Combustion engineering issues for solid fuel systems

Gespeichert in:
Bibliographische Detailangaben
Format: Buch
Sprache:English
Veröffentlicht: Amsterdam [u.a.] Elsevier [u.a.] 2008
Schlagworte:
Online-Zugang:Inhaltsverzeichnis
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nam a2200000zc 4500
001 BV035156388
003 DE-604
005 20090618
007 t
008 081112s2008 xxuad|| |||| 00||| eng d
010 |a 2008020724 
020 |a 9780123736116  |c hardcover  |9 978-0-12-373611-6 
035 |a (OCoLC)227328514 
035 |a (DE-599)BVBBV035156388 
040 |a DE-604  |b ger  |e aacr 
041 0 |a eng 
044 |a xxu  |c US 
049 |a DE-92  |a DE-634 
050 0 |a TJ254.5 
082 0 |a 621.402/3 
084 |a ZP 3270  |0 (DE-625)157949:  |2 rvk 
245 1 0 |a Combustion engineering issues for solid fuel systems  |c ed. Bruce G. Miller... 
264 1 |a Amsterdam [u.a.]  |b Elsevier [u.a.]  |c 2008 
300 |a XXIV, 496 S.  |b Ill., graph. Darst. 
336 |b txt  |2 rdacontent 
337 |b n  |2 rdamedia 
338 |b nc  |2 rdacarrier 
500 |a Includes bibliographical references and index 
650 4 |a Combustion engineering 
650 4 |a Coal  |x Combustion 
650 4 |a Fuelwood  |x Combustion 
650 4 |a Waste products as fuel  |v Combustion 
650 0 7 |a Verbrennung  |0 (DE-588)4062656-8  |2 gnd  |9 rswk-swf 
650 0 7 |a Fester Brennstoff  |0 (DE-588)4154170-4  |2 gnd  |9 rswk-swf 
689 0 0 |a Fester Brennstoff  |0 (DE-588)4154170-4  |D s 
689 0 1 |a Verbrennung  |0 (DE-588)4062656-8  |D s 
689 0 |5 DE-604 
700 1 |a Miller, Bruce G.  |e Sonstige  |0 (DE-588)135969085  |4 oth 
856 4 2 |m OEBV Datenaustausch  |q application/pdf  |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016963566&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA  |3 Inhaltsverzeichnis 
999 |a oai:aleph.bib-bvb.de:BVB01-016963566 

Datensatz im Suchindex

_version_ 1804138317333135360
adam_text IMAGE 1 CONTENTS PREFACE XIX LIST OF AUTHORS XXIII 1. INTRODUCTION 1 1.1 OVERVIEW 1 1.1.1 A PERSPECTIVE ON SOLID FUEL UTILIZATION 2 1.1.2 FUELS AND COMBUSTION TECHNOLOGY DEVELOPMENT 4 1.2 SOLID FUELS USED IN ELECTRICITY GENERATION AND PROCESS INDUSTRY APPLICATIONS 5 1.2.1 CHARACTERISTICS OF SOLID FUELS 5 1.2.2 SOME ECONOMIC CONSIDERATIONS OF SOLID FUELS 8 1.3 THE COMBUSTION PROCESS FOR SOLID FUELS 11 1.3.1 COMBUSTION MECHANISM OVERVIEW 12 1.3.2 HEATING AND DRYING 12 1.3.3 PYROLYSIS OR DEVOLATILIZATION 15 1.3.4 VOLATILE OXIDATION REACTIONS 18 1.3.5 CHAR OXIDATION REACTIONS 19 1.3.6 FORMATION OF AIRBORNE EMISSIONS 21 1.3.7 REACTIONS OF INORGANIC MATTER 22 1.3.8 COMBUSTION AND HEAT RELEASE 24 1.4 THE COMBUSTION SYSTEM 26 1.4.1 FUEL QUALITY AND FUEL MANAGEMENT 26 1.4.2 FUEL PREPARATION 27 1.4.3 BUMERS AND THE COMBUSTION SYSTEMS 28 1.4.4 POST-COMBUSTION CONTROLS 29 1.5 ORGANIZATION OF THIS BOOK 30 1.6 REFERENCES 30 2. COAL CHARACTERISTICS 33 2.1 INTRODUCTION TO COAL 33 2.1.1 COAL FORMATION AND COALIFICATION 34 VII IMAGE 2 VIII CONTENTS 2.2 COAL CLASSIFICATION 37 2.2.1 COAL RANK 37 2.2.2 COAL TYPE 38 2.2.3 COAL GRADE 41 2.2.4 COAL CLASSIFICATION 41 2.2.4.1 ASTM CLASSIFICATION SYSTEM 41 2.2.4.2 INTERNATIONAL CLASSIFICATION SYSTEM 41 2.3 COAL RESERVES/RESOURCES 44 2.3.1 WORLD COAL RESERVES 44 2.3.2 UNITED STATES COAL RESOURCES AND RESERVES 47 2.4 COAL PRODUCTION 48 2.4.1 WORLD COAL PRODUCTION 51 2.4.2 UNITED STATES COAL PRODUCTION 52 2.5 TRADITIONAL COAL CHARACTERIZATION METHODS AND THEIR INDUSTRIAL APPLICATION 61 2.5.1 PROXIMATE ANALYSIS 69 2.5.2 ULTIMATE ANALYSIS 70 2.5.3 HEATING VALUE 70 2.5.4 SULFUR FORMS 71 2.5.5 CHLORINE 71 2.5.6 GRINDABILITY 71 2.5.7 ASH COMPOSITION 71 2.5.8 TRACE ELEMENT CHARACTERIZATION 72 2.5.9 ASH FUSION 72 2.5.10 FREE-SWELLING INDEX (FSI) 72 2.5.11 PETROGRAPHY/COAL REFLECTANCE 73 2.6 NONTRADITIONAL CHARACTERIZATION METHODS AND THEIR INDUSTRIAL APPLICATION 73 2.6.1 COAL STRUCTURE 74 2.6.2 COAL REACTIVITY 74 2.6.3 VOLATILE MATTER EVOLUTION PATTERNS 77 2.7 REFERENCES 80 3. CHARACTERISTICS OF ALTERNATIVE FUELS 83 3.1 INTRODUCTION 83 3.1.1 TYPICAL ALTERNATIVE FUEL APPLICATIONS 84 3.1.1.1 THE USE OF ALTERNATIVE FUELS IN ELECTRIC UTILITY BOILERS 84 3.1.1.2 COFIRING ALTERNATIVE FUELS IN PROCESS INDUSTRIES AND INDEPENDENT POWER PRODUCERS 86 3.2 PETROLEUM COKE 87 3.2.1 PETROLEUM COKE PRODUCTION PROCESSES 88 IMAGE 3 CONTENTS IX 3.2.2 FUEL CHARACTERISTICS OF PETROLEUM COKE 88 3.2.2.1 PROXIMATE AND LJLTIMATE ANALYSIS OF PETROLEUM COKE 89 3.2.2.2 ASH CHARACTERISTICS OF PETROLEUM COKE 90 3.2.3 PETROLEUM COKE UTILIZATION IN CYCLONE BOILERS 92 3.2.4 COFIRING PETROLEUM COKE IN PULVERIZED COAL BOILERS 93 3.2.5 PETROLEUM COKE UTILIZATION IN FLUIDIZED-BED BOILERS 94 3.3 WOODY BIOMASS 96 3.3.1 TYPES OF WOODY BIOMASS FUELS 98 3.3.2 PHYSICAL AND CHEMICAL CHARACTERISTICS OF WOODY BIOMASS FUELS 99 3.3.2.1 PROXIMATE AND ULTIMATE ANALYSIS OF WOODY BIOMASS 100 3.3.2.2 INORGANIC MATTER IN WOODY BIOMASS 100 3.3.2.3 TRACE METAL CONCENTRATIONS 101 3.3.3 USING WOODY BIOMASS IN DEDICATED BOILERS 102 3.3.4 WOODY BIOMASS IN PULVERIZED COAL FIRING APPLICATIONS 106 3.3.5 COFIRING WOODY BIOMASS IN CYCLONE BOILERS 107 3.3.6 CONCLUSIONS REGARDING USING WOODY BIOMASS AS AN ALTERNATIVE FUEL 108 3.4 TIRE-DERIVED FUEL (TDF) 110 3.4.1 GENERAL DESCRIPTION OF TIRE-DERIVED FUEL 111 3.4.2 FUEL CHARACTERISTICS OF TIRE-DERIVED FUEL 112 3.4.2.1 PROXIMATE AND ULTIMATE ANALYSIS OF TIRE-DERIVED FUEL 112 3.4.2.2 ASH CONSTITUENTS OF TDF 113 3.4.2.3 TRACE ELEMENT EMISSIONS FROM TDF 114 3.4.3 COFIRING APPLICATIONS WITH TIRE-DERIVED FUEL 114 3.4.4 SUMMARY REGARDING TDF AS AN ALTERNATIVE FUEL 115 3.5 HERBACEOUS CROPS 116 3.5.1 TYPES OF HERBACEOUS BIOMASS FUELS 116 3.5.2 SOURCES AND USES OF HERBACEOUS MATERIALS 117 3.5.3 FUEL CHARACTERISTICS OF SWITCHGRASS AND RELATED AGRICULTURAL BIOMASS MATERIALS 118 3.5.3.1 DENSITY OF SWITCHGRASS AND RELATED MATERIALS 118 3.5.3.2 PROXIMATE AND ULTIMATE ANALYSIS OF SWITCHGRASS AND RELATED AGRICULTURAL MATERIALS 119 3.5.3.3 ASH CHEMISTRY FOR HERBACEOUS BIOMASS FUELS 121 3.5.4 HERBACEOUS CROP SUMMARY 123 3.6 REFERENCES 124 IMAGE 4 X CONTENTS 4. CHARACTERISTICS AND BEHAVIOR OF INORGANIC CONSTITUENTS 133 4.1 INTRODUCTION 133 4.2 INORGANIC COMPOSITION OF COAL 136 4.2.1 DISTRIBUTION OF INORGANIC CONSTITUENTS IN COAL 136 4.2.2 METHODS OF DETERMINING INORGANIC COMPOSITION 137 4.2.3 GENERAL COAL CHARACTERISTICS 148 4.2.3.1 LIGNITES 148 4.2.3.2 SUBBITUMINOUS COALS 148 4.2.3.3 BITUMINOUS COALS 149 4.2.3.4 WORLD-TRADED COALS 150 4.3 ASH FORMATION: TRANSFORMATION OF COAL INORGANIC CONSTITUENTS 151 4.4 ASH DEPOSITION FORMATION 153 4.4.1 DEPOSITION PHENOMENA IN UTILITY BOILERS 153 4.4.2 SLAGGING DEPOSITS 155 4.4.3 FOULING DEPOSITS 156 4.4.4 HIGH-TEMPERATURE FOULING 157 4.4.5 LOW-TEMPERATURE FOULING 158 4.4.6 ASH IMPACTS ON SCR CATALYST 159 4.4.7 DEPOSIT THERMAL PROPERTIES 160 4.5 DEPOSIT STRENGTH DEVELOPMENT 161 4.6 DEPOSIT CHARACTERIZATION 162 4.7 PREDICTING ASH BEHAVIOR 167 4.7.1 ADVANCED INDICES 167 4.7.2 MECHANISTIC MODELS 167 4.8 REFERENCES 167 5. FUEL BLENDING FOR COMBUSTION MANAGEMENT 171 5.1 INTRODUCTION 171 5.1.1 TYPES OF FUEL BLENDING 172 5.1.2 THE REASONS FOR FUEL BLENDING 173 5.1.3 ISSUES FOR FUEL BLENDING 174 5.2 EQUIPMENT AND CONTROLS ISSUES ASSOCIATED WITH FUEL BLENDING 175 5.2.1 THE BLENDING SYSTEM AT MONROE POWER PLANT 176 5.2.2 ALTERNATIVE BLENDING SYSTEMS 177 5.3 FUEL AND COMBUSTION EFFECTS OF BLENDING 181 5.3.1 BLENDING OVERVIEW 182 5.3.2 THE MONROE POWER PLANT CASE STUDY 182 5.3.2.1 DEVELOPMENT OF COMBUSTION MODELS AS AN ANALYTICAL TOOL 182 5.3.2.2 FUEL EFFECTS OF BLENDING AT MONROE 185 5.3.2.3 VOLATILITY AND VOLATILE RELEASE PATTERNS 185 5.3.2.4 CHAR OXIDATION 187 5.3.2.5 ASH CHEMISTRY 187 IMAGE 5 CONTENTS XI 5.3.3 FUEL EFFECTS FOR OTHER LOCATIONS 193 5.4 OPERATIONAL ISSUES WITH FUEL BLENDING 193 5.4.1 MANAGING INORGANIC CONSTITUENTS 194 5.4.2 MANAGING THE FIRE 194 5.4.3 MANAGING BLEND CHANGES 194 5.5 CONCLUSIONS 196 5.6 REFERENCES 196 6. FUEL PREPARATION 199 6.1 KNOW YOUR FUEL 200 6.1.1 FUEL TYPES 200 6.1.2 FUEL ISSUES 201 6.1.3 COAL 202 6.1.4 PETROLEUM-BASED PRODUCTS 204 6.1.5 BIOMASS 205 6.2 FUEL STORAGE SILO 206 6.2.1 STORAGE CAPACITY 206 6.2.2 SILO/BUNKER DESIGN CONSIDERATIONS 208 6.2.3 SAFETY CONSIDERATIONS 211 6.3 SOLID FUEL FLOW CONTROL 211 6.4 FUEL SIZING EQUIPMENT 214 6.5 PULVERIZED COAL SYSTEM ANALYSIS GUIDELINES 225 6.5.1 MILL SIZING AND STANDARD RATINGS 226 6.5.2 COAL MILL CAPACITY AND CAPABILITY ANALYSIS 229 6.5.2.1 COAL THROUGHPUT CAPABILITY 230 6.5.2.2 PRIMARY AIR CAPABILITY 232 6.5.2.3 AIR HEATER LEAKAGE 232 6.5.2.4 THERMAL REQUIREMENTS 234 6.5.2.5 ANALYSIS SUMMARY 237 6.5.3 COAL MILL CAPABILITY TEST PLAN 237 6.6 REFERENCES 239 7. CONVENTIONAL FIRING SYSTEMS 241 7.1 OVERVIEW 241 7.2 TYPES OF TRADITIONAL COMBUSTION SYSTEMS 242 7.2.1 STOKER FIRING SYSTEMS 242 7.2.2 PULVERIZED FIRING SYSTEMS 242 7.2.3 CYCLONE FIRING SYSTEMS 243 7.2.4 FLUIDIZED-BED SYSTEMS 243 7.3 APPLICATIONS AND USES OF CONVENTIONAL FIRING SYSTEMS 243 7.3.1 ELECTRICITY GENERATION 243 7.3.2 INDUSTRIAL BOILERS, KILNS, AND PROCESS HEATERS 246 7.4 BASIC ISSUES 247 7.4.1 FUEL SELECTION 247 IMAGE 6 XII CONTENTS 7.4.2 OPERATIONAL CONSIDERATIONS 249 7.4.3 AIRBORNE EMISSIONS 250 7.4.3.1 PARTICULATES 250 7.4.3.2 S02 250 7.4.3.3 NO X 250 7.4.3.4 CO2 251 7.4.3.5 OTHER EMISSIONS (HAZARDOUS AIR POLLUTANTS) 251 7.5 FIRING SYSTEMS AND COMBUSTION ISSUES 252 7.5.1 STOKER FIRING 252 7.5.1.1 BASIC DESCRIPTION AND IDENTIFICATION OF TYPES 252 7.5.1.2 FUEL SELECTION FOR STOKERS 253 7.5.1.3 FUEL PREPARATION 254 7.5.1.4 DESIGN PARAMETERS 254 7.5.1.5 FUNCTIONING OF GRATES 255 7.5.2 PULVERIZED FIRING 256 7.5.2.1 APPLICATIONS 256 7.5.2.2 BASIC DESCRIPTION AND IDENTIFICATION OF 7.5.2.3 WALL-FIRED PULVERIZED COAL BOILERS AND 7.5.2.4 TANGENTIALLY FIRED PULVERIZED 7.5.2.5 VERTICALLY FIRED (ARCH-FIRED) BOILERS 264 7.5.2.6 PULVERIZED COAL BURNER SYSTEMS 264 7.5.2.7 TYPICAL AND MAXIMUM CONDITIONS 265 7.5.2.8 FUEL PREPARATION 265 7.5.2.9 EFFECT OF MOISTURE 267 7.5.2.10 SWIRLING FLOW 267 7.5.2.11 OVERFIRE AIR SYSTEMS AS BURNER-BASED TYPES 257 FIRING SYSTEMS 257 COAL BOILERS 262 EMISSIONS CONTRAL 267 7.5.3 CYCLONE FIRING 268 7.5.3.1 BASIC DESCRIPTION AND IDENTIFICATION OF TYPES 268 7.5.3.2 TYPICAL AND MAXIMUM CONDITIONS 269 7.5.3.3 NO X FORMATION AND CYCLONES 269 7.5.3.4 DESIGN AND OPERATING PARAMETERS 269 7.6 CONCLUDING STATEMENTS 271 7.7 REFERENCES 272 8. FLUIDIZED-BED FIRING SYSTEMS 275 8.1 INTRADUCTION 275 8.2 FLUIDIZED-BED COMBUSTION SYSTEMS 276 8.2.1 BUBBLING FLUIDIZED-BED COMBUSTION (BFBC) 278 IMAGE 7 CONTENTS XIII 8.2.2 CIRCULATING FLUIDIZED-BED COMBUSTION (CFBC) 280 8.2.3 PRESSURIZED FLUIDIZED-BED COMBUSTION [PFBC) 282 8.3 HEAT TRANSFER 283 8.4 COMBUSTION EFFICIENCY 284 8.5 FUEL FLEXIBILITY 284 8.6 POLLUTANT FORMATION AND CONTROL 288 8.6.1 SULFUR DIOXIDE 289 8.6.1.1 TRANSFORMATION OF SORBENTS IN THE FBC PROCESS 289 8.6.1.2 BED TEMPERATURE 291 8.6.1.3 PARTICLE RESIDENCE TIME 292 8.6.1.4 BED QUALITY 292 8.6.1.5 GASEOUS ENVIRONMENT 292 8.6.1.6 COMBUSTOR PRESSURE 292 8.6.1.7 CHEMICAL COMPOSITION 293 8.6.1.8 POROSITY 293 8.6.1.9 SURFACE AREA 294 8.6.1.10 PARTICLE SIZE 294 8.6.2 NITROGEN OXIDES 295 8.6.2.1 NO X FORMATION 295 8.6.2.2 FUEL NITROGEN AND VOLATILE MATTER CONTENT: FUEL RANK 296 8.6.2.3 COMBUSTION TEMPERATURE 296 8.6.2.4 EXCESS AIR 297 8.6.2.5 GAS VELOCITY/RESIDENCE TIME 297 8.6.2.6 LIMESTONE EFFECTS 297 8.6.2.7 NO X REDUCTION TECHNIQUES 297 8.6.3 PARTICULATE MATTER 298 8.6.4 CARBON MONOXIDE/HYDROCARBONS 298 8.6.5 TRACE ELEMENTS 299 8.7 ASH CHEMISTRY AND AGGLOMERATION ISSUES 301 8.7.1 CHEMICAL FRACTIONATION OF BIOMASS 303 8.7.1.1 RESULTS OF THE CHEMICAL FRACTIONATION STUDY 304 8.7.2 THERMODYNAMIC MODELING TO PREDICT INORGANIC PHASES 311 8.7.3 VISCOSITY OF INORGANIC MELT PHASES 316 8.7.3.1 VISCOSITY RESULTS 319 8.7.4 CONCLUSIONS 320 8.8 FBC BOILERS AND THEIR ROLE IN CLEAN COAL TECHNOLOGY DEVELOPMENT 321 8.8.1 UNITED STATES 322 8.8.1.1 CLEAN COAL TECHNOLOGY DEVELOPMENT PROGRAM (CCTDP) 322 8.8.1.2 CLEAN COAL POWER INITIATIVE 324 IMAGE 8 XIV CONTENTS 8.8.2 WORLDWIDE 324 8.8.3 FURTHER DEVELOPMENTS NEEDED FOR CONVENTIONAL CLEAN COAL TECHNOLOGIES 325 8.9 UNIQUE OPPORTUNITIES FOR FBCS 325 8.9.1 BACKGROUND OF OPPORTUNITY/FOOD INDUSTRY ISSUE 326 8.9.2 DISPOSAL OPTIONS 328 8.9.3 COFIRING ATB IN COAL-FIRED BOILERS FOR CARCASS DISPOSAL 329 8.9.4 SUMMARY OF ATB/COAL COFIRING IN A PILOT-SCALE FLUIDIZED BED COMBUSTOR 329 8.9.4.1 NCBA/CARGILL FOOD SOLUTIONS TESTS 330 8.9.4.2 PEDA/CARGILL FOOD SOLUTIONS TESTS 332 8.9.4.3 DOE OXYGEN-ENHANCED COMBUSTION TESTING 332 8.9.5 CLOSING STATEMENTS 333 8.10 REFERENCES 333 9. POST-COMBUSTION EMISSIONS CONTROL 341 9.1 INTRODUCTION 341 9.2 PARTICULATE CAPTURE 341 9.2.1 INTRODUCTION 341 9.2.2 ELECTROSTATIC PRECIPITATION 342 9.2.2.1 INTRODUCTION 342 9.2.2.2 THEORY 343 9.2.2.3 EQUIPMENT ARRANGEMENT 345 9.2.2.4 RESISTIVITY 346 9.2.2.5 PROCESS CONTROL 347 9.2.2.6 OPERATING AN ELECTROSTATIC PRECIPITATOR 351 9.2.2.7 DIAGNOSTICS 356 9.2.2.8 RESISTIVITY CONDITIONING 360 9.2.3 BAGHOUSE/FABRIC FILTERS 361 9.2.3.1 OVERVIEW 361 9.2.3.2 BASIC PRINCIPLES 362 9.2.3.3 SPECIFIC DESIGNS 363 9.2.3.4 COLLECTION EFFICIENCY 365 9.2.3.5 CONCLUSIONS 366 9.3 ACID GAS CONTROL 366 9.3.1 ACID GASES OF IMPORTANCE: S02, HCL 366 9.3.2 ARRAY OF TECHNOLOGIES DEPENDING ON APPLICATION 367 9.3.3 WET SCRUBBER TECHNOLOGY 367 9.3.3.1 BASIC PRINCIPLES 367 9.3.3.2 TYPICAL DESIGNS/SCALE OF OPERATIONS 367 9.3.3.3 EFFICIENCIES 369 IMAGE 9 CONTENTS XV 9.3.4 SPRAY DRYER ABSORBERS 369 9.3.4.1 BASIC PRINCIPLES 369 9.3.4.2 TYPICAL DESIGNS/SCALE OF OPERATION 369 9.3.4.3 EFFICIENCIES 370 9.3.4.4 WASTE STREAMS 371 9.3.5 DRY INJECTION SYSTEMS 371 9.3.5.1 BASIC PRINCIPLES 371 9.3.5.2 TYPICAL DESIGNS/SCALE OF OPERATIONS 372 9.3.5.3 EFFICIENCIES 372 9.3.6 REACTIONS 372 9.3.6.1 KINETICS AND THERMODYNAMICS 374 9.4 NO X CONTROL 376 9.4.1 INTRODUCTION 376 9.4.2 POST-COMBUSTION TECHNOLOGIES OF SIGNIFICANCE 377 9.4.2.1 SELECTIVE NONCATALYTIC REDUCTION (SNCR) 377 9.4.2.2 SELECTIVE CATALYTIC REDUCTION (SCR) 378 9.5 MERCURY CONTROL 380 9.5.1 MERCURY EMISSIONS FROM EXISTING CONTROL TECHNOLOGIES FROM COAL-FIRED POWER PLANTS 380 9.5.2 MERCURY LEGISLATION 383 9.5.3 TECHNOLOGIES FOR MERCURY CONTROL 383 9.5.3.1 SORBENT INJECTION 384 9.5.3.2 WET FLUE GAS DESULFURIZATION 388 9.6 CARBON DIOXIDE CAPTURE 389 9.6.1 INTRODUCTION 389 9.6.2 APPROACHES FOR CAPTURING CARBON DIOXIDE FROM COAL-FIRED POWER PLANTS 389 9.6.3 POST-COMBUSTION CARBON DIOXIDE SCRUBBING 389 9.7 REFERENCES 390 10. SOME COMPUTER APPLICATIONS FOR COMBUSTION ENGINEERING WITH SOLID FUELS 393 10.1 INTRODUCTION 393 10.1.1 COMPUTER APPLICATIONS IN COMBUSTION ENGINEERING 394 10.1.1.1 ANALYTICAL MODELING 394 10.1.1.2 COMPUTER APPLICATIONS FOR PROCESS CONTROL 396 10.1.1.3 COMPUTER APPLICATIONS FOR FUEL CONTROL 396 10.2 BACKGROUND 396 10.3 PROCESS FOR FUELS OPPORTUNITY REALIZATION 397 10.3.1 IDENTIFY CURRENT FUELS OPPORTUNITIES 397 IMAGE 10 XVI CONTENTS 10.3.2 VALIDATE OBJECTIVES AND DEVELOP EFFECTIVE DESIGN 399 10.4 SUCCESSFULLY APPLYING COMPUTER TECHNOLOGY TO FUELS CONTROL 403 10.5 ACCUTRACK SITUATION CHALLENGES AND RESPONSE 408 10.6 MODELING THE FLOW OF COAL IN BUNKERS AND SILOS 410 10.6.1 PLUG FLOW MODELS 410 10.6.2 DISCRETE ELEMENT MODELING (DEM) 410 10.6.3 VOID MODEL 411 10.6.4 STOCHASTIC MODEL 411 10.6.5 BUNKER GEOMETRY 412 10.6.6 VALIDATION OF BUNKER MODELING 415 10.7 CONCLUSIONS REGARDING THE ACCUTRACK APPROACH TO COMPUTER MANAGEMENT OF FUEL PROPERTIES 420 10.8 SUMMARY 421 11. GASIFICATION 423 11.1 INTRODUCTION TO GASIFICATION 423 11.2 GASIFICATION THEORY 424 11.3 FEATURES OF GASIFICATION SYSTEMS 427 11.3.1 BED TYPE 427 11.3.2 FLOW DIRECTION 430 11.3.3 FEED PREPARATION 430 11.3.4 OPERATING TEMPERATURE 431 11.3.5 OXIDANT 432 11.3.6 REACTOR CONTAINMENT 433 11.3.7 PRIMARY SYNGAS COOLING 433 11.3.8 PRIMARY GAS CLEANING 435 11.3.9 FUELISSUES 435 11.4 COMMERCIAL GASIFICATION SYSTEMS 436 11.4.1 GE ENERGY (FORMERLY TEXACO) 436 11.4.2 SHELL 436 11.4.3 E-GAS (CONOCOPHILLIPS) 439 11.4.4 SIEMENS (FORMERLY FUTURE ENERGY GSP) 439 11.4.5 KBR TRANSPORT GASIFIER 441 11.4.6 LURGI 442 11.4.7 RAW GAS ANALYSIS 443 11.5 TRACE COMPONENTS IN GASIFIER SYNGAS 443 11.5.1 SULFUR COMPOUNDS 443 11.5.2 NITROGEN COMPOUNDS 444 11.5.3 CHLORINE COMPOUNDS 444 11.5.4 UNSATURATED HYDROCARBONS 444 11.5.5 OXYGEN 444 IMAGE 11 CONTENTS XVII 11.5.6 FORMIE ACID 445 11.5.7 CARBON 445 11.5.8 METAL CARBONYLS 445 11.5.9 MEREURY 445 11.5.10 ARSENIC 446 11.6 GAS TREATING 446 11.6.1 INTRODUCTION 446 11.6.2 DESULFURIZATION 447 11.6.3 CHEMIEAL SOLVENT PROCESSES 448 11.6.3.1 AMINE PROCESSES 448 11.6.4 PHYSIEAL SOLVENT PROCESSES 448 11.6.4.1 PHYSICAL WASHES 448 11.6.4.2 SELEXOL 449 11.6.4.3 REETISOL 450 11.6.4.4 LIQUID REDOX PROCESSES 453 11.6.5 MEMBRANES 453 11.6.6 COS HYDROLYSIS 453 11.6.7 CO SHIFT 454 11.6.7.1 CLEAN GAS SHIFT 455 11.6.7.2 RAW GAS SHIFT 456 11.6.8 MEREURY REMOVAL 457 11.7 COMPLETE SYSTEMS 457 11.7.1 INTEGRATED GASIFICATION-COMBINED CYDE (IGCC) 457 11.7.1.2 GASIFICATION BLOCK 459 11. 7.1.3 GAS TREATMENT AND SULFUR RECOVERY 460 11.7.1.4 COMBINED CYDE POWER PLANT 461 11.7.2 IGCC WITH CARBON CAPTURE 462 11. 7.3 METHANOL 462 11.8 BENEFITS AND LIMITS OF GASIFICATION 464 11.8.1 EFFICIENEY 464 11.8.2 ENVIRONMENTAL IMPACT 464 11.8.2.1 SULFUR EMISSIONS 465 11.8.2.2 NO X EMISSIONS 465 11.8.2.3 MEREURY 465 11.8.2.4 OTHER EMISSIONS 465 11.8.2.5 START-UP EMISSIONS 465 11.8.3 AVAILABILITY 466 11.8.4 CAPITAL REQUIREMENTS 466 11.9 REFERENEES 467 12. POLIEY CONSIDERATIONS FOR COMBUSTION ENGINEERING 469 12.1 INTRODUETION 469 12.1.1 COMBUSTION ENGINEERS DO NOT MAKE POLIEY 471 12.1.2 COMBUSTION ENGINEERS RESPOND TO POLIEY 472 IMAGE 12 XVIII CONTENTS 12.2 ENVIRONMENTAL POLIEY AND THE ENGINEERING RESPONSE 473 12.2.1 A HISTORIEAL PERSPEETIVE 474 12.2.2 ENVIRONMENTAL POLIEY AND LEGISLATION SINEE 1990 474 12.2.3 MEEHANISMS OF ENGINEERING RESPONSE TO ENVIRONMENTAL POLIEY 477 12.3 ENERGY POLIEY AND COMBUSTION ENGINEERING 480 12.3.1 ENERGY POLIEY AND FUEL SELEETION 481 12.3.2 DEREGULATION AND ITS PREEURSORS 481 12.3.3 ENERGY EFFIEIENEY AND ENERGY POLIEY 482 12.4 OTHER FEDERAL, STATE, LOEAL, AND PRIVATE POLIEIES IMPAETING COMBUSTION ENGINEERS 482 12.5 CONC1USIONS 484 12.6 REFERENEES 484 INDEX 485
adam_txt IMAGE 1 CONTENTS PREFACE XIX LIST OF AUTHORS XXIII 1. INTRODUCTION 1 1.1 OVERVIEW 1 1.1.1 A PERSPECTIVE ON SOLID FUEL UTILIZATION 2 1.1.2 FUELS AND COMBUSTION TECHNOLOGY DEVELOPMENT 4 1.2 SOLID FUELS USED IN ELECTRICITY GENERATION AND PROCESS INDUSTRY APPLICATIONS 5 1.2.1 CHARACTERISTICS OF SOLID FUELS 5 1.2.2 SOME ECONOMIC CONSIDERATIONS OF SOLID FUELS 8 1.3 THE COMBUSTION PROCESS FOR SOLID FUELS 11 1.3.1 COMBUSTION MECHANISM OVERVIEW 12 1.3.2 HEATING AND DRYING 12 1.3.3 PYROLYSIS OR DEVOLATILIZATION 15 1.3.4 VOLATILE OXIDATION REACTIONS 18 1.3.5 CHAR OXIDATION REACTIONS 19 1.3.6 FORMATION OF AIRBORNE EMISSIONS 21 1.3.7 REACTIONS OF INORGANIC MATTER 22 1.3.8 COMBUSTION AND HEAT RELEASE 24 1.4 THE COMBUSTION SYSTEM 26 1.4.1 FUEL QUALITY AND FUEL MANAGEMENT 26 1.4.2 FUEL PREPARATION 27 1.4.3 BUMERS AND THE COMBUSTION SYSTEMS 28 1.4.4 POST-COMBUSTION CONTROLS 29 1.5 ORGANIZATION OF THIS BOOK 30 1.6 REFERENCES 30 2. COAL CHARACTERISTICS 33 2.1 INTRODUCTION TO COAL 33 2.1.1 COAL FORMATION AND COALIFICATION 34 VII IMAGE 2 VIII CONTENTS 2.2 COAL CLASSIFICATION 37 2.2.1 COAL RANK 37 2.2.2 COAL TYPE 38 2.2.3 COAL GRADE 41 2.2.4 COAL CLASSIFICATION 41 2.2.4.1 ASTM CLASSIFICATION SYSTEM 41 2.2.4.2 INTERNATIONAL CLASSIFICATION SYSTEM 41 2.3 COAL RESERVES/RESOURCES 44 2.3.1 WORLD COAL RESERVES 44 2.3.2 UNITED STATES COAL RESOURCES AND RESERVES 47 2.4 COAL PRODUCTION 48 2.4.1 WORLD COAL PRODUCTION 51 2.4.2 UNITED STATES COAL PRODUCTION 52 2.5 TRADITIONAL COAL CHARACTERIZATION METHODS AND THEIR INDUSTRIAL APPLICATION 61 2.5.1 PROXIMATE ANALYSIS 69 2.5.2 ULTIMATE ANALYSIS 70 2.5.3 HEATING VALUE 70 2.5.4 SULFUR FORMS 71 2.5.5 CHLORINE 71 2.5.6 GRINDABILITY 71 2.5.7 ASH COMPOSITION 71 2.5.8 TRACE ELEMENT CHARACTERIZATION 72 2.5.9 ASH FUSION 72 2.5.10 FREE-SWELLING INDEX (FSI) 72 2.5.11 PETROGRAPHY/COAL REFLECTANCE 73 2.6 NONTRADITIONAL CHARACTERIZATION METHODS AND THEIR INDUSTRIAL APPLICATION 73 2.6.1 COAL STRUCTURE 74 2.6.2 COAL REACTIVITY 74 2.6.3 VOLATILE MATTER EVOLUTION PATTERNS 77 2.7 REFERENCES 80 3. CHARACTERISTICS OF ALTERNATIVE FUELS 83 3.1 INTRODUCTION 83 3.1.1 TYPICAL ALTERNATIVE FUEL APPLICATIONS 84 3.1.1.1 THE USE OF ALTERNATIVE FUELS IN ELECTRIC UTILITY BOILERS 84 3.1.1.2 COFIRING ALTERNATIVE FUELS IN PROCESS INDUSTRIES AND INDEPENDENT POWER PRODUCERS 86 3.2 PETROLEUM COKE 87 3.2.1 PETROLEUM COKE PRODUCTION PROCESSES 88 IMAGE 3 CONTENTS IX 3.2.2 FUEL CHARACTERISTICS OF PETROLEUM COKE 88 3.2.2.1 PROXIMATE AND LJLTIMATE ANALYSIS OF PETROLEUM COKE 89 3.2.2.2 ASH CHARACTERISTICS OF PETROLEUM COKE 90 3.2.3 PETROLEUM COKE UTILIZATION IN CYCLONE BOILERS 92 3.2.4 COFIRING PETROLEUM COKE IN PULVERIZED COAL BOILERS 93 3.2.5 PETROLEUM COKE UTILIZATION IN FLUIDIZED-BED BOILERS 94 3.3 WOODY BIOMASS 96 3.3.1 TYPES OF WOODY BIOMASS FUELS 98 3.3.2 PHYSICAL AND CHEMICAL CHARACTERISTICS OF WOODY BIOMASS FUELS 99 3.3.2.1 PROXIMATE AND ULTIMATE ANALYSIS OF WOODY BIOMASS 100 3.3.2.2 INORGANIC MATTER IN WOODY BIOMASS 100 3.3.2.3 TRACE METAL CONCENTRATIONS 101 3.3.3 USING WOODY BIOMASS IN DEDICATED BOILERS 102 3.3.4 WOODY BIOMASS IN PULVERIZED COAL FIRING APPLICATIONS 106 3.3.5 COFIRING WOODY BIOMASS IN CYCLONE BOILERS 107 3.3.6 CONCLUSIONS REGARDING USING WOODY BIOMASS AS AN ALTERNATIVE FUEL 108 3.4 TIRE-DERIVED FUEL (TDF) 110 3.4.1 GENERAL DESCRIPTION OF TIRE-DERIVED FUEL 111 3.4.2 FUEL CHARACTERISTICS OF TIRE-DERIVED FUEL 112 3.4.2.1 PROXIMATE AND ULTIMATE ANALYSIS OF TIRE-DERIVED FUEL 112 3.4.2.2 ASH CONSTITUENTS OF TDF 113 3.4.2.3 TRACE ELEMENT EMISSIONS FROM TDF 114 3.4.3 COFIRING APPLICATIONS WITH TIRE-DERIVED FUEL 114 3.4.4 SUMMARY REGARDING TDF AS AN ALTERNATIVE FUEL 115 3.5 HERBACEOUS CROPS 116 3.5.1 TYPES OF HERBACEOUS BIOMASS FUELS 116 3.5.2 SOURCES AND USES OF HERBACEOUS MATERIALS 117 3.5.3 FUEL CHARACTERISTICS OF SWITCHGRASS AND RELATED AGRICULTURAL BIOMASS MATERIALS 118 3.5.3.1 DENSITY OF SWITCHGRASS AND RELATED MATERIALS 118 3.5.3.2 PROXIMATE AND ULTIMATE ANALYSIS OF SWITCHGRASS AND RELATED AGRICULTURAL MATERIALS 119 3.5.3.3 ASH CHEMISTRY FOR HERBACEOUS BIOMASS FUELS 121 3.5.4 HERBACEOUS CROP SUMMARY 123 3.6 REFERENCES 124 IMAGE 4 X CONTENTS 4. CHARACTERISTICS AND BEHAVIOR OF INORGANIC CONSTITUENTS 133 4.1 INTRODUCTION 133 4.2 INORGANIC COMPOSITION OF COAL 136 4.2.1 DISTRIBUTION OF INORGANIC CONSTITUENTS IN COAL 136 4.2.2 METHODS OF DETERMINING INORGANIC COMPOSITION 137 4.2.3 GENERAL COAL CHARACTERISTICS 148 4.2.3.1 LIGNITES 148 4.2.3.2 SUBBITUMINOUS COALS 148 4.2.3.3 BITUMINOUS COALS 149 4.2.3.4 WORLD-TRADED COALS 150 4.3 ASH FORMATION: TRANSFORMATION OF COAL INORGANIC CONSTITUENTS 151 4.4 ASH DEPOSITION FORMATION 153 4.4.1 DEPOSITION PHENOMENA IN UTILITY BOILERS 153 4.4.2 SLAGGING DEPOSITS 155 4.4.3 FOULING DEPOSITS 156 4.4.4 HIGH-TEMPERATURE FOULING 157 4.4.5 LOW-TEMPERATURE FOULING 158 4.4.6 ASH IMPACTS ON SCR CATALYST 159 4.4.7 DEPOSIT THERMAL PROPERTIES 160 4.5 DEPOSIT STRENGTH DEVELOPMENT 161 4.6 DEPOSIT CHARACTERIZATION 162 4.7 PREDICTING ASH BEHAVIOR 167 4.7.1 ADVANCED INDICES 167 4.7.2 MECHANISTIC MODELS 167 4.8 REFERENCES 167 5. FUEL BLENDING FOR COMBUSTION MANAGEMENT 171 5.1 INTRODUCTION 171 5.1.1 TYPES OF FUEL BLENDING 172 5.1.2 THE REASONS FOR FUEL BLENDING 173 5.1.3 ISSUES FOR FUEL BLENDING 174 5.2 EQUIPMENT AND CONTROLS ISSUES ASSOCIATED WITH FUEL BLENDING 175 5.2.1 THE BLENDING SYSTEM AT MONROE POWER PLANT 176 5.2.2 ALTERNATIVE BLENDING SYSTEMS 177 5.3 FUEL AND COMBUSTION EFFECTS OF BLENDING 181 5.3.1 BLENDING OVERVIEW 182 5.3.2 THE MONROE POWER PLANT CASE STUDY 182 5.3.2.1 DEVELOPMENT OF COMBUSTION MODELS AS AN ANALYTICAL TOOL 182 5.3.2.2 FUEL EFFECTS OF BLENDING AT MONROE 185 5.3.2.3 VOLATILITY AND VOLATILE RELEASE PATTERNS 185 5.3.2.4 CHAR OXIDATION 187 5.3.2.5 ASH CHEMISTRY 187 IMAGE 5 CONTENTS XI 5.3.3 FUEL EFFECTS FOR OTHER LOCATIONS 193 5.4 OPERATIONAL ISSUES WITH FUEL BLENDING 193 5.4.1 MANAGING INORGANIC CONSTITUENTS 194 5.4.2 MANAGING THE FIRE 194 5.4.3 MANAGING BLEND CHANGES 194 5.5 CONCLUSIONS 196 5.6 REFERENCES 196 6. FUEL PREPARATION 199 6.1 KNOW YOUR FUEL 200 6.1.1 FUEL TYPES 200 6.1.2 FUEL ISSUES 201 6.1.3 COAL 202 6.1.4 PETROLEUM-BASED PRODUCTS 204 6.1.5 BIOMASS 205 6.2 FUEL STORAGE SILO 206 6.2.1 STORAGE CAPACITY 206 6.2.2 SILO/BUNKER DESIGN CONSIDERATIONS 208 6.2.3 SAFETY CONSIDERATIONS 211 6.3 SOLID FUEL FLOW CONTROL 211 6.4 FUEL SIZING EQUIPMENT 214 6.5 PULVERIZED COAL SYSTEM ANALYSIS GUIDELINES 225 6.5.1 MILL SIZING AND STANDARD RATINGS 226 6.5.2 COAL MILL CAPACITY AND CAPABILITY ANALYSIS 229 6.5.2.1 COAL THROUGHPUT CAPABILITY 230 6.5.2.2 PRIMARY AIR CAPABILITY 232 6.5.2.3 AIR HEATER LEAKAGE 232 6.5.2.4 THERMAL REQUIREMENTS 234 6.5.2.5 ANALYSIS SUMMARY 237 6.5.3 COAL MILL CAPABILITY TEST PLAN 237 6.6 REFERENCES 239 7. CONVENTIONAL FIRING SYSTEMS 241 7.1 OVERVIEW 241 7.2 TYPES OF TRADITIONAL COMBUSTION SYSTEMS 242 7.2.1 STOKER FIRING SYSTEMS 242 7.2.2 PULVERIZED FIRING SYSTEMS 242 7.2.3 CYCLONE FIRING SYSTEMS 243 7.2.4 FLUIDIZED-BED SYSTEMS 243 7.3 APPLICATIONS AND USES OF CONVENTIONAL FIRING SYSTEMS 243 7.3.1 ELECTRICITY GENERATION 243 7.3.2 INDUSTRIAL BOILERS, KILNS, AND PROCESS HEATERS 246 7.4 BASIC ISSUES 247 7.4.1 FUEL SELECTION 247 IMAGE 6 XII CONTENTS 7.4.2 OPERATIONAL CONSIDERATIONS 249 7.4.3 AIRBORNE EMISSIONS 250 7.4.3.1 PARTICULATES 250 7.4.3.2 S02 250 7.4.3.3 NO X 250 7.4.3.4 CO2 251 7.4.3.5 OTHER EMISSIONS (HAZARDOUS AIR POLLUTANTS) 251 7.5 FIRING SYSTEMS AND COMBUSTION ISSUES 252 7.5.1 STOKER FIRING 252 7.5.1.1 BASIC DESCRIPTION AND IDENTIFICATION OF TYPES 252 7.5.1.2 FUEL SELECTION FOR STOKERS 253 7.5.1.3 FUEL PREPARATION 254 7.5.1.4 DESIGN PARAMETERS 254 7.5.1.5 FUNCTIONING OF GRATES 255 7.5.2 PULVERIZED FIRING 256 7.5.2.1 APPLICATIONS 256 7.5.2.2 BASIC DESCRIPTION AND IDENTIFICATION OF 7.5.2.3 WALL-FIRED PULVERIZED COAL BOILERS AND 7.5.2.4 TANGENTIALLY FIRED PULVERIZED 7.5.2.5 VERTICALLY FIRED (ARCH-FIRED) BOILERS 264 7.5.2.6 PULVERIZED COAL BURNER SYSTEMS 264 7.5.2.7 TYPICAL AND MAXIMUM CONDITIONS 265 7.5.2.8 FUEL PREPARATION 265 7.5.2.9 EFFECT OF MOISTURE 267 7.5.2.10 SWIRLING FLOW 267 7.5.2.11 OVERFIRE AIR SYSTEMS AS BURNER-BASED TYPES 257 FIRING SYSTEMS 257 COAL BOILERS 262 EMISSIONS CONTRAL 267 7.5.3 CYCLONE FIRING 268 7.5.3.1 BASIC DESCRIPTION AND IDENTIFICATION OF TYPES 268 7.5.3.2 TYPICAL AND MAXIMUM CONDITIONS 269 7.5.3.3 NO X FORMATION AND CYCLONES 269 7.5.3.4 DESIGN AND OPERATING PARAMETERS 269 7.6 CONCLUDING STATEMENTS 271 7.7 REFERENCES 272 8. FLUIDIZED-BED FIRING SYSTEMS 275 8.1 INTRADUCTION 275 8.2 FLUIDIZED-BED COMBUSTION SYSTEMS 276 8.2.1 BUBBLING FLUIDIZED-BED COMBUSTION (BFBC) 278 IMAGE 7 CONTENTS XIII 8.2.2 CIRCULATING FLUIDIZED-BED COMBUSTION (CFBC) 280 8.2.3 PRESSURIZED FLUIDIZED-BED COMBUSTION [PFBC) 282 8.3 HEAT TRANSFER 283 8.4 COMBUSTION EFFICIENCY 284 8.5 FUEL FLEXIBILITY 284 8.6 POLLUTANT FORMATION AND CONTROL 288 8.6.1 SULFUR DIOXIDE 289 8.6.1.1 TRANSFORMATION OF SORBENTS IN THE FBC PROCESS 289 8.6.1.2 BED TEMPERATURE 291 8.6.1.3 PARTICLE RESIDENCE TIME 292 8.6.1.4 BED QUALITY 292 8.6.1.5 GASEOUS ENVIRONMENT 292 8.6.1.6 COMBUSTOR PRESSURE 292 8.6.1.7 CHEMICAL COMPOSITION 293 8.6.1.8 POROSITY 293 8.6.1.9 SURFACE AREA 294 8.6.1.10 PARTICLE SIZE 294 8.6.2 NITROGEN OXIDES 295 8.6.2.1 NO X FORMATION 295 8.6.2.2 FUEL NITROGEN AND VOLATILE MATTER CONTENT: FUEL RANK 296 8.6.2.3 COMBUSTION TEMPERATURE 296 8.6.2.4 EXCESS AIR 297 8.6.2.5 GAS VELOCITY/RESIDENCE TIME 297 8.6.2.6 LIMESTONE EFFECTS 297 8.6.2.7 NO X REDUCTION TECHNIQUES 297 8.6.3 PARTICULATE MATTER 298 8.6.4 CARBON MONOXIDE/HYDROCARBONS 298 8.6.5 TRACE ELEMENTS 299 8.7 ASH CHEMISTRY AND AGGLOMERATION ISSUES 301 8.7.1 CHEMICAL FRACTIONATION OF BIOMASS 303 8.7.1.1 RESULTS OF THE CHEMICAL FRACTIONATION STUDY 304 8.7.2 THERMODYNAMIC MODELING TO PREDICT INORGANIC PHASES 311 8.7.3 VISCOSITY OF INORGANIC MELT PHASES 316 8.7.3.1 VISCOSITY RESULTS 319 8.7.4 CONCLUSIONS 320 8.8 FBC BOILERS AND THEIR ROLE IN CLEAN COAL TECHNOLOGY DEVELOPMENT 321 8.8.1 UNITED STATES 322 8.8.1.1 CLEAN COAL TECHNOLOGY DEVELOPMENT PROGRAM (CCTDP) 322 8.8.1.2 CLEAN COAL POWER INITIATIVE 324 IMAGE 8 XIV CONTENTS 8.8.2 WORLDWIDE 324 8.8.3 FURTHER DEVELOPMENTS NEEDED FOR CONVENTIONAL CLEAN COAL TECHNOLOGIES 325 8.9 UNIQUE OPPORTUNITIES FOR FBCS 325 8.9.1 BACKGROUND OF OPPORTUNITY/FOOD INDUSTRY ISSUE 326 8.9.2 DISPOSAL OPTIONS 328 8.9.3 COFIRING ATB IN COAL-FIRED BOILERS FOR CARCASS DISPOSAL 329 8.9.4 SUMMARY OF ATB/COAL COFIRING IN A PILOT-SCALE FLUIDIZED BED COMBUSTOR 329 8.9.4.1 NCBA/CARGILL FOOD SOLUTIONS TESTS 330 8.9.4.2 PEDA/CARGILL FOOD SOLUTIONS TESTS 332 8.9.4.3 DOE OXYGEN-ENHANCED COMBUSTION TESTING 332 8.9.5 CLOSING STATEMENTS 333 8.10 REFERENCES 333 9. POST-COMBUSTION EMISSIONS CONTROL 341 9.1 INTRODUCTION 341 9.2 PARTICULATE CAPTURE 341 9.2.1 INTRODUCTION 341 9.2.2 ELECTROSTATIC PRECIPITATION 342 9.2.2.1 INTRODUCTION 342 9.2.2.2 THEORY 343 9.2.2.3 EQUIPMENT ARRANGEMENT 345 9.2.2.4 RESISTIVITY 346 9.2.2.5 PROCESS CONTROL 347 9.2.2.6 OPERATING AN ELECTROSTATIC PRECIPITATOR 351 9.2.2.7 DIAGNOSTICS 356 9.2.2.8 RESISTIVITY CONDITIONING 360 9.2.3 BAGHOUSE/FABRIC FILTERS 361 9.2.3.1 OVERVIEW 361 9.2.3.2 BASIC PRINCIPLES 362 9.2.3.3 SPECIFIC DESIGNS 363 9.2.3.4 COLLECTION EFFICIENCY 365 9.2.3.5 CONCLUSIONS 366 9.3 ACID GAS CONTROL 366 9.3.1 ACID GASES OF IMPORTANCE: S02, HCL 366 9.3.2 ARRAY OF TECHNOLOGIES DEPENDING ON APPLICATION 367 9.3.3 WET SCRUBBER TECHNOLOGY 367 9.3.3.1 BASIC PRINCIPLES 367 9.3.3.2 TYPICAL DESIGNS/SCALE OF OPERATIONS 367 9.3.3.3 EFFICIENCIES 369 IMAGE 9 CONTENTS XV 9.3.4 SPRAY DRYER ABSORBERS 369 9.3.4.1 BASIC PRINCIPLES 369 9.3.4.2 TYPICAL DESIGNS/SCALE OF OPERATION 369 9.3.4.3 EFFICIENCIES 370 9.3.4.4 WASTE STREAMS 371 9.3.5 DRY INJECTION SYSTEMS 371 9.3.5.1 BASIC PRINCIPLES 371 9.3.5.2 TYPICAL DESIGNS/SCALE OF OPERATIONS 372 9.3.5.3 EFFICIENCIES 372 9.3.6 REACTIONS 372 9.3.6.1 KINETICS AND THERMODYNAMICS 374 9.4 NO X CONTROL 376 9.4.1 INTRODUCTION 376 9.4.2 POST-COMBUSTION TECHNOLOGIES OF SIGNIFICANCE 377 9.4.2.1 SELECTIVE NONCATALYTIC REDUCTION (SNCR) 377 9.4.2.2 SELECTIVE CATALYTIC REDUCTION (SCR) 378 9.5 MERCURY CONTROL 380 9.5.1 MERCURY EMISSIONS FROM EXISTING CONTROL TECHNOLOGIES FROM COAL-FIRED POWER PLANTS 380 9.5.2 MERCURY LEGISLATION 383 9.5.3 TECHNOLOGIES FOR MERCURY CONTROL 383 9.5.3.1 SORBENT INJECTION 384 9.5.3.2 WET FLUE GAS DESULFURIZATION 388 9.6 CARBON DIOXIDE CAPTURE 389 9.6.1 INTRODUCTION 389 9.6.2 APPROACHES FOR CAPTURING CARBON DIOXIDE FROM COAL-FIRED POWER PLANTS 389 9.6.3 POST-COMBUSTION CARBON DIOXIDE SCRUBBING 389 9.7 REFERENCES 390 10. SOME COMPUTER APPLICATIONS FOR COMBUSTION ENGINEERING WITH SOLID FUELS 393 10.1 INTRODUCTION 393 10.1.1 COMPUTER APPLICATIONS IN COMBUSTION ENGINEERING 394 10.1.1.1 ANALYTICAL MODELING 394 10.1.1.2 COMPUTER APPLICATIONS FOR PROCESS CONTROL 396 10.1.1.3 COMPUTER APPLICATIONS FOR FUEL CONTROL 396 10.2 BACKGROUND 396 10.3 PROCESS FOR FUELS OPPORTUNITY REALIZATION 397 10.3.1 IDENTIFY CURRENT FUELS OPPORTUNITIES 397 IMAGE 10 XVI CONTENTS 10.3.2 VALIDATE OBJECTIVES AND DEVELOP EFFECTIVE DESIGN 399 10.4 SUCCESSFULLY APPLYING COMPUTER TECHNOLOGY TO FUELS CONTROL 403 10.5 ACCUTRACK SITUATION CHALLENGES AND RESPONSE 408 10.6 MODELING THE FLOW OF COAL IN BUNKERS AND SILOS 410 10.6.1 PLUG FLOW MODELS 410 10.6.2 DISCRETE ELEMENT MODELING (DEM) 410 10.6.3 VOID MODEL 411 10.6.4 STOCHASTIC MODEL 411 10.6.5 BUNKER GEOMETRY 412 10.6.6 VALIDATION OF BUNKER MODELING 415 10.7 CONCLUSIONS REGARDING THE ACCUTRACK APPROACH TO COMPUTER MANAGEMENT OF FUEL PROPERTIES 420 10.8 SUMMARY 421 11. GASIFICATION 423 11.1 INTRODUCTION TO GASIFICATION 423 11.2 GASIFICATION THEORY 424 11.3 FEATURES OF GASIFICATION SYSTEMS 427 11.3.1 BED TYPE 427 11.3.2 FLOW DIRECTION 430 11.3.3 FEED PREPARATION 430 11.3.4 OPERATING TEMPERATURE 431 11.3.5 OXIDANT 432 11.3.6 REACTOR CONTAINMENT 433 11.3.7 PRIMARY SYNGAS COOLING 433 11.3.8 PRIMARY GAS CLEANING 435 11.3.9 FUELISSUES 435 11.4 COMMERCIAL GASIFICATION SYSTEMS 436 11.4.1 GE ENERGY (FORMERLY TEXACO) 436 11.4.2 SHELL 436 11.4.3 E-GAS (CONOCOPHILLIPS) 439 11.4.4 SIEMENS (FORMERLY FUTURE ENERGY GSP) 439 11.4.5 KBR TRANSPORT GASIFIER 441 11.4.6 LURGI 442 11.4.7 RAW GAS ANALYSIS 443 11.5 TRACE COMPONENTS IN GASIFIER SYNGAS 443 11.5.1 SULFUR COMPOUNDS 443 11.5.2 NITROGEN COMPOUNDS 444 11.5.3 CHLORINE COMPOUNDS 444 11.5.4 UNSATURATED HYDROCARBONS 444 11.5.5 OXYGEN 444 IMAGE 11 CONTENTS XVII 11.5.6 FORMIE ACID 445 11.5.7 CARBON 445 11.5.8 METAL CARBONYLS 445 11.5.9 MEREURY 445 11.5.10 ARSENIC 446 11.6 GAS TREATING 446 11.6.1 INTRODUCTION 446 11.6.2 DESULFURIZATION 447 11.6.3 CHEMIEAL SOLVENT PROCESSES 448 11.6.3.1 AMINE PROCESSES 448 11.6.4 PHYSIEAL SOLVENT PROCESSES 448 11.6.4.1 PHYSICAL WASHES 448 11.6.4.2 SELEXOL 449 11.6.4.3 REETISOL 450 11.6.4.4 LIQUID REDOX PROCESSES 453 11.6.5 MEMBRANES 453 11.6.6 COS HYDROLYSIS 453 11.6.7 CO SHIFT 454 11.6.7.1 CLEAN GAS SHIFT 455 11.6.7.2 RAW GAS SHIFT 456 11.6.8 MEREURY REMOVAL 457 11.7 COMPLETE SYSTEMS 457 11.7.1 INTEGRATED GASIFICATION-COMBINED CYDE (IGCC) 457 11.7.1.2 GASIFICATION BLOCK 459 11. 7.1.3 GAS TREATMENT AND SULFUR RECOVERY 460 11.7.1.4 COMBINED CYDE POWER PLANT 461 11.7.2 IGCC WITH CARBON CAPTURE 462 11. 7.3 METHANOL 462 11.8 BENEFITS AND LIMITS OF GASIFICATION 464 11.8.1 EFFICIENEY 464 11.8.2 ENVIRONMENTAL IMPACT 464 11.8.2.1 SULFUR EMISSIONS 465 11.8.2.2 NO X EMISSIONS 465 11.8.2.3 MEREURY 465 11.8.2.4 OTHER EMISSIONS 465 11.8.2.5 START-UP EMISSIONS 465 11.8.3 AVAILABILITY 466 11.8.4 CAPITAL REQUIREMENTS 466 11.9 REFERENEES 467 12. POLIEY CONSIDERATIONS FOR COMBUSTION ENGINEERING 469 12.1 INTRODUETION 469 12.1.1 COMBUSTION ENGINEERS DO NOT MAKE POLIEY 471 12.1.2 COMBUSTION ENGINEERS RESPOND TO POLIEY 472 IMAGE 12 XVIII CONTENTS 12.2 ENVIRONMENTAL POLIEY AND THE ENGINEERING RESPONSE 473 12.2.1 A HISTORIEAL PERSPEETIVE 474 12.2.2 ENVIRONMENTAL POLIEY AND LEGISLATION SINEE 1990 474 12.2.3 MEEHANISMS OF ENGINEERING RESPONSE TO ENVIRONMENTAL POLIEY 477 12.3 ENERGY POLIEY AND COMBUSTION ENGINEERING 480 12.3.1 ENERGY POLIEY AND FUEL SELEETION 481 12.3.2 DEREGULATION AND ITS PREEURSORS 481 12.3.3 ENERGY EFFIEIENEY AND ENERGY POLIEY 482 12.4 OTHER FEDERAL, STATE, LOEAL, AND PRIVATE POLIEIES IMPAETING COMBUSTION ENGINEERS 482 12.5 CONC1USIONS 484 12.6 REFERENEES 484 INDEX 485
any_adam_object 1
any_adam_object_boolean 1
author_GND (DE-588)135969085
building Verbundindex
bvnumber BV035156388
callnumber-first T - Technology
callnumber-label TJ254
callnumber-raw TJ254.5
callnumber-search TJ254.5
callnumber-sort TJ 3254.5
callnumber-subject TJ - Mechanical Engineering and Machinery
classification_rvk ZP 3270
ctrlnum (OCoLC)227328514
(DE-599)BVBBV035156388
dewey-full 621.402/3
dewey-hundreds 600 - Technology (Applied sciences)
dewey-ones 621 - Applied physics
dewey-raw 621.402/3
dewey-search 621.402/3
dewey-sort 3621.402 13
dewey-tens 620 - Engineering and allied operations
discipline Energietechnik
discipline_str_mv Energietechnik
format Book
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01665nam a2200445zc 4500</leader><controlfield tag="001">BV035156388</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20090618 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">081112s2008 xxuad|| |||| 00||| eng d</controlfield><datafield tag="010" ind1=" " ind2=" "><subfield code="a">2008020724</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780123736116</subfield><subfield code="c">hardcover</subfield><subfield code="9">978-0-12-373611-6</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)227328514</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV035156388</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">xxu</subfield><subfield code="c">US</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-92</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TJ254.5</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">621.402/3</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ZP 3270</subfield><subfield code="0">(DE-625)157949:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Combustion engineering issues for solid fuel systems</subfield><subfield code="c">ed. Bruce G. Miller...</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Amsterdam [u.a.]</subfield><subfield code="b">Elsevier [u.a.]</subfield><subfield code="c">2008</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XXIV, 496 S.</subfield><subfield code="b">Ill., graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references and index</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Combustion engineering</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Coal</subfield><subfield code="x">Combustion</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fuelwood</subfield><subfield code="x">Combustion</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Waste products as fuel</subfield><subfield code="v">Combustion</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Verbrennung</subfield><subfield code="0">(DE-588)4062656-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Fester Brennstoff</subfield><subfield code="0">(DE-588)4154170-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Fester Brennstoff</subfield><subfield code="0">(DE-588)4154170-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Verbrennung</subfield><subfield code="0">(DE-588)4062656-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Miller, Bruce G.</subfield><subfield code="e">Sonstige</subfield><subfield code="0">(DE-588)135969085</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">OEBV Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&amp;doc_library=BVB01&amp;local_base=BVB01&amp;doc_number=016963566&amp;sequence=000001&amp;line_number=0001&amp;func_code=DB_RECORDS&amp;service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-016963566</subfield></datafield></record></collection>
id DE-604.BV035156388
illustrated Illustrated
index_date 2024-07-02T22:48:54Z
indexdate 2024-07-09T21:26:16Z
institution BVB
isbn 9780123736116
language English
lccn 2008020724
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-016963566
oclc_num 227328514
open_access_boolean
owner DE-92
DE-634
owner_facet DE-92
DE-634
physical XXIV, 496 S. Ill., graph. Darst.
publishDate 2008
publishDateSearch 2008
publishDateSort 2008
publisher Elsevier [u.a.]
record_format marc
spelling Combustion engineering issues for solid fuel systems ed. Bruce G. Miller...
Amsterdam [u.a.] Elsevier [u.a.] 2008
XXIV, 496 S. Ill., graph. Darst.
txt rdacontent
n rdamedia
nc rdacarrier
Includes bibliographical references and index
Combustion engineering
Coal Combustion
Fuelwood Combustion
Waste products as fuel Combustion
Verbrennung (DE-588)4062656-8 gnd rswk-swf
Fester Brennstoff (DE-588)4154170-4 gnd rswk-swf
Fester Brennstoff (DE-588)4154170-4 s
Verbrennung (DE-588)4062656-8 s
DE-604
Miller, Bruce G. Sonstige (DE-588)135969085 oth
OEBV Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016963566&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis
spellingShingle Combustion engineering issues for solid fuel systems
Combustion engineering
Coal Combustion
Fuelwood Combustion
Waste products as fuel Combustion
Verbrennung (DE-588)4062656-8 gnd
Fester Brennstoff (DE-588)4154170-4 gnd
subject_GND (DE-588)4062656-8
(DE-588)4154170-4
title Combustion engineering issues for solid fuel systems
title_auth Combustion engineering issues for solid fuel systems
title_exact_search Combustion engineering issues for solid fuel systems
title_exact_search_txtP Combustion engineering issues for solid fuel systems
title_full Combustion engineering issues for solid fuel systems ed. Bruce G. Miller...
title_fullStr Combustion engineering issues for solid fuel systems ed. Bruce G. Miller...
title_full_unstemmed Combustion engineering issues for solid fuel systems ed. Bruce G. Miller...
title_short Combustion engineering issues for solid fuel systems
title_sort combustion engineering issues for solid fuel systems
topic Combustion engineering
Coal Combustion
Fuelwood Combustion
Waste products as fuel Combustion
Verbrennung (DE-588)4062656-8 gnd
Fester Brennstoff (DE-588)4154170-4 gnd
topic_facet Combustion engineering
Coal Combustion
Fuelwood Combustion
Waste products as fuel Combustion
Verbrennung
Fester Brennstoff
url http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016963566&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA
work_keys_str_mv AT millerbruceg combustionengineeringissuesforsolidfuelsystems