN DEDICATED BOILERS 102 3.3.4 WOODY BIOMASS
IN PULVERIZED COAL FIRING APPLICATIONS 106
3.3.5 COFIRING WOODY BIOMASS IN CYCLONE BOILERS 107 3.3.6 CONCLUSIONS
REGARDING USING WOODY BIOMASS AS AN ALTERNATIVE FUEL 108
3.4 TIRE-DERIVED FUEL (TDF) 110
3.4.1 GENERAL DESCRIPTION OF TIRE-DERIVED FUEL 111
3.4.2 FUEL CHARACTERISTICS OF TIRE-DERIVED FUEL 112
3.4.2.1 PROXIMATE AND ULTIMATE ANALYSIS OF TIRE-DERIVED FUEL 112
3.4.2.2 ASH CONSTITUENTS OF TDF 113
3.4.2.3 TRACE ELEMENT EMISSIONS FROM TDF 114 3.4.3 COFIRING APPLICATIONS
WITH TIRE-DERIVED FUEL 114 3.4.4 SUMMARY REGARDING TDF AS AN ALTERNATIVE
FUEL 115 3.5 HERBACEOUS CROPS 116
3.5.1 TYPES OF HERBACEOUS BIOMASS FUELS 116
3.5.2 SOURCES AND USES OF HERBACEOUS MATERIALS 117
3.5.3 FUEL CHARACTERISTICS OF SWITCHGRASS AND RELATED AGRICULTURAL
BIOMASS MATERIALS 118
3.5.3.1 DENSITY OF SWITCHGRASS AND RELATED MATERIALS 118
3.5.3.2 PROXIMATE AND ULTIMATE ANALYSIS OF SWITCHGRASS AND RELATED
AGRICULTURAL MATERIALS 119
3.5.3.3 ASH CHEMISTRY FOR HERBACEOUS BIOMASS FUELS 121
3.5.4 HERBACEOUS CROP SUMMARY 123
3.6 REFERENCES 124
IMAGE 4
X CONTENTS
4. CHARACTERISTICS AND BEHAVIOR OF INORGANIC CONSTITUENTS 133 4.1
INTRODUCTION 133
4.2 INORGANIC COMPOSITION OF COAL 136
4.2.1 DISTRIBUTION OF INORGANIC CONSTITUENTS IN COAL 136 4.2.2 METHODS
OF DETERMINING INORGANIC COMPOSITION 137 4.2.3 GENERAL COAL
CHARACTERISTICS 148
4.2.3.1 LIGNITES 148
4.2.3.2 SUBBITUMINOUS COALS 148
4.2.3.3 BITUMINOUS COALS 149
4.2.3.4 WORLD-TRADED COALS 150
4.3 ASH FORMATION: TRANSFORMATION OF COAL INORGANIC CONSTITUENTS 151
4.4 ASH DEPOSITION FORMATION 153
4.4.1 DEPOSITION PHENOMENA IN UTILITY BOILERS 153
4.4.2 SLAGGING DEPOSITS 155
4.4.3 FOULING DEPOSITS 156
4.4.4 HIGH-TEMPERATURE FOULING 157
4.4.5 LOW-TEMPERATURE FOULING 158
4.4.6 ASH IMPACTS ON SCR CATALYST 159
4.4.7 DEPOSIT THERMAL PROPERTIES 160
4.5 DEPOSIT STRENGTH DEVELOPMENT 161
4.6 DEPOSIT CHARACTERIZATION 162
4.7 PREDICTING ASH BEHAVIOR 167
4.7.1 ADVANCED INDICES 167
4.7.2 MECHANISTIC MODELS 167
4.8 REFERENCES 167
5. FUEL BLENDING FOR COMBUSTION MANAGEMENT 171
5.1 INTRODUCTION 171
5.1.1 TYPES OF FUEL BLENDING 172
5.1.2 THE REASONS FOR FUEL BLENDING 173
5.1.3 ISSUES FOR FUEL BLENDING 174
5.2 EQUIPMENT AND CONTROLS ISSUES ASSOCIATED WITH FUEL BLENDING 175
5.2.1 THE BLENDING SYSTEM AT MONROE POWER PLANT 176 5.2.2 ALTERNATIVE
BLENDING SYSTEMS 177
5.3 FUEL AND COMBUSTION EFFECTS OF BLENDING 181
5.3.1 BLENDING OVERVIEW 182
5.3.2 THE MONROE POWER PLANT CASE STUDY 182
5.3.2.1 DEVELOPMENT OF COMBUSTION MODELS AS AN ANALYTICAL TOOL 182
5.3.2.2 FUEL EFFECTS OF BLENDING AT MONROE 185 5.3.2.3 VOLATILITY AND
VOLATILE RELEASE PATTERNS 185 5.3.2.4 CHAR OXIDATION 187
5.3.2.5 ASH CHEMISTRY 187
IMAGE 5
CONTENTS XI
5.3.3 FUEL EFFECTS FOR OTHER LOCATIONS 193
5.4 OPERATIONAL ISSUES WITH FUEL BLENDING 193
5.4.1 MANAGING INORGANIC CONSTITUENTS 194
5.4.2 MANAGING THE FIRE 194
5.4.3 MANAGING BLEND CHANGES 194
5.5 CONCLUSIONS 196
5.6 REFERENCES 196
6. FUEL PREPARATION 199
6.1 KNOW YOUR FUEL 200
6.1.1 FUEL TYPES 200
6.1.2 FUEL ISSUES 201
6.1.3 COAL 202
6.1.4 PETROLEUM-BASED PRODUCTS 204
6.1.5 BIOMASS 205
6.2 FUEL STORAGE SILO 206
6.2.1 STORAGE CAPACITY 206
6.2.2 SILO/BUNKER DESIGN CONSIDERATIONS 208
6.2.3 SAFETY CONSIDERATIONS 211
6.3 SOLID FUEL FLOW CONTROL 211
6.4 FUEL SIZING EQUIPMENT 214
6.5 PULVERIZED COAL SYSTEM ANALYSIS GUIDELINES 225
6.5.1 MILL SIZING AND STANDARD RATINGS 226
6.5.2 COAL MILL CAPACITY AND CAPABILITY ANALYSIS 229 6.5.2.1 COAL
THROUGHPUT CAPABILITY 230
6.5.2.2 PRIMARY AIR CAPABILITY 232
6.5.2.3 AIR HEATER LEAKAGE 232
6.5.2.4 THERMAL REQUIREMENTS 234
6.5.2.5 ANALYSIS SUMMARY 237
6.5.3 COAL MILL CAPABILITY TEST PLAN 237
6.6 REFERENCES 239
7. CONVENTIONAL FIRING SYSTEMS 241
7.1 OVERVIEW 241
7.2 TYPES OF TRADITIONAL COMBUSTION SYSTEMS 242
7.2.1 STOKER FIRING SYSTEMS 242
7.2.2 PULVERIZED FIRING SYSTEMS 242
7.2.3 CYCLONE FIRING SYSTEMS 243
7.2.4 FLUIDIZED-BED SYSTEMS 243
7.3 APPLICATIONS AND USES OF CONVENTIONAL FIRING SYSTEMS 243
7.3.1 ELECTRICITY GENERATION 243
7.3.2 INDUSTRIAL BOILERS, KILNS, AND PROCESS HEATERS 246 7.4 BASIC
ISSUES 247
7.4.1 FUEL SELECTION 247
IMAGE 6
XII CONTENTS
7.4.2 OPERATIONAL CONSIDERATIONS 249
7.4.3 AIRBORNE EMISSIONS 250
7.4.3.1 PARTICULATES 250
7.4.3.2 S02 250
7.4.3.3 NO X 250
7.4.3.4 CO2 251
7.4.3.5 OTHER EMISSIONS (HAZARDOUS AIR POLLUTANTS) 251
7.5 FIRING SYSTEMS AND COMBUSTION ISSUES 252
7.5.1 STOKER FIRING 252
7.5.1.1 BASIC DESCRIPTION AND IDENTIFICATION OF TYPES 252
7.5.1.2 FUEL SELECTION FOR STOKERS 253
7.5.1.3 FUEL PREPARATION 254
7.5.1.4 DESIGN PARAMETERS 254
7.5.1.5 FUNCTIONING OF GRATES 255
7.5.2 PULVERIZED FIRING 256
7.5.2.1 APPLICATIONS 256
7.5.2.2 BASIC DESCRIPTION AND IDENTIFICATION OF
7.5.2.3 WALL-FIRED PULVERIZED COAL BOILERS AND
7.5.2.4 TANGENTIALLY FIRED PULVERIZED
7.5.2.5 VERTICALLY FIRED (ARCH-FIRED) BOILERS 264 7.5.2.6 PULVERIZED
COAL BURNER SYSTEMS 264
7.5.2.7 TYPICAL AND MAXIMUM CONDITIONS 265 7.5.2.8 FUEL PREPARATION 265
7.5.2.9 EFFECT OF MOISTURE 267
7.5.2.10 SWIRLING FLOW 267
7.5.2.11 OVERFIRE AIR SYSTEMS AS BURNER-BASED
TYPES 257
FIRING SYSTEMS 257
COAL BOILERS 262
EMISSIONS CONTRAL 267
7.5.3 CYCLONE FIRING 268
7.5.3.1 BASIC DESCRIPTION AND IDENTIFICATION OF TYPES 268
7.5.3.2 TYPICAL AND MAXIMUM CONDITIONS 269 7.5.3.3 NO X FORMATION AND
CYCLONES 269
7.5.3.4 DESIGN AND OPERATING PARAMETERS 269 7.6 CONCLUDING STATEMENTS
271
7.7 REFERENCES 272
8. FLUIDIZED-BED FIRING SYSTEMS 275
8.1 INTRADUCTION 275
8.2 FLUIDIZED-BED COMBUSTION SYSTEMS 276
8.2.1 BUBBLING FLUIDIZED-BED COMBUSTION (BFBC) 278
IMAGE 7
CONTENTS XIII
8.2.2 CIRCULATING FLUIDIZED-BED COMBUSTION (CFBC) 280 8.2.3 PRESSURIZED
FLUIDIZED-BED COMBUSTION [PFBC) 282 8.3 HEAT TRANSFER 283
8.4 COMBUSTION EFFICIENCY 284
8.5 FUEL FLEXIBILITY 284
8.6 POLLUTANT FORMATION AND CONTROL 288
8.6.1 SULFUR DIOXIDE 289
8.6.1.1 TRANSFORMATION OF SORBENTS IN THE FBC PROCESS 289
8.6.1.2 BED TEMPERATURE 291
8.6.1.3 PARTICLE RESIDENCE TIME 292
8.6.1.4 BED QUALITY 292
8.6.1.5 GASEOUS ENVIRONMENT 292
8.6.1.6 COMBUSTOR PRESSURE 292
8.6.1.7 CHEMICAL COMPOSITION 293
8.6.1.8 POROSITY 293
8.6.1.9 SURFACE AREA 294
8.6.1.10 PARTICLE SIZE 294
8.6.2 NITROGEN OXIDES 295
8.6.2.1 NO X FORMATION 295
8.6.2.2 FUEL NITROGEN AND VOLATILE MATTER CONTENT: FUEL RANK 296
8.6.2.3 COMBUSTION TEMPERATURE 296
8.6.2.4 EXCESS AIR 297
8.6.2.5 GAS VELOCITY/RESIDENCE TIME 297
8.6.2.6 LIMESTONE EFFECTS 297
8.6.2.7 NO X REDUCTION TECHNIQUES 297
8.6.3 PARTICULATE MATTER 298
8.6.4 CARBON MONOXIDE/HYDROCARBONS 298
8.6.5 TRACE ELEMENTS 299
8.7 ASH CHEMISTRY AND AGGLOMERATION ISSUES 301
8.7.1 CHEMICAL FRACTIONATION OF BIOMASS 303
8.7.1.1 RESULTS OF THE CHEMICAL FRACTIONATION STUDY 304
8.7.2 THERMODYNAMIC MODELING TO PREDICT INORGANIC PHASES 311
8.7.3 VISCOSITY OF INORGANIC MELT PHASES 316
8.7.3.1 VISCOSITY RESULTS 319
8.7.4 CONCLUSIONS 320
8.8 FBC BOILERS AND THEIR ROLE IN CLEAN COAL TECHNOLOGY DEVELOPMENT 321
8.8.1 UNITED STATES 322
8.8.1.1 CLEAN COAL TECHNOLOGY DEVELOPMENT PROGRAM (CCTDP) 322
8.8.1.2 CLEAN COAL POWER INITIATIVE 324
IMAGE 8
XIV CONTENTS
8.8.2 WORLDWIDE 324
8.8.3 FURTHER DEVELOPMENTS NEEDED FOR CONVENTIONAL CLEAN COAL
TECHNOLOGIES 325
8.9 UNIQUE OPPORTUNITIES FOR FBCS 325
8.9.1 BACKGROUND OF OPPORTUNITY/FOOD INDUSTRY ISSUE 326 8.9.2 DISPOSAL
OPTIONS 328
8.9.3 COFIRING ATB IN COAL-FIRED BOILERS FOR CARCASS DISPOSAL 329
8.9.4 SUMMARY OF ATB/COAL COFIRING IN A PILOT-SCALE FLUIDIZED BED
COMBUSTOR 329
8.9.4.1 NCBA/CARGILL FOOD SOLUTIONS TESTS 330 8.9.4.2 PEDA/CARGILL FOOD
SOLUTIONS TESTS 332 8.9.4.3 DOE OXYGEN-ENHANCED COMBUSTION TESTING 332
8.9.5 CLOSING STATEMENTS 333
8.10 REFERENCES 333
9. POST-COMBUSTION EMISSIONS CONTROL 341
9.1 INTRODUCTION 341
9.2 PARTICULATE CAPTURE 341
9.2.1 INTRODUCTION 341
9.2.2 ELECTROSTATIC PRECIPITATION 342
9.2.2.1 INTRODUCTION 342
9.2.2.2 THEORY 343
9.2.2.3 EQUIPMENT ARRANGEMENT 345
9.2.2.4 RESISTIVITY 346
9.2.2.5 PROCESS CONTROL 347
9.2.2.6 OPERATING AN ELECTROSTATIC PRECIPITATOR 351 9.2.2.7 DIAGNOSTICS
356
9.2.2.8 RESISTIVITY CONDITIONING 360
9.2.3 BAGHOUSE/FABRIC FILTERS 361
9.2.3.1 OVERVIEW 361
9.2.3.2 BASIC PRINCIPLES 362
9.2.3.3 SPECIFIC DESIGNS 363
9.2.3.4 COLLECTION EFFICIENCY 365
9.2.3.5 CONCLUSIONS 366
9.3 ACID GAS CONTROL 366
9.3.1 ACID GASES OF IMPORTANCE: S02, HCL 366
9.3.2 ARRAY OF TECHNOLOGIES DEPENDING ON APPLICATION 367
9.3.3 WET SCRUBBER TECHNOLOGY 367
9.3.3.1 BASIC PRINCIPLES 367
9.3.3.2 TYPICAL DESIGNS/SCALE OF OPERATIONS 367 9.3.3.3 EFFICIENCIES 369
IMAGE 9
CONTENTS XV
9.3.4 SPRAY DRYER ABSORBERS 369
9.3.4.1 BASIC PRINCIPLES 369
9.3.4.2 TYPICAL DESIGNS/SCALE OF OPERATION 369 9.3.4.3 EFFICIENCIES 370
9.3.4.4 WASTE STREAMS 371
9.3.5 DRY INJECTION SYSTEMS 371
9.3.5.1 BASIC PRINCIPLES 371
9.3.5.2 TYPICAL DESIGNS/SCALE OF OPERATIONS 372 9.3.5.3 EFFICIENCIES 372
9.3.6 REACTIONS 372
9.3.6.1 KINETICS AND THERMODYNAMICS 374
9.4 NO X CONTROL 376
9.4.1 INTRODUCTION 376
9.4.2 POST-COMBUSTION TECHNOLOGIES OF SIGNIFICANCE 377 9.4.2.1 SELECTIVE
NONCATALYTIC REDUCTION (SNCR) 377
9.4.2.2 SELECTIVE CATALYTIC REDUCTION (SCR) 378 9.5 MERCURY CONTROL 380
9.5.1 MERCURY EMISSIONS FROM EXISTING CONTROL TECHNOLOGIES FROM
COAL-FIRED POWER PLANTS 380 9.5.2 MERCURY LEGISLATION 383
9.5.3 TECHNOLOGIES FOR MERCURY CONTROL 383
9.5.3.1 SORBENT INJECTION 384
9.5.3.2 WET FLUE GAS DESULFURIZATION 388
9.6 CARBON DIOXIDE CAPTURE 389
9.6.1 INTRODUCTION 389
9.6.2 APPROACHES FOR CAPTURING CARBON DIOXIDE FROM COAL-FIRED POWER
PLANTS 389
9.6.3 POST-COMBUSTION CARBON DIOXIDE SCRUBBING 389 9.7 REFERENCES 390
10. SOME COMPUTER APPLICATIONS FOR COMBUSTION ENGINEERING WITH SOLID
FUELS 393
10.1 INTRODUCTION 393
10.1.1 COMPUTER APPLICATIONS IN COMBUSTION ENGINEERING 394
10.1.1.1 ANALYTICAL MODELING 394
10.1.1.2 COMPUTER APPLICATIONS FOR PROCESS CONTROL 396
10.1.1.3 COMPUTER APPLICATIONS FOR FUEL CONTROL 396
10.2 BACKGROUND 396
10.3 PROCESS FOR FUELS OPPORTUNITY REALIZATION 397
10.3.1 IDENTIFY CURRENT FUELS OPPORTUNITIES 397
IMAGE 10
XVI CONTENTS
10.3.2 VALIDATE OBJECTIVES AND DEVELOP EFFECTIVE DESIGN 399
10.4 SUCCESSFULLY APPLYING COMPUTER TECHNOLOGY TO FUELS CONTROL 403
10.5 ACCUTRACK SITUATION CHALLENGES AND RESPONSE 408 10.6 MODELING THE
FLOW OF COAL IN BUNKERS AND SILOS 410
10.6.1 PLUG FLOW MODELS 410
10.6.2 DISCRETE ELEMENT MODELING (DEM) 410
10.6.3 VOID MODEL 411
10.6.4 STOCHASTIC MODEL 411
10.6.5 BUNKER GEOMETRY 412
10.6.6 VALIDATION OF BUNKER MODELING 415
10.7 CONCLUSIONS REGARDING THE ACCUTRACK APPROACH TO COMPUTER MANAGEMENT
OF FUEL PROPERTIES 420
10.8 SUMMARY 421
11. GASIFICATION 423
11.1 INTRODUCTION TO GASIFICATION 423
11.2 GASIFICATION THEORY 424
11.3 FEATURES OF GASIFICATION SYSTEMS 427
11.3.1 BED TYPE 427
11.3.2 FLOW DIRECTION 430
11.3.3 FEED PREPARATION 430
11.3.4 OPERATING TEMPERATURE 431
11.3.5 OXIDANT 432
11.3.6 REACTOR CONTAINMENT 433
11.3.7 PRIMARY SYNGAS COOLING 433
11.3.8 PRIMARY GAS CLEANING 435
11.3.9 FUELISSUES 435
11.4 COMMERCIAL GASIFICATION SYSTEMS 436
11.4.1 GE ENERGY (FORMERLY TEXACO) 436
11.4.2 SHELL 436
11.4.3 E-GAS (CONOCOPHILLIPS) 439
11.4.4 SIEMENS (FORMERLY FUTURE ENERGY GSP) 439 11.4.5 KBR TRANSPORT
GASIFIER 441
11.4.6 LURGI 442
11.4.7 RAW GAS ANALYSIS 443
11.5 TRACE COMPONENTS IN GASIFIER SYNGAS 443
11.5.1 SULFUR COMPOUNDS 443
11.5.2 NITROGEN COMPOUNDS 444
11.5.3 CHLORINE COMPOUNDS 444
11.5.4 UNSATURATED HYDROCARBONS 444
11.5.5 OXYGEN 444
IMAGE 11
CONTENTS XVII
11.5.6 FORMIE ACID 445
11.5.7 CARBON 445
11.5.8 METAL CARBONYLS 445
11.5.9 MEREURY 445
11.5.10 ARSENIC 446
11.6 GAS TREATING 446
11.6.1 INTRODUCTION 446
11.6.2 DESULFURIZATION 447
11.6.3 CHEMIEAL SOLVENT PROCESSES 448
11.6.3.1 AMINE PROCESSES 448
11.6.4 PHYSIEAL SOLVENT PROCESSES 448
11.6.4.1 PHYSICAL WASHES 448
11.6.4.2 SELEXOL 449
11.6.4.3 REETISOL 450
11.6.4.4 LIQUID REDOX PROCESSES 453
11.6.5 MEMBRANES 453
11.6.6 COS HYDROLYSIS 453
11.6.7 CO SHIFT 454
11.6.7.1 CLEAN GAS SHIFT 455
11.6.7.2 RAW GAS SHIFT 456
11.6.8 MEREURY REMOVAL 457
11.7 COMPLETE SYSTEMS 457
11.7.1 INTEGRATED GASIFICATION-COMBINED CYDE (IGCC) 457 11.7.1.2
GASIFICATION BLOCK 459
11. 7.1.3 GAS TREATMENT AND SULFUR RECOVERY 460 11.7.1.4 COMBINED CYDE
POWER PLANT 461
11.7.2 IGCC WITH CARBON CAPTURE 462
11. 7.3 METHANOL 462
11.8 BENEFITS AND LIMITS OF GASIFICATION 464
11.8.1 EFFICIENEY 464
11.8.2 ENVIRONMENTAL IMPACT 464
11.8.2.1 SULFUR EMISSIONS 465
11.8.2.2 NO X EMISSIONS 465
11.8.2.3 MEREURY 465
11.8.2.4 OTHER EMISSIONS 465
11.8.2.5 START-UP EMISSIONS 465
11.8.3 AVAILABILITY 466
11.8.4 CAPITAL REQUIREMENTS 466
11.9 REFERENEES 467
12. POLIEY CONSIDERATIONS FOR COMBUSTION ENGINEERING 469 12.1
INTRODUETION 469
12.1.1 COMBUSTION ENGINEERS DO NOT MAKE POLIEY 471 12.1.2 COMBUSTION
ENGINEERS RESPOND TO POLIEY 472
IMAGE 12
XVIII CONTENTS
12.2 ENVIRONMENTAL POLIEY AND THE ENGINEERING RESPONSE 473 12.2.1 A
HISTORIEAL PERSPEETIVE 474
12.2.2 ENVIRONMENTAL POLIEY AND LEGISLATION SINEE 1990 474
12.2.3 MEEHANISMS OF ENGINEERING RESPONSE TO ENVIRONMENTAL POLIEY 477
12.3 ENERGY POLIEY AND COMBUSTION ENGINEERING 480
12.3.1 ENERGY POLIEY AND FUEL SELEETION 481
12.3.2 DEREGULATION AND ITS PREEURSORS 481
12.3.3 ENERGY EFFIEIENEY AND ENERGY POLIEY 482
12.4 OTHER FEDERAL, STATE, LOEAL, AND PRIVATE POLIEIES IMPAETING
COMBUSTION ENGINEERS 482
12.5 CONC1USIONS 484
12.6 REFERENEES 484
INDEX 485
|
adam_txt |
IMAGE 1
CONTENTS
PREFACE XIX
LIST OF AUTHORS XXIII
1. INTRODUCTION 1
1.1 OVERVIEW 1
1.1.1 A PERSPECTIVE ON SOLID FUEL UTILIZATION 2
1.1.2 FUELS AND COMBUSTION TECHNOLOGY DEVELOPMENT 4 1.2 SOLID FUELS USED
IN ELECTRICITY GENERATION AND PROCESS INDUSTRY APPLICATIONS 5
1.2.1 CHARACTERISTICS OF SOLID FUELS 5
1.2.2 SOME ECONOMIC CONSIDERATIONS OF SOLID FUELS 8 1.3 THE COMBUSTION
PROCESS FOR SOLID FUELS 11
1.3.1 COMBUSTION MECHANISM OVERVIEW 12
1.3.2 HEATING AND DRYING 12
1.3.3 PYROLYSIS OR DEVOLATILIZATION 15
1.3.4 VOLATILE OXIDATION REACTIONS 18
1.3.5 CHAR OXIDATION REACTIONS 19
1.3.6 FORMATION OF AIRBORNE EMISSIONS 21
1.3.7 REACTIONS OF INORGANIC MATTER 22
1.3.8 COMBUSTION AND HEAT RELEASE 24
1.4 THE COMBUSTION SYSTEM 26
1.4.1 FUEL QUALITY AND FUEL MANAGEMENT 26
1.4.2 FUEL PREPARATION 27
1.4.3 BUMERS AND THE COMBUSTION SYSTEMS 28
1.4.4 POST-COMBUSTION CONTROLS 29
1.5 ORGANIZATION OF THIS BOOK 30
1.6 REFERENCES 30
2. COAL CHARACTERISTICS 33
2.1 INTRODUCTION TO COAL 33
2.1.1 COAL FORMATION AND COALIFICATION 34
VII
IMAGE 2
VIII CONTENTS
2.2 COAL CLASSIFICATION 37
2.2.1 COAL RANK 37
2.2.2 COAL TYPE 38
2.2.3 COAL GRADE 41
2.2.4 COAL CLASSIFICATION 41
2.2.4.1 ASTM CLASSIFICATION SYSTEM 41
2.2.4.2 INTERNATIONAL CLASSIFICATION SYSTEM 41 2.3 COAL
RESERVES/RESOURCES 44
2.3.1 WORLD COAL RESERVES 44
2.3.2 UNITED STATES COAL RESOURCES AND RESERVES 47
2.4 COAL PRODUCTION 48
2.4.1 WORLD COAL PRODUCTION 51
2.4.2 UNITED STATES COAL PRODUCTION 52
2.5 TRADITIONAL COAL CHARACTERIZATION METHODS AND THEIR INDUSTRIAL
APPLICATION 61
2.5.1 PROXIMATE ANALYSIS 69
2.5.2 ULTIMATE ANALYSIS 70
2.5.3 HEATING VALUE 70
2.5.4 SULFUR FORMS 71
2.5.5 CHLORINE 71
2.5.6 GRINDABILITY 71
2.5.7 ASH COMPOSITION 71
2.5.8 TRACE ELEMENT CHARACTERIZATION 72
2.5.9 ASH FUSION 72
2.5.10 FREE-SWELLING INDEX (FSI) 72
2.5.11 PETROGRAPHY/COAL REFLECTANCE 73
2.6 NONTRADITIONAL CHARACTERIZATION METHODS AND THEIR INDUSTRIAL
APPLICATION 73
2.6.1 COAL STRUCTURE 74
2.6.2 COAL REACTIVITY 74
2.6.3 VOLATILE MATTER EVOLUTION PATTERNS 77
2.7 REFERENCES 80
3. CHARACTERISTICS OF ALTERNATIVE FUELS 83
3.1 INTRODUCTION 83
3.1.1 TYPICAL ALTERNATIVE FUEL APPLICATIONS 84
3.1.1.1 THE USE OF ALTERNATIVE FUELS IN ELECTRIC UTILITY BOILERS 84
3.1.1.2 COFIRING ALTERNATIVE FUELS IN PROCESS INDUSTRIES AND INDEPENDENT
POWER PRODUCERS 86
3.2 PETROLEUM COKE 87
3.2.1 PETROLEUM COKE PRODUCTION PROCESSES 88
IMAGE 3
CONTENTS IX
3.2.2 FUEL CHARACTERISTICS OF PETROLEUM COKE 88
3.2.2.1 PROXIMATE AND LJLTIMATE ANALYSIS OF PETROLEUM COKE 89
3.2.2.2 ASH CHARACTERISTICS OF PETROLEUM COKE 90 3.2.3 PETROLEUM COKE
UTILIZATION IN CYCLONE BOILERS 92 3.2.4 COFIRING PETROLEUM COKE IN
PULVERIZED COAL BOILERS 93 3.2.5 PETROLEUM COKE UTILIZATION IN
FLUIDIZED-BED
BOILERS 94
3.3 WOODY BIOMASS 96
3.3.1 TYPES OF WOODY BIOMASS FUELS 98
3.3.2 PHYSICAL AND CHEMICAL CHARACTERISTICS OF WOODY BIOMASS FUELS 99
3.3.2.1 PROXIMATE AND ULTIMATE ANALYSIS OF WOODY BIOMASS 100
3.3.2.2 INORGANIC MATTER IN WOODY BIOMASS 100 3.3.2.3 TRACE METAL
CONCENTRATIONS 101
3.3.3 USING WOODY BIOMASS IN DEDICATED BOILERS 102 3.3.4 WOODY BIOMASS
IN PULVERIZED COAL FIRING APPLICATIONS 106
3.3.5 COFIRING WOODY BIOMASS IN CYCLONE BOILERS 107 3.3.6 CONCLUSIONS
REGARDING USING WOODY BIOMASS AS AN ALTERNATIVE FUEL 108
3.4 TIRE-DERIVED FUEL (TDF) 110
3.4.1 GENERAL DESCRIPTION OF TIRE-DERIVED FUEL 111
3.4.2 FUEL CHARACTERISTICS OF TIRE-DERIVED FUEL 112
3.4.2.1 PROXIMATE AND ULTIMATE ANALYSIS OF TIRE-DERIVED FUEL 112
3.4.2.2 ASH CONSTITUENTS OF TDF 113
3.4.2.3 TRACE ELEMENT EMISSIONS FROM TDF 114 3.4.3 COFIRING APPLICATIONS
WITH TIRE-DERIVED FUEL 114 3.4.4 SUMMARY REGARDING TDF AS AN ALTERNATIVE
FUEL 115 3.5 HERBACEOUS CROPS 116
3.5.1 TYPES OF HERBACEOUS BIOMASS FUELS 116
3.5.2 SOURCES AND USES OF HERBACEOUS MATERIALS 117
3.5.3 FUEL CHARACTERISTICS OF SWITCHGRASS AND RELATED AGRICULTURAL
BIOMASS MATERIALS 118
3.5.3.1 DENSITY OF SWITCHGRASS AND RELATED MATERIALS 118
3.5.3.2 PROXIMATE AND ULTIMATE ANALYSIS OF SWITCHGRASS AND RELATED
AGRICULTURAL MATERIALS 119
3.5.3.3 ASH CHEMISTRY FOR HERBACEOUS BIOMASS FUELS 121
3.5.4 HERBACEOUS CROP SUMMARY 123
3.6 REFERENCES 124
IMAGE 4
X CONTENTS
4. CHARACTERISTICS AND BEHAVIOR OF INORGANIC CONSTITUENTS 133 4.1
INTRODUCTION 133
4.2 INORGANIC COMPOSITION OF COAL 136
4.2.1 DISTRIBUTION OF INORGANIC CONSTITUENTS IN COAL 136 4.2.2 METHODS
OF DETERMINING INORGANIC COMPOSITION 137 4.2.3 GENERAL COAL
CHARACTERISTICS 148
4.2.3.1 LIGNITES 148
4.2.3.2 SUBBITUMINOUS COALS 148
4.2.3.3 BITUMINOUS COALS 149
4.2.3.4 WORLD-TRADED COALS 150
4.3 ASH FORMATION: TRANSFORMATION OF COAL INORGANIC CONSTITUENTS 151
4.4 ASH DEPOSITION FORMATION 153
4.4.1 DEPOSITION PHENOMENA IN UTILITY BOILERS 153
4.4.2 SLAGGING DEPOSITS 155
4.4.3 FOULING DEPOSITS 156
4.4.4 HIGH-TEMPERATURE FOULING 157
4.4.5 LOW-TEMPERATURE FOULING 158
4.4.6 ASH IMPACTS ON SCR CATALYST 159
4.4.7 DEPOSIT THERMAL PROPERTIES 160
4.5 DEPOSIT STRENGTH DEVELOPMENT 161
4.6 DEPOSIT CHARACTERIZATION 162
4.7 PREDICTING ASH BEHAVIOR 167
4.7.1 ADVANCED INDICES 167
4.7.2 MECHANISTIC MODELS 167
4.8 REFERENCES 167
5. FUEL BLENDING FOR COMBUSTION MANAGEMENT 171
5.1 INTRODUCTION 171
5.1.1 TYPES OF FUEL BLENDING 172
5.1.2 THE REASONS FOR FUEL BLENDING 173
5.1.3 ISSUES FOR FUEL BLENDING 174
5.2 EQUIPMENT AND CONTROLS ISSUES ASSOCIATED WITH FUEL BLENDING 175
5.2.1 THE BLENDING SYSTEM AT MONROE POWER PLANT 176 5.2.2 ALTERNATIVE
BLENDING SYSTEMS 177
5.3 FUEL AND COMBUSTION EFFECTS OF BLENDING 181
5.3.1 BLENDING OVERVIEW 182
5.3.2 THE MONROE POWER PLANT CASE STUDY 182
5.3.2.1 DEVELOPMENT OF COMBUSTION MODELS AS AN ANALYTICAL TOOL 182
5.3.2.2 FUEL EFFECTS OF BLENDING AT MONROE 185 5.3.2.3 VOLATILITY AND
VOLATILE RELEASE PATTERNS 185 5.3.2.4 CHAR OXIDATION 187
5.3.2.5 ASH CHEMISTRY 187
IMAGE 5
CONTENTS XI
5.3.3 FUEL EFFECTS FOR OTHER LOCATIONS 193
5.4 OPERATIONAL ISSUES WITH FUEL BLENDING 193
5.4.1 MANAGING INORGANIC CONSTITUENTS 194
5.4.2 MANAGING THE FIRE 194
5.4.3 MANAGING BLEND CHANGES 194
5.5 CONCLUSIONS 196
5.6 REFERENCES 196
6. FUEL PREPARATION 199
6.1 KNOW YOUR FUEL 200
6.1.1 FUEL TYPES 200
6.1.2 FUEL ISSUES 201
6.1.3 COAL 202
6.1.4 PETROLEUM-BASED PRODUCTS 204
6.1.5 BIOMASS 205
6.2 FUEL STORAGE SILO 206
6.2.1 STORAGE CAPACITY 206
6.2.2 SILO/BUNKER DESIGN CONSIDERATIONS 208
6.2.3 SAFETY CONSIDERATIONS 211
6.3 SOLID FUEL FLOW CONTROL 211
6.4 FUEL SIZING EQUIPMENT 214
6.5 PULVERIZED COAL SYSTEM ANALYSIS GUIDELINES 225
6.5.1 MILL SIZING AND STANDARD RATINGS 226
6.5.2 COAL MILL CAPACITY AND CAPABILITY ANALYSIS 229 6.5.2.1 COAL
THROUGHPUT CAPABILITY 230
6.5.2.2 PRIMARY AIR CAPABILITY 232
6.5.2.3 AIR HEATER LEAKAGE 232
6.5.2.4 THERMAL REQUIREMENTS 234
6.5.2.5 ANALYSIS SUMMARY 237
6.5.3 COAL MILL CAPABILITY TEST PLAN 237
6.6 REFERENCES 239
7. CONVENTIONAL FIRING SYSTEMS 241
7.1 OVERVIEW 241
7.2 TYPES OF TRADITIONAL COMBUSTION SYSTEMS 242
7.2.1 STOKER FIRING SYSTEMS 242
7.2.2 PULVERIZED FIRING SYSTEMS 242
7.2.3 CYCLONE FIRING SYSTEMS 243
7.2.4 FLUIDIZED-BED SYSTEMS 243
7.3 APPLICATIONS AND USES OF CONVENTIONAL FIRING SYSTEMS 243
7.3.1 ELECTRICITY GENERATION 243
7.3.2 INDUSTRIAL BOILERS, KILNS, AND PROCESS HEATERS 246 7.4 BASIC
ISSUES 247
7.4.1 FUEL SELECTION 247
IMAGE 6
XII CONTENTS
7.4.2 OPERATIONAL CONSIDERATIONS 249
7.4.3 AIRBORNE EMISSIONS 250
7.4.3.1 PARTICULATES 250
7.4.3.2 S02 250
7.4.3.3 NO X 250
7.4.3.4 CO2 251
7.4.3.5 OTHER EMISSIONS (HAZARDOUS AIR POLLUTANTS) 251
7.5 FIRING SYSTEMS AND COMBUSTION ISSUES 252
7.5.1 STOKER FIRING 252
7.5.1.1 BASIC DESCRIPTION AND IDENTIFICATION OF TYPES 252
7.5.1.2 FUEL SELECTION FOR STOKERS 253
7.5.1.3 FUEL PREPARATION 254
7.5.1.4 DESIGN PARAMETERS 254
7.5.1.5 FUNCTIONING OF GRATES 255
7.5.2 PULVERIZED FIRING 256
7.5.2.1 APPLICATIONS 256
7.5.2.2 BASIC DESCRIPTION AND IDENTIFICATION OF
7.5.2.3 WALL-FIRED PULVERIZED COAL BOILERS AND
7.5.2.4 TANGENTIALLY FIRED PULVERIZED
7.5.2.5 VERTICALLY FIRED (ARCH-FIRED) BOILERS 264 7.5.2.6 PULVERIZED
COAL BURNER SYSTEMS 264
7.5.2.7 TYPICAL AND MAXIMUM CONDITIONS 265 7.5.2.8 FUEL PREPARATION 265
7.5.2.9 EFFECT OF MOISTURE 267
7.5.2.10 SWIRLING FLOW 267
7.5.2.11 OVERFIRE AIR SYSTEMS AS BURNER-BASED
TYPES 257
FIRING SYSTEMS 257
COAL BOILERS 262
EMISSIONS CONTRAL 267
7.5.3 CYCLONE FIRING 268
7.5.3.1 BASIC DESCRIPTION AND IDENTIFICATION OF TYPES 268
7.5.3.2 TYPICAL AND MAXIMUM CONDITIONS 269 7.5.3.3 NO X FORMATION AND
CYCLONES 269
7.5.3.4 DESIGN AND OPERATING PARAMETERS 269 7.6 CONCLUDING STATEMENTS
271
7.7 REFERENCES 272
8. FLUIDIZED-BED FIRING SYSTEMS 275
8.1 INTRADUCTION 275
8.2 FLUIDIZED-BED COMBUSTION SYSTEMS 276
8.2.1 BUBBLING FLUIDIZED-BED COMBUSTION (BFBC) 278
IMAGE 7
CONTENTS XIII
8.2.2 CIRCULATING FLUIDIZED-BED COMBUSTION (CFBC) 280 8.2.3 PRESSURIZED
FLUIDIZED-BED COMBUSTION [PFBC) 282 8.3 HEAT TRANSFER 283
8.4 COMBUSTION EFFICIENCY 284
8.5 FUEL FLEXIBILITY 284
8.6 POLLUTANT FORMATION AND CONTROL 288
8.6.1 SULFUR DIOXIDE 289
8.6.1.1 TRANSFORMATION OF SORBENTS IN THE FBC PROCESS 289
8.6.1.2 BED TEMPERATURE 291
8.6.1.3 PARTICLE RESIDENCE TIME 292
8.6.1.4 BED QUALITY 292
8.6.1.5 GASEOUS ENVIRONMENT 292
8.6.1.6 COMBUSTOR PRESSURE 292
8.6.1.7 CHEMICAL COMPOSITION 293
8.6.1.8 POROSITY 293
8.6.1.9 SURFACE AREA 294
8.6.1.10 PARTICLE SIZE 294
8.6.2 NITROGEN OXIDES 295
8.6.2.1 NO X FORMATION 295
8.6.2.2 FUEL NITROGEN AND VOLATILE MATTER CONTENT: FUEL RANK 296
8.6.2.3 COMBUSTION TEMPERATURE 296
8.6.2.4 EXCESS AIR 297
8.6.2.5 GAS VELOCITY/RESIDENCE TIME 297
8.6.2.6 LIMESTONE EFFECTS 297
8.6.2.7 NO X REDUCTION TECHNIQUES 297
8.6.3 PARTICULATE MATTER 298
8.6.4 CARBON MONOXIDE/HYDROCARBONS 298
8.6.5 TRACE ELEMENTS 299
8.7 ASH CHEMISTRY AND AGGLOMERATION ISSUES 301
8.7.1 CHEMICAL FRACTIONATION OF BIOMASS 303
8.7.1.1 RESULTS OF THE CHEMICAL FRACTIONATION STUDY 304
8.7.2 THERMODYNAMIC MODELING TO PREDICT INORGANIC PHASES 311
8.7.3 VISCOSITY OF INORGANIC MELT PHASES 316
8.7.3.1 VISCOSITY RESULTS 319
8.7.4 CONCLUSIONS 320
8.8 FBC BOILERS AND THEIR ROLE IN CLEAN COAL TECHNOLOGY DEVELOPMENT 321
8.8.1 UNITED STATES 322
8.8.1.1 CLEAN COAL TECHNOLOGY DEVELOPMENT PROGRAM (CCTDP) 322
8.8.1.2 CLEAN COAL POWER INITIATIVE 324
IMAGE 8
XIV CONTENTS
8.8.2 WORLDWIDE 324
8.8.3 FURTHER DEVELOPMENTS NEEDED FOR CONVENTIONAL CLEAN COAL
TECHNOLOGIES 325
8.9 UNIQUE OPPORTUNITIES FOR FBCS 325
8.9.1 BACKGROUND OF OPPORTUNITY/FOOD INDUSTRY ISSUE 326 8.9.2 DISPOSAL
OPTIONS 328
8.9.3 COFIRING ATB IN COAL-FIRED BOILERS FOR CARCASS DISPOSAL 329
8.9.4 SUMMARY OF ATB/COAL COFIRING IN A PILOT-SCALE FLUIDIZED BED
COMBUSTOR 329
8.9.4.1 NCBA/CARGILL FOOD SOLUTIONS TESTS 330 8.9.4.2 PEDA/CARGILL FOOD
SOLUTIONS TESTS 332 8.9.4.3 DOE OXYGEN-ENHANCED COMBUSTION TESTING 332
8.9.5 CLOSING STATEMENTS 333
8.10 REFERENCES 333
9. POST-COMBUSTION EMISSIONS CONTROL 341
9.1 INTRODUCTION 341
9.2 PARTICULATE CAPTURE 341
9.2.1 INTRODUCTION 341
9.2.2 ELECTROSTATIC PRECIPITATION 342
9.2.2.1 INTRODUCTION 342
9.2.2.2 THEORY 343
9.2.2.3 EQUIPMENT ARRANGEMENT 345
9.2.2.4 RESISTIVITY 346
9.2.2.5 PROCESS CONTROL 347
9.2.2.6 OPERATING AN ELECTROSTATIC PRECIPITATOR 351 9.2.2.7 DIAGNOSTICS
356
9.2.2.8 RESISTIVITY CONDITIONING 360
9.2.3 BAGHOUSE/FABRIC FILTERS 361
9.2.3.1 OVERVIEW 361
9.2.3.2 BASIC PRINCIPLES 362
9.2.3.3 SPECIFIC DESIGNS 363
9.2.3.4 COLLECTION EFFICIENCY 365
9.2.3.5 CONCLUSIONS 366
9.3 ACID GAS CONTROL 366
9.3.1 ACID GASES OF IMPORTANCE: S02, HCL 366
9.3.2 ARRAY OF TECHNOLOGIES DEPENDING ON APPLICATION 367
9.3.3 WET SCRUBBER TECHNOLOGY 367
9.3.3.1 BASIC PRINCIPLES 367
9.3.3.2 TYPICAL DESIGNS/SCALE OF OPERATIONS 367 9.3.3.3 EFFICIENCIES 369
IMAGE 9
CONTENTS XV
9.3.4 SPRAY DRYER ABSORBERS 369
9.3.4.1 BASIC PRINCIPLES 369
9.3.4.2 TYPICAL DESIGNS/SCALE OF OPERATION 369 9.3.4.3 EFFICIENCIES 370
9.3.4.4 WASTE STREAMS 371
9.3.5 DRY INJECTION SYSTEMS 371
9.3.5.1 BASIC PRINCIPLES 371
9.3.5.2 TYPICAL DESIGNS/SCALE OF OPERATIONS 372 9.3.5.3 EFFICIENCIES 372
9.3.6 REACTIONS 372
9.3.6.1 KINETICS AND THERMODYNAMICS 374
9.4 NO X CONTROL 376
9.4.1 INTRODUCTION 376
9.4.2 POST-COMBUSTION TECHNOLOGIES OF SIGNIFICANCE 377 9.4.2.1 SELECTIVE
NONCATALYTIC REDUCTION (SNCR) 377
9.4.2.2 SELECTIVE CATALYTIC REDUCTION (SCR) 378 9.5 MERCURY CONTROL 380
9.5.1 MERCURY EMISSIONS FROM EXISTING CONTROL TECHNOLOGIES FROM
COAL-FIRED POWER PLANTS 380 9.5.2 MERCURY LEGISLATION 383
9.5.3 TECHNOLOGIES FOR MERCURY CONTROL 383
9.5.3.1 SORBENT INJECTION 384
9.5.3.2 WET FLUE GAS DESULFURIZATION 388
9.6 CARBON DIOXIDE CAPTURE 389
9.6.1 INTRODUCTION 389
9.6.2 APPROACHES FOR CAPTURING CARBON DIOXIDE FROM COAL-FIRED POWER
PLANTS 389
9.6.3 POST-COMBUSTION CARBON DIOXIDE SCRUBBING 389 9.7 REFERENCES 390
10. SOME COMPUTER APPLICATIONS FOR COMBUSTION ENGINEERING WITH SOLID
FUELS 393
10.1 INTRODUCTION 393
10.1.1 COMPUTER APPLICATIONS IN COMBUSTION ENGINEERING 394
10.1.1.1 ANALYTICAL MODELING 394
10.1.1.2 COMPUTER APPLICATIONS FOR PROCESS CONTROL 396
10.1.1.3 COMPUTER APPLICATIONS FOR FUEL CONTROL 396
10.2 BACKGROUND 396
10.3 PROCESS FOR FUELS OPPORTUNITY REALIZATION 397
10.3.1 IDENTIFY CURRENT FUELS OPPORTUNITIES 397
IMAGE 10
XVI CONTENTS
10.3.2 VALIDATE OBJECTIVES AND DEVELOP EFFECTIVE DESIGN 399
10.4 SUCCESSFULLY APPLYING COMPUTER TECHNOLOGY TO FUELS CONTROL 403
10.5 ACCUTRACK SITUATION CHALLENGES AND RESPONSE 408 10.6 MODELING THE
FLOW OF COAL IN BUNKERS AND SILOS 410
10.6.1 PLUG FLOW MODELS 410
10.6.2 DISCRETE ELEMENT MODELING (DEM) 410
10.6.3 VOID MODEL 411
10.6.4 STOCHASTIC MODEL 411
10.6.5 BUNKER GEOMETRY 412
10.6.6 VALIDATION OF BUNKER MODELING 415
10.7 CONCLUSIONS REGARDING THE ACCUTRACK APPROACH TO COMPUTER MANAGEMENT
OF FUEL PROPERTIES 420
10.8 SUMMARY 421
11. GASIFICATION 423
11.1 INTRODUCTION TO GASIFICATION 423
11.2 GASIFICATION THEORY 424
11.3 FEATURES OF GASIFICATION SYSTEMS 427
11.3.1 BED TYPE 427
11.3.2 FLOW DIRECTION 430
11.3.3 FEED PREPARATION 430
11.3.4 OPERATING TEMPERATURE 431
11.3.5 OXIDANT 432
11.3.6 REACTOR CONTAINMENT 433
11.3.7 PRIMARY SYNGAS COOLING 433
11.3.8 PRIMARY GAS CLEANING 435
11.3.9 FUELISSUES 435
11.4 COMMERCIAL GASIFICATION SYSTEMS 436
11.4.1 GE ENERGY (FORMERLY TEXACO) 436
11.4.2 SHELL 436
11.4.3 E-GAS (CONOCOPHILLIPS) 439
11.4.4 SIEMENS (FORMERLY FUTURE ENERGY GSP) 439 11.4.5 KBR TRANSPORT
GASIFIER 441
11.4.6 LURGI 442
11.4.7 RAW GAS ANALYSIS 443
11.5 TRACE COMPONENTS IN GASIFIER SYNGAS 443
11.5.1 SULFUR COMPOUNDS 443
11.5.2 NITROGEN COMPOUNDS 444
11.5.3 CHLORINE COMPOUNDS 444
11.5.4 UNSATURATED HYDROCARBONS 444
11.5.5 OXYGEN 444
IMAGE 11
CONTENTS XVII
11.5.6 FORMIE ACID 445
11.5.7 CARBON 445
11.5.8 METAL CARBONYLS 445
11.5.9 MEREURY 445
11.5.10 ARSENIC 446
11.6 GAS TREATING 446
11.6.1 INTRODUCTION 446
11.6.2 DESULFURIZATION 447
11.6.3 CHEMIEAL SOLVENT PROCESSES 448
11.6.3.1 AMINE PROCESSES 448
11.6.4 PHYSIEAL SOLVENT PROCESSES 448
11.6.4.1 PHYSICAL WASHES 448
11.6.4.2 SELEXOL 449
11.6.4.3 REETISOL 450
11.6.4.4 LIQUID REDOX PROCESSES 453
11.6.5 MEMBRANES 453
11.6.6 COS HYDROLYSIS 453
11.6.7 CO SHIFT 454
11.6.7.1 CLEAN GAS SHIFT 455
11.6.7.2 RAW GAS SHIFT 456
11.6.8 MEREURY REMOVAL 457
11.7 COMPLETE SYSTEMS 457
11.7.1 INTEGRATED GASIFICATION-COMBINED CYDE (IGCC) 457 11.7.1.2
GASIFICATION BLOCK 459
11. 7.1.3 GAS TREATMENT AND SULFUR RECOVERY 460 11.7.1.4 COMBINED CYDE
POWER PLANT 461
11.7.2 IGCC WITH CARBON CAPTURE 462
11. 7.3 METHANOL 462
11.8 BENEFITS AND LIMITS OF GASIFICATION 464
11.8.1 EFFICIENEY 464
11.8.2 ENVIRONMENTAL IMPACT 464
11.8.2.1 SULFUR EMISSIONS 465
11.8.2.2 NO X EMISSIONS 465
11.8.2.3 MEREURY 465
11.8.2.4 OTHER EMISSIONS 465
11.8.2.5 START-UP EMISSIONS 465
11.8.3 AVAILABILITY 466
11.8.4 CAPITAL REQUIREMENTS 466
11.9 REFERENEES 467
12. POLIEY CONSIDERATIONS FOR COMBUSTION ENGINEERING 469 12.1
INTRODUETION 469
12.1.1 COMBUSTION ENGINEERS DO NOT MAKE POLIEY 471 12.1.2 COMBUSTION
ENGINEERS RESPOND TO POLIEY 472
IMAGE 12
XVIII CONTENTS
12.2 ENVIRONMENTAL POLIEY AND THE ENGINEERING RESPONSE 473 12.2.1 A
HISTORIEAL PERSPEETIVE 474
12.2.2 ENVIRONMENTAL POLIEY AND LEGISLATION SINEE 1990 474
12.2.3 MEEHANISMS OF ENGINEERING RESPONSE TO ENVIRONMENTAL POLIEY 477
12.3 ENERGY POLIEY AND COMBUSTION ENGINEERING 480
12.3.1 ENERGY POLIEY AND FUEL SELEETION 481
12.3.2 DEREGULATION AND ITS PREEURSORS 481
12.3.3 ENERGY EFFIEIENEY AND ENERGY POLIEY 482
12.4 OTHER FEDERAL, STATE, LOEAL, AND PRIVATE POLIEIES IMPAETING
COMBUSTION ENGINEERS 482
12.5 CONC1USIONS 484
12.6 REFERENEES 484
INDEX 485 |
any_adam_object | 1 |
any_adam_object_boolean | 1 |
author_GND | (DE-588)135969085 |
building | Verbundindex |
bvnumber | BV035156388 |
callnumber-first | T - Technology |
callnumber-label | TJ254 |
callnumber-raw | TJ254.5 |
callnumber-search | TJ254.5 |
callnumber-sort | TJ 3254.5 |
callnumber-subject | TJ - Mechanical Engineering and Machinery |
classification_rvk | ZP 3270 |
ctrlnum | (OCoLC)227328514 (DE-599)BVBBV035156388 |
dewey-full | 621.402/3 |
dewey-hundreds | 600 - Technology (Applied sciences) |
dewey-ones | 621 - Applied physics |
dewey-raw | 621.402/3 |
dewey-search | 621.402/3 |
dewey-sort | 3621.402 13 |
dewey-tens | 620 - Engineering and allied operations |
discipline | Energietechnik |
discipline_str_mv | Energietechnik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01665nam a2200445zc 4500</leader><controlfield tag="001">BV035156388</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20090618 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">081112s2008 xxuad|| |||| 00||| eng d</controlfield><datafield tag="010" ind1=" " ind2=" "><subfield code="a">2008020724</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780123736116</subfield><subfield code="c">hardcover</subfield><subfield code="9">978-0-12-373611-6</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)227328514</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV035156388</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">xxu</subfield><subfield code="c">US</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-92</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TJ254.5</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">621.402/3</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ZP 3270</subfield><subfield code="0">(DE-625)157949:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Combustion engineering issues for solid fuel systems</subfield><subfield code="c">ed. Bruce G. Miller...</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Amsterdam [u.a.]</subfield><subfield code="b">Elsevier [u.a.]</subfield><subfield code="c">2008</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XXIV, 496 S.</subfield><subfield code="b">Ill., graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references and index</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Combustion engineering</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Coal</subfield><subfield code="x">Combustion</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fuelwood</subfield><subfield code="x">Combustion</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Waste products as fuel</subfield><subfield code="v">Combustion</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Verbrennung</subfield><subfield code="0">(DE-588)4062656-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Fester Brennstoff</subfield><subfield code="0">(DE-588)4154170-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Fester Brennstoff</subfield><subfield code="0">(DE-588)4154170-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Verbrennung</subfield><subfield code="0">(DE-588)4062656-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Miller, Bruce G.</subfield><subfield code="e">Sonstige</subfield><subfield code="0">(DE-588)135969085</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">OEBV Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016963566&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-016963566</subfield></datafield></record></collection> |
id | DE-604.BV035156388 |
illustrated | Illustrated |
index_date | 2024-07-02T22:48:54Z |
indexdate | 2024-07-09T21:26:16Z |
institution | BVB |
isbn | 9780123736116 |
language | English |
lccn | 2008020724 |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-016963566 |
oclc_num | 227328514 |
open_access_boolean | |
owner | DE-92 DE-634 |
owner_facet | DE-92 DE-634 |
physical | XXIV, 496 S. Ill., graph. Darst. |
publishDate | 2008 |
publishDateSearch | 2008 |
publishDateSort | 2008 |
publisher | Elsevier [u.a.] |
record_format | marc |
spelling | Combustion engineering issues for solid fuel systems ed. Bruce G. Miller... Amsterdam [u.a.] Elsevier [u.a.] 2008 XXIV, 496 S. Ill., graph. Darst. txt rdacontent n rdamedia nc rdacarrier Includes bibliographical references and index Combustion engineering Coal Combustion Fuelwood Combustion Waste products as fuel Combustion Verbrennung (DE-588)4062656-8 gnd rswk-swf Fester Brennstoff (DE-588)4154170-4 gnd rswk-swf Fester Brennstoff (DE-588)4154170-4 s Verbrennung (DE-588)4062656-8 s DE-604 Miller, Bruce G. Sonstige (DE-588)135969085 oth OEBV Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016963566&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Combustion engineering issues for solid fuel systems Combustion engineering Coal Combustion Fuelwood Combustion Waste products as fuel Combustion Verbrennung (DE-588)4062656-8 gnd Fester Brennstoff (DE-588)4154170-4 gnd |
subject_GND | (DE-588)4062656-8 (DE-588)4154170-4 |
title | Combustion engineering issues for solid fuel systems |
title_auth | Combustion engineering issues for solid fuel systems |
title_exact_search | Combustion engineering issues for solid fuel systems |
title_exact_search_txtP | Combustion engineering issues for solid fuel systems |
title_full | Combustion engineering issues for solid fuel systems ed. Bruce G. Miller... |
title_fullStr | Combustion engineering issues for solid fuel systems ed. Bruce G. Miller... |
title_full_unstemmed | Combustion engineering issues for solid fuel systems ed. Bruce G. Miller... |
title_short | Combustion engineering issues for solid fuel systems |
title_sort | combustion engineering issues for solid fuel systems |
topic | Combustion engineering Coal Combustion Fuelwood Combustion Waste products as fuel Combustion Verbrennung (DE-588)4062656-8 gnd Fester Brennstoff (DE-588)4154170-4 gnd |
topic_facet | Combustion engineering Coal Combustion Fuelwood Combustion Waste products as fuel Combustion Verbrennung Fester Brennstoff |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016963566&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT millerbruceg combustionengineeringissuesforsolidfuelsystems |