Analysis of variance designs a conceptual and computational approach with SPSS and SAS

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Gamst, Glenn 1953- (VerfasserIn), Meyers, Lawrence S. (VerfasserIn), Guarino, A. J. (VerfasserIn)
Format: Buch
Sprache:English
Veröffentlicht: Cambridge [u.a.] Cambridge Univ. Press 2008
Ausgabe:1. publ.
Schlagworte:
Online-Zugang:Inhaltsverzeichnis
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nam a2200000zc 4500
001 BV035105837
003 DE-604
005 20180704
007 t
008 081017s2008 xxuad|| |||| 00||| eng d
010 |a 2008008948 
020 |a 9780521874816  |c hardback  |9 978-0-521-87481-6 
035 |a (OCoLC)474472571 
035 |a (DE-599)BVBBV035105837 
040 |a DE-604  |b ger  |e aacr 
041 0 |a eng 
044 |a xxu  |c US 
049 |a DE-20  |a DE-11  |a DE-824 
050 0 |a QA279 
082 0 |a 519.5  |2 22 
082 0 |a 519.5/38 
084 |a SK 840  |0 (DE-625)143261:  |2 rvk 
100 1 |a Gamst, Glenn  |d 1953-  |e Verfasser  |0 (DE-588)1053130651  |4 aut 
245 1 0 |a Analysis of variance designs  |b a conceptual and computational approach with SPSS and SAS  |c Glenn Gamst ; Lawrence S. Meyers ; A. J. Guarino 
250 |a 1. publ. 
264 1 |a Cambridge [u.a.]  |b Cambridge Univ. Press  |c 2008 
300 |a XVI, 578 S.  |b Ill., graph. Darst. 
336 |b txt  |2 rdacontent 
337 |b n  |2 rdamedia 
338 |b nc  |2 rdacarrier 
650 0 7 |a Varianzanalyse  |0 (DE-588)4187413-4  |2 gnd  |9 rswk-swf 
689 0 0 |a Varianzanalyse  |0 (DE-588)4187413-4  |D s 
689 0 |5 DE-604 
700 1 |a Meyers, Lawrence S.  |e Verfasser  |0 (DE-588)1016538456  |4 aut 
700 1 |a Guarino, A. J.  |e Verfasser  |0 (DE-588)1135502064  |4 aut 
856 4 2 |m HBZ Datenaustausch  |q application/pdf  |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016773749&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA  |3 Inhaltsverzeichnis 
999 |a oai:aleph.bib-bvb.de:BVB01-016773749 

Datensatz im Suchindex

_version_ 1804138075827208192
adam_text Titel: Analysis of variance designs Autor: Gamst, Glenn Jahr: 2008 Contents Preface pagexüi SECTION 1. RESEARCH FOUNDATIONS 1 ANOVA AND RESEARCH DESIGN 3 1.1 What Is Analysis of Variance? 3 1.2 A Brief History of ANOVA 4 1.3 Dependent and Independent Variables 5 1.4 The Importance of Variation 6 1.5 Exploratory Research and Hypothesis Testing 7 2 MEASUREMENT, CENTRAL TENDENCY, AND VARIABILITY 9 2.1 Scales of Measurement 9 2.2 Central Tendency and Variability 12 2.3 The Mean as a Measure of Central Tendency 13 2.4 The Median as a Measure of Central Tendency 15 2.5 The Mode as a Measure of Central Tendency 15 2.6 Range as a Measure of Variability 16 2.7 Variance as a Measure of Variability 16 2.8 Standard Deviation as a Measure of Variability 19 Chapter 2 Exercises 20 SECTION 2. FOUNDATIONS OF ANALYSIS OF VARIANCE 3 ELEMENTSOFANOVA 23 3.1 Partitioning of the Variance 23 3.2 A Simple Example Study 23 3.3 Sources of Variance 26 3.4 Sums of Squares 26 3.5 Degrees of Freedom 30 3.6 Mean Square 32 3.7 Where All This Leads 33 4 THE STATISTICAL SIGNIFICANCE OF F AND EFFECT STRENGTH 34 4.1 The F Ratio 34 4.2 The Sampling Distribution of F 35 4.3 The Area Under the Sampling Distribution 37 4.4 Statistical Significance 37 4.5 Explaining Variance: Strength of Effect 41 CONTENTS 4.6 Reporting the Results 44 4.7 Statistical Power 45 4.8 The Limiting Case of ANOVA: The t Test 47 5 ANOVA ASSUMPTIONS 49 5.1 Overview 49 5.2 Independence of Errors 49 5.3 Normality of Errors 52 5.4 Homogeneity of Variance 57 5.5 SPSS Applications: Assumption Violation Detection and Solution 60 5.6 SAS Applications: Assumption Violation Detection and Solution 70 5.7 Communicating the Results 83 Chapter 5 Exercises 84 SECTION 3. BETWEEN-SUBJECTS DESIGNS 6 ONE-WAY BETWEEN-SUBJECTS DESIGN 87 6.1 Overview 87 6.2 A Numerical Example 87 6.3 Partitioning the Total Variance into Its Sources 89 6.4 Omnibus and Simplifying Analyses 90 6.5 Computing the Omnibus Analysis by Hand 91 6.6 Performing the Omnibus One-Way Between-Subjects ANOVA in SPSS 98 6.7 The Output of the Omnibus One-Way Between-Subjects ANOVA in SPSS 101 6.8 Performing the Omnibus One-Way Between-Subjects ANOVA in SAS 102 6.9 The Output of the Omnibus One-Way Between-Subjects ANOVA in SAS 107 6.10 Communicating the Results 110 Chapter 6 Exercises 111 7 MULTIPLE COMPARISON PROCEDURES 112 7.1 Overview 112 7.2 Planned Versus Unplanned Comparisons 112 7.3 Pairwise Versus Composite Comparisons 113 7.4 Orthogonal Versus Nonorthogonal Comparisons 114 7.5 Statistical Power 115 7.6 Alpha Inflation 117 7.7 General Categories of Multiple Comparison Procedures 118 7.8 Post Hoc Tests 120 7.9 Computing a Tukey HSD Test by Hand 126 7.10 Performing a Tukey HSD Test in SPSS 128 7.11 The Tukey HSD Output from SPSS 129 7.12 Performing a Tukey HSD Test in SAS 132 7.13 The Tukey HSD Output from SAS 134 7.14 Communicating the Tukey Results 135 7.15 Preset Contrasts in SPSS 135 CONTENTS 7.16 Performing Simple Contrasts in SPSS 139 7.17 The Simple Contrasts Output from SPSS 141 7.18 Performing Simple Contrasts in SAS 143 7.19 The Simple Contrasts Output from SAS 143 7.20 Communicating the Simple Contrast Results 144 7.21 Polynomial Contrasts (Trend Analysis) 145 7.22 Performing a Trend Analysis by Hand 150 7.23 Performing Polynomial Contrasts (Trend Analysis) in SPSS 152 7.24 Output for Polynomial Contrasts (Trend Analysis) in SPSS 154 7.25 Communicating the Results of the Trend Analysis 155 7.26 User-Defined Contrasts 155 7.27 Performing User-Defined (Planned) Comparisons by Hand 158 7.28 Performing User-Defined Contrasts in SPSS 162 7.29 Output from User-Defined Contrasts Analysis in SPSS 163 7.30 Communicating the Results of the Contrasts Analyses 164 7.31 Performing User-Defined Contrasts (Planned Comparisons) in SAS 164 7.32 Output for Planned Comparisons in SAS 167 7.33 Communicating the Results of the Planned Comparisons 168 7.34 Performing Polynomial Contrasts (Trend Analysis) in SAS 169 7.35 Output for Polynomial Contrasts (Trend Analysis) in SAS 170 7.36 Communicating the Results of the Polynomial Contrasts 171 Chapter 7 Exercises 171 8 TWO-WAY BETWEEN-SUBJECTS DESIGN 172 8.1 Combining Two Independent Variables Factorially 172 8.2 A Numerical Example 173 8.3 Partitioning the Variance into Its Sources 174 8.4 Effects of Interest in This Design 176 8.5 The Interaction Effect 177 8.6 Precedence of Effects: Interactions Supercede Main Effects 180 8.7 Computing an Omnibus Two-Factor Between-Subjects ANOVAbyHand 180 8.8 Computing Simple Effects by Hand 185 8.9 Performing the Omnibus Analysis in SPSS 188 8.10 SPSS Output for the Omnibus Analysis 190 8.11 Performing the Post-ANOVA Analyses in SPSS 193 8.12 SPSS Output for the Post-ANOVA Analyses 197 8.13 Performing the Omnibus Analysis in SAS Enterprise Guide 200 8.14 SAS Output for the Omnibus Analysis 204 8.15 Performing the Post-ANOVA Analyses in SAS 206 8.16 SAS Output for the Post-ANOVA Analyses 207 8.17 Communicating the Results 209 Chapter 8 Exercises 209 9 THREE-WAY BETWEEN-SUBJECTS DESIGN 211 9.1 A Numerical Example of a Three-Way Design 211 9.2 Partitioning the Variance into Its Sources 212 9.3 Computing the Portions of the Summary Table 215 9.4 Precedence of Effects: Higher-Order Interactions, Lower-Order Interactions, Main Effects 216 CONTENTS 9.5 Computing by Hand the Omnibus Three-Way Between-Subject Analysis 217 9.6 Performing the Omnibus Analysis in SPSS 218 9.7 SPSS Output for the Omnibus Analysis 222 9.8 Performing the Post-ANOVA Analyses in SPSS 224 9.9 SPSS Output for the Post-ANOVA Analyses in SPSS 228 9.10 Performing the Omnibus Analysis in SAS Enterprise Guide 231 9.11 SAS Output for the Omnibus Analysis 237 9.12 Performing the Post-ANOVA Analyses in SAS 238 9.13 SAS Output for the Post-ANOVA Analyses in SAS 240 9.14 Communicating the Results 242 Chapter 9 Exercises 243 SECTION 4. WITHIN-SUBJECTS DESIGNS 10 ONE-WAY WITHIN-SUBJECTS DESIGN 247 10.1 The Concept of Within-Subjects Variance 247 10.2 Nomenclature 247 10.3 Nature of Within-Subjects Variables 248 10.4 The Issue of Carry-Over Effects 249 10.5 Between- Versus Within-Subjects Variance 251 10.6 A Numerical Example of a One-Way Within-Subjects Design 253 10.7 Effect of Interest in This Design 253 10.8 The Error Term in a One-Way Within-Subjects Design 254 10.9 Computing the Omnibus Analysis by Hand 256 10.10 Performing User-Defined (Planned) Comparisons by Hand 259 10.11 Performing the Omnibus Analysis in SPSS 262 10.12 SPSS Output for the Omnibus Analysis 266 10.13 Performing the Post-ANOVA Analysis in SPSS 270 10.14 SPSS Output for the Post-ANOVA Analysis 271 10.15 SPSS and SAS Data File Structures 273 10.16 Performing the Omnibus Analysis in SAS 275 10.17 SAS Output for the Omnibus Analysis 279 10.18 Performing the Post-ANOVA Analysis in SAS 280 10.19 SAS Output for the Post-ANOVA Analysis 280 10.20 Communicating the Results 285 Chapter 10 Exercises 285 11 TWO-WAY WITHIN-SUBJECTS DESIGN 287 11.1 Combining Two Within-Subjects Factors 287 11.2 A Numerical Example of a Two-Way Within-Subjects Design 288 11.3 Partitioning the Variance into Its Sources 288 11.4 Effects of Interest in This Design 289 11.5 The Error Terms in a Two-Way Within-Subjects Design 290 11.6 Computing the Omnibus Two-Factor Within-Subjects ANOVAbyHand 291 11.7 Performing the Omnibus Analysis in SPSS 299 11.8 SPSS Output for the Omnibus Analysis 305 11.9 Performing the Post-ANOVA Analysis in SPSS 308 11.10 SPSS Output for the Post-ANOVA Analysis 311 11.11 Performing the Omnibus Analysis in SAS 313 CONTENTS 11.12 SAS Output from the Omnibus Analysis 318 11.13 Performing the Simple Effects Analysis in SAS 320 11.14 SAS Output from the Simple Effects Analysis 320 11.15 Performing the Post Hoc Analysis in SAS 321 11.16 SAS Output from the Post Hoc Analysis 321 11.17 Communicating the Results 323 Chapter 11 Exercises 323 12 THREE-WAY WITHIN-SUBJECTS DESIGN 325 12.1 A Numerical Example of a Three-Way Within-Subjects Design 325 12.2 Partitioning the Variance into Its Sources 326 12.3 Effects of Interest in This Design 326 12.4 The Error Terms in a Three-Way Within-Subjects Design 329 12.5 Computing the Omnibus Analysis 329 12.6 Performing the Omnibus Analysis in SPSS 329 12.7 SPSS Output for the Omnibus Analysis 337 12.8 Performing the Post-ANOVA Analysis in SPSS 341 12.9 SPSS Output for the Post-ANOVA Analysis 343 12.10 Performing the Omnibus Analysis in SAS 345 12.11 SAS Output from the Omnibus Analysis 349 12.12 Performing the Simple Effects Analysis in SAS 349 12.13 SAS Output from the Simple Effects Analysis 352 12.14 Performing the Post Hoc Analysis in SAS 353 12.15 SAS Output from the Post Hoc Analysis 355 12.16 Communicating the Results 357 Chapter 12 Exercises 357 SECTIONS. MIXED DESIGNS 13 SIMPLE MIXED DESIGN 361 13.1 Combining Between-Subjects and Within-Subjects Factors 361 13.2 A Numerical Example of a Simple Mixed Design 362 13.3 Effects of Interest 363 13.4 Computing the Omnibus Analysis by Hand 364 13.5 Performing the Omnibus Analysis in SPSS 369 13.6 SPSS Output of the Omnibus Analysis 372 13.7 Performing the Post-ANOVA Analysis in SPSS 372 13.8 Output for the Post-ANOVA Analysis in SPSS 377 13.9 Performing the Omnibus Analysis in SAS 379 13.10 SAS Output of the Omnibus Analysis 385 13.11 Performing the Simple Effects Analysis in SAS 385 13.12 SAS Output from the Simple Effects Analysis 387 13.13 Performing the Post Hoc Analysis in SAS 387 13.14 SAS Output from the Post Hoc Analysis 388 13.15 Communicating the Results 389 Chapter 13 Exercises 389 14 COMPLEX MIXED DESIGN: TWO BETWEEN-SUBJECTS FACTORS AND ONE WITHIN-SUBJECTS FACTOR 391 14.1 Combining Between-and Within-Subjects Factors 391 14.2 A Numerical Example of a Complex Mixed Design 391 CONTENTS 14.3 Effects of Interest 393 14.4 Computing the Omnibus Complex Mixed Design by Hand 393 14.5 Performing the Omnibus Analysis in SPSS 396 14.6 SPSS Output of the Omnibus Analysis 401 14.7 Performing the Post-ANOVA Analysis in SPSS 402 14.8 SPSS Output of the Omnibus Analysis 404 14.9 Performing the Omnibus Analysis in SAS 406 14.10 SAS Output of the Omnibus Analysis 410 14.11 Performing the Simple Effects Analysis in SAS 411 14.12 SAS Output from the Simple Effects Analysis 411 14.13 Communicating the Results 414 Chapter 14 Exercises 418 15 COMPLEX MIXED DESIGN: ONE BETWEEN-SUB JECTS FACTOR AND TWO WITHIN-SUBJECTS FACTORS 420 15.1 A Numerical Example of a Complex Mixed Design 420 15.2 Effects of Interest 421 15.3 Computing the Omnibus Complex Mixed Design by Hand 424 15.4 Performing the Omnibus Analysis in SPSS 424 15.5 SPSS Output of the Omnibus Analysis 430 15.6 Performing the Post-ANOVA Analysis in SPSS 432 15.7 Output for the Post-ANOVA Analysis in SPSS 434 15.8 Performing the Omnibus Analysis in SAS 438 15.9 SAS Output of the Omnibus Analysis 444 15.10 Performing the Post-ANOVA Analysis in SAS 444 15.11 Output for the Post-ANOVA Analysis in SAS 445 15.12 Communicating the Results 449 Chapter 15 Exercises 449 SECTION 6. ADVANCED TOPICS 16 ANALYSIS OF COVARIANCE 453 16.1 Experimental and Statistical Control 453 16.2 A Simple Illustration of Covariance 453 16.3 The Effect of a Covariate on Group Differences 454 16.4 The Process of Performing ANCOVA 455 16.5 Assumptions of ANCOVA 458 16.6 Numerical Example of a One-Way ANCOVA 461 16.7 Performing the ANOVA in SPSS 463 16.8 Evaluating the ANCOVA Assumptions in SPSS 463 16.9 Performing the ANCOVA in SPSS 470 16.10 Performing the ANOVA in SAS 473 16.11 Evaluating the ANCOVA Assumptions in SAS 475 16.12 Performing the ANCOVA in SAS 481 16.13 Communicating the Results 485 Chapter 16 Exercises 486 17 ADVANCED TOPICS IN ANALYSIS OF VARIANCE 488 17.1 Interaction Comparisons 488 17.2 Fixed and Random Factors 490 CONTENTS 17.3 Nested Designs 494 17.4 Latin Squares 495 17.5 Unequal Sample Size 496 17.6 Multivariate Analysis of Variance (MANOVA) 497 APPENDIXES APPENDIX A. PRIMER ON SPSS 501 A.I Historical Overview 501 A.2 Different Kinds of Files and Their Extensions 501 A.3 Opening SPSS 502 A.4 Saving SPSS Files 503 A.5 Setting Preferences 503 A.6 Creating New Data Files in SPSS 506 A.7 Variable View of the Data File 507 A.8 Data View of the Data File 513 A.9 Reading Data from an Excel Worksheet 513 A.10 Reading Data from a Text File 514 A. 11 Opening Saved Data Files 521 A. 12 The Main SPSS Menu 521 A. 13 Performing Statistical Procedures in SPSS 522 A.14 Saving Output Files 526 APPENDIX B. PRIMER ON SAS 531 B.I Historical Overview 531 B.2 Installing Enterprise Guide on Your Computer 531 B.3 Opening SAS Enterprise Guide 532 B.4 Entering Data Directly into SAS Enterprise Guide 533 B.5 Saving a Project 538 B.6 Constructing Your Data File in Excel 538 B.7 Importing Data from Excel 539 B.8 The Main SAS Menu 542 B.9 Performing Statistical Procedures in SAS Enterprise Guide 544 B.10 SAS Enterprise Guide Output 546 B. 11 Saving the SAS Output File as a PDF Document 547 B.I2 Additional Resources 550 APPENDIX C. TABLE OF CRITICAL F VALUES 551 APPENDIX D. DEVIATIONAL FORMULA FOR SUMS OF SQUARES 555 APPENDIX E. COEFFICIENTS OF ORTHOGONAL POLYNOMIALS 559 APPENDIXE CRITICAL VALUES OF THE STUDENTIZED RANGE STATISTIC 560 References 561 Author Index 567 Subject Index 569
adam_txt Titel: Analysis of variance designs Autor: Gamst, Glenn Jahr: 2008 Contents Preface pagexüi SECTION 1. RESEARCH FOUNDATIONS 1 ANOVA AND RESEARCH DESIGN 3 1.1 What Is Analysis of Variance? 3 1.2 A Brief History of ANOVA 4 1.3 Dependent and Independent Variables 5 1.4 The Importance of Variation 6 1.5 Exploratory Research and Hypothesis Testing 7 2 MEASUREMENT, CENTRAL TENDENCY, AND VARIABILITY 9 2.1 Scales of Measurement 9 2.2 Central Tendency and Variability 12 2.3 The Mean as a Measure of Central Tendency 13 2.4 The Median as a Measure of Central Tendency 15 2.5 The Mode as a Measure of Central Tendency 15 2.6 Range as a Measure of Variability 16 2.7 Variance as a Measure of Variability 16 2.8 Standard Deviation as a Measure of Variability 19 Chapter 2 Exercises 20 SECTION 2. FOUNDATIONS OF ANALYSIS OF VARIANCE 3 ELEMENTSOFANOVA 23 3.1 Partitioning of the Variance 23 3.2 A Simple Example Study 23 3.3 Sources of Variance 26 3.4 Sums of Squares 26 3.5 Degrees of Freedom 30 3.6 Mean Square 32 3.7 Where All This Leads 33 4 THE STATISTICAL SIGNIFICANCE OF F AND EFFECT STRENGTH 34 4.1 The F Ratio 34 4.2 The Sampling Distribution of F 35 4.3 The Area Under the Sampling Distribution 37 4.4 Statistical Significance 37 4.5 Explaining Variance: Strength of Effect 41 CONTENTS 4.6 Reporting the Results 44 4.7 Statistical Power 45 4.8 The Limiting Case of ANOVA: The t Test 47 5 ANOVA ASSUMPTIONS 49 5.1 Overview 49 5.2 Independence of Errors 49 5.3 Normality of Errors 52 5.4 Homogeneity of Variance 57 5.5 SPSS Applications: Assumption Violation Detection and Solution 60 5.6 SAS Applications: Assumption Violation Detection and Solution 70 5.7 Communicating the Results 83 Chapter 5 Exercises 84 SECTION 3. BETWEEN-SUBJECTS DESIGNS 6 ONE-WAY BETWEEN-SUBJECTS DESIGN 87 6.1 Overview 87 6.2 A Numerical Example 87 6.3 Partitioning the Total Variance into Its Sources 89 6.4 Omnibus and Simplifying Analyses 90 6.5 Computing the Omnibus Analysis by Hand 91 6.6 Performing the Omnibus One-Way Between-Subjects ANOVA in SPSS 98 6.7 The Output of the Omnibus One-Way Between-Subjects ANOVA in SPSS 101 6.8 Performing the Omnibus One-Way Between-Subjects ANOVA in SAS 102 6.9 The Output of the Omnibus One-Way Between-Subjects ANOVA in SAS 107 6.10 Communicating the Results 110 Chapter 6 Exercises 111 7 MULTIPLE COMPARISON PROCEDURES 112 7.1 Overview 112 7.2 Planned Versus Unplanned Comparisons 112 7.3 Pairwise Versus Composite Comparisons 113 7.4 Orthogonal Versus Nonorthogonal Comparisons 114 7.5 Statistical Power 115 7.6 Alpha Inflation 117 7.7 General Categories of Multiple Comparison Procedures 118 7.8 Post Hoc Tests 120 7.9 Computing a Tukey HSD Test by Hand 126 7.10 Performing a Tukey HSD Test in SPSS 128 7.11 The Tukey HSD Output from SPSS 129 7.12 Performing a Tukey HSD Test in SAS 132 7.13 The Tukey HSD Output from SAS 134 7.14 Communicating the Tukey Results 135 7.15 Preset Contrasts in SPSS 135 CONTENTS 7.16 Performing Simple Contrasts in SPSS 139 7.17 The Simple Contrasts Output from SPSS 141 7.18 Performing Simple Contrasts in SAS 143 7.19 The Simple Contrasts Output from SAS 143 7.20 Communicating the Simple Contrast Results 144 7.21 Polynomial Contrasts (Trend Analysis) 145 7.22 Performing a Trend Analysis by Hand 150 7.23 Performing Polynomial Contrasts (Trend Analysis) in SPSS 152 7.24 Output for Polynomial Contrasts (Trend Analysis) in SPSS 154 7.25 Communicating the Results of the Trend Analysis 155 7.26 User-Defined Contrasts 155 7.27 Performing User-Defined (Planned) Comparisons by Hand 158 7.28 Performing User-Defined Contrasts in SPSS 162 7.29 Output from User-Defined Contrasts Analysis in SPSS 163 7.30 Communicating the Results of the Contrasts Analyses 164 7.31 Performing User-Defined Contrasts (Planned Comparisons) in SAS 164 7.32 Output for Planned Comparisons in SAS 167 7.33 Communicating the Results of the Planned Comparisons 168 7.34 Performing Polynomial Contrasts (Trend Analysis) in SAS 169 7.35 Output for Polynomial Contrasts (Trend Analysis) in SAS 170 7.36 Communicating the Results of the Polynomial Contrasts 171 Chapter 7 Exercises 171 8 TWO-WAY BETWEEN-SUBJECTS DESIGN 172 8.1 Combining Two Independent Variables Factorially 172 8.2 A Numerical Example 173 8.3 Partitioning the Variance into Its Sources 174 8.4 Effects of Interest in This Design 176 8.5 The Interaction Effect 177 8.6 Precedence of Effects: Interactions Supercede Main Effects 180 8.7 Computing an Omnibus Two-Factor Between-Subjects ANOVAbyHand 180 8.8 Computing Simple Effects by Hand 185 8.9 Performing the Omnibus Analysis in SPSS 188 8.10 SPSS Output for the Omnibus Analysis 190 8.11 Performing the Post-ANOVA Analyses in SPSS 193 8.12 SPSS Output for the Post-ANOVA Analyses 197 8.13 Performing the Omnibus Analysis in SAS Enterprise Guide 200 8.14 SAS Output for the Omnibus Analysis 204 8.15 Performing the Post-ANOVA Analyses in SAS 206 8.16 SAS Output for the Post-ANOVA Analyses 207 8.17 Communicating the Results 209 Chapter 8 Exercises 209 9 THREE-WAY BETWEEN-SUBJECTS DESIGN 211 9.1 A Numerical Example of a Three-Way Design 211 9.2 Partitioning the Variance into Its Sources 212 9.3 Computing the Portions of the Summary Table 215 9.4 Precedence of Effects: Higher-Order Interactions, Lower-Order Interactions, Main Effects 216 CONTENTS 9.5 Computing by Hand the Omnibus Three-Way Between-Subject Analysis 217 9.6 Performing the Omnibus Analysis in SPSS 218 9.7 SPSS Output for the Omnibus Analysis 222 9.8 Performing the Post-ANOVA Analyses in SPSS 224 9.9 SPSS Output for the Post-ANOVA Analyses in SPSS 228 9.10 Performing the Omnibus Analysis in SAS Enterprise Guide 231 9.11 SAS Output for the Omnibus Analysis 237 9.12 Performing the Post-ANOVA Analyses in SAS 238 9.13 SAS Output for the Post-ANOVA Analyses in SAS 240 9.14 Communicating the Results 242 Chapter 9 Exercises 243 SECTION 4. WITHIN-SUBJECTS DESIGNS 10 ONE-WAY WITHIN-SUBJECTS DESIGN 247 10.1 The Concept of Within-Subjects Variance 247 10.2 Nomenclature 247 10.3 Nature of Within-Subjects Variables 248 10.4 The Issue of Carry-Over Effects 249 10.5 Between- Versus Within-Subjects Variance 251 10.6 A Numerical Example of a One-Way Within-Subjects Design 253 10.7 Effect of Interest in This Design 253 10.8 The Error Term in a One-Way Within-Subjects Design 254 10.9 Computing the Omnibus Analysis by Hand 256 10.10 Performing User-Defined (Planned) Comparisons by Hand 259 10.11 Performing the Omnibus Analysis in SPSS 262 10.12 SPSS Output for the Omnibus Analysis 266 10.13 Performing the Post-ANOVA Analysis in SPSS 270 10.14 SPSS Output for the Post-ANOVA Analysis 271 10.15 SPSS and SAS Data File Structures 273 10.16 Performing the Omnibus Analysis in SAS 275 10.17 SAS Output for the Omnibus Analysis 279 10.18 Performing the Post-ANOVA Analysis in SAS 280 10.19 SAS Output for the Post-ANOVA Analysis 280 10.20 Communicating the Results 285 Chapter 10 Exercises 285 11 TWO-WAY WITHIN-SUBJECTS DESIGN 287 11.1 Combining Two Within-Subjects Factors 287 11.2 A Numerical Example of a Two-Way Within-Subjects Design 288 11.3 Partitioning the Variance into Its Sources 288 11.4 Effects of Interest in This Design 289 11.5 The Error Terms in a Two-Way Within-Subjects Design 290 11.6 Computing the Omnibus Two-Factor Within-Subjects ANOVAbyHand 291 11.7 Performing the Omnibus Analysis in SPSS 299 11.8 SPSS Output for the Omnibus Analysis 305 11.9 Performing the Post-ANOVA Analysis in SPSS 308 11.10 SPSS Output for the Post-ANOVA Analysis 311 11.11 Performing the Omnibus Analysis in SAS 313 CONTENTS 11.12 SAS Output from the Omnibus Analysis 318 11.13 Performing the Simple Effects Analysis in SAS 320 11.14 SAS Output from the Simple Effects Analysis 320 11.15 Performing the Post Hoc Analysis in SAS 321 11.16 SAS Output from the Post Hoc Analysis 321 11.17 Communicating the Results 323 Chapter 11 Exercises 323 12 THREE-WAY WITHIN-SUBJECTS DESIGN 325 12.1 A Numerical Example of a Three-Way Within-Subjects Design 325 12.2 Partitioning the Variance into Its Sources 326 12.3 Effects of Interest in This Design 326 12.4 The Error Terms in a Three-Way Within-Subjects Design 329 12.5 Computing the Omnibus Analysis 329 12.6 Performing the Omnibus Analysis in SPSS 329 12.7 SPSS Output for the Omnibus Analysis 337 12.8 Performing the Post-ANOVA Analysis in SPSS 341 12.9 SPSS Output for the Post-ANOVA Analysis 343 12.10 Performing the Omnibus Analysis in SAS 345 12.11 SAS Output from the Omnibus Analysis 349 12.12 Performing the Simple Effects Analysis in SAS 349 12.13 SAS Output from the Simple Effects Analysis 352 12.14 Performing the Post Hoc Analysis in SAS 353 12.15 SAS Output from the Post Hoc Analysis 355 12.16 Communicating the Results 357 Chapter 12 Exercises 357 SECTIONS. MIXED DESIGNS 13 SIMPLE MIXED DESIGN 361 13.1 Combining Between-Subjects and Within-Subjects Factors 361 13.2 A Numerical Example of a Simple Mixed Design 362 13.3 Effects of Interest 363 13.4 Computing the Omnibus Analysis by Hand 364 13.5 Performing the Omnibus Analysis in SPSS 369 13.6 SPSS Output of the Omnibus Analysis 372 13.7 Performing the Post-ANOVA Analysis in SPSS 372 13.8 Output for the Post-ANOVA Analysis in SPSS 377 13.9 Performing the Omnibus Analysis in SAS 379 13.10 SAS Output of the Omnibus Analysis 385 13.11 Performing the Simple Effects Analysis in SAS 385 13.12 SAS Output from the Simple Effects Analysis 387 13.13 Performing the Post Hoc Analysis in SAS 387 13.14 SAS Output from the Post Hoc Analysis 388 13.15 Communicating the Results 389 Chapter 13 Exercises 389 14 COMPLEX MIXED DESIGN: TWO BETWEEN-SUBJECTS FACTORS AND ONE WITHIN-SUBJECTS FACTOR 391 14.1 Combining Between-and Within-Subjects Factors 391 14.2 A Numerical Example of a Complex Mixed Design 391 CONTENTS 14.3 Effects of Interest 393 14.4 Computing the Omnibus Complex Mixed Design by Hand 393 14.5 Performing the Omnibus Analysis in SPSS 396 14.6 SPSS Output of the Omnibus Analysis 401 14.7 Performing the Post-ANOVA Analysis in SPSS 402 14.8 SPSS Output of the Omnibus Analysis 404 14.9 Performing the Omnibus Analysis in SAS 406 14.10 SAS Output of the Omnibus Analysis 410 14.11 Performing the Simple Effects Analysis in SAS 411 14.12 SAS Output from the Simple Effects Analysis 411 14.13 Communicating the Results 414 Chapter 14 Exercises 418 15 COMPLEX MIXED DESIGN: ONE BETWEEN-SUB JECTS FACTOR AND TWO WITHIN-SUBJECTS FACTORS 420 15.1 A Numerical Example of a Complex Mixed Design 420 15.2 Effects of Interest 421 15.3 Computing the Omnibus Complex Mixed Design by Hand 424 15.4 Performing the Omnibus Analysis in SPSS 424 15.5 SPSS Output of the Omnibus Analysis 430 15.6 Performing the Post-ANOVA Analysis in SPSS 432 15.7 Output for the Post-ANOVA Analysis in SPSS 434 15.8 Performing the Omnibus Analysis in SAS 438 15.9 SAS Output of the Omnibus Analysis 444 15.10 Performing the Post-ANOVA Analysis in SAS 444 15.11 Output for the Post-ANOVA Analysis in SAS 445 15.12 Communicating the Results 449 Chapter 15 Exercises 449 SECTION 6. ADVANCED TOPICS 16 ANALYSIS OF COVARIANCE 453 16.1 Experimental and Statistical Control 453 16.2 A Simple Illustration of Covariance 453 16.3 The Effect of a Covariate on Group Differences 454 16.4 The Process of Performing ANCOVA 455 16.5 Assumptions of ANCOVA 458 16.6 Numerical Example of a One-Way ANCOVA 461 16.7 Performing the ANOVA in SPSS 463 16.8 Evaluating the ANCOVA Assumptions in SPSS 463 16.9 Performing the ANCOVA in SPSS 470 16.10 Performing the ANOVA in SAS 473 16.11 Evaluating the ANCOVA Assumptions in SAS 475 16.12 Performing the ANCOVA in SAS 481 16.13 Communicating the Results 485 Chapter 16 Exercises 486 17 ADVANCED TOPICS IN ANALYSIS OF VARIANCE 488 17.1 Interaction Comparisons 488 17.2 Fixed and Random Factors 490 CONTENTS 17.3 Nested Designs 494 17.4 Latin Squares 495 17.5 Unequal Sample Size 496 17.6 Multivariate Analysis of Variance (MANOVA) 497 APPENDIXES APPENDIX A. PRIMER ON SPSS 501 A.I Historical Overview 501 A.2 Different Kinds of Files and Their Extensions 501 A.3 Opening SPSS 502 A.4 Saving SPSS Files 503 A.5 Setting Preferences 503 A.6 Creating New Data Files in SPSS 506 A.7 Variable View of the Data File 507 A.8 Data View of the Data File 513 A.9 Reading Data from an Excel Worksheet 513 A.10 Reading Data from a Text File 514 A. 11 Opening Saved Data Files 521 A. 12 The Main SPSS Menu 521 A. 13 Performing Statistical Procedures in SPSS 522 A.14 Saving Output Files 526 APPENDIX B. PRIMER ON SAS 531 B.I Historical Overview 531 B.2 Installing Enterprise Guide on Your Computer 531 B.3 Opening SAS Enterprise Guide 532 B.4 Entering Data Directly into SAS Enterprise Guide 533 B.5 Saving a Project 538 B.6 Constructing Your Data File in Excel 538 B.7 Importing Data from Excel 539 B.8 The Main SAS Menu 542 B.9 Performing Statistical Procedures in SAS Enterprise Guide 544 B.10 SAS Enterprise Guide Output 546 B. 11 Saving the SAS Output File as a PDF Document 547 B.I2 Additional Resources 550 APPENDIX C. TABLE OF CRITICAL F VALUES 551 APPENDIX D. DEVIATIONAL FORMULA FOR SUMS OF SQUARES 555 APPENDIX E. COEFFICIENTS OF ORTHOGONAL POLYNOMIALS 559 APPENDIXE CRITICAL VALUES OF THE STUDENTIZED RANGE STATISTIC 560 References 561 Author Index 567 Subject Index 569
any_adam_object 1
any_adam_object_boolean 1
author Gamst, Glenn 1953-
Meyers, Lawrence S.
Guarino, A. J.
author_GND (DE-588)1053130651
(DE-588)1016538456
(DE-588)1135502064
author_facet Gamst, Glenn 1953-
Meyers, Lawrence S.
Guarino, A. J.
author_role aut
aut
aut
author_sort Gamst, Glenn 1953-
author_variant g g gg
l s m ls lsm
a j g aj ajg
building Verbundindex
bvnumber BV035105837
callnumber-first Q - Science
callnumber-label QA279
callnumber-raw QA279
callnumber-search QA279
callnumber-sort QA 3279
callnumber-subject QA - Mathematics
classification_rvk SK 840
ctrlnum (OCoLC)474472571
(DE-599)BVBBV035105837
dewey-full 519.5
519.5/38
dewey-hundreds 500 - Natural sciences and mathematics
dewey-ones 519 - Probabilities and applied mathematics
dewey-raw 519.5
519.5/38
dewey-search 519.5
519.5/38
dewey-sort 3519.5
dewey-tens 510 - Mathematics
discipline Mathematik
discipline_str_mv Mathematik
edition 1. publ.
format Book
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01587nam a2200409zc 4500</leader><controlfield tag="001">BV035105837</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20180704 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">081017s2008 xxuad|| |||| 00||| eng d</controlfield><datafield tag="010" ind1=" " ind2=" "><subfield code="a">2008008948</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780521874816</subfield><subfield code="c">hardback</subfield><subfield code="9">978-0-521-87481-6</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)474472571</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV035105837</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">xxu</subfield><subfield code="c">US</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-20</subfield><subfield code="a">DE-11</subfield><subfield code="a">DE-824</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA279</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">519.5</subfield><subfield code="2">22</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">519.5/38</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 840</subfield><subfield code="0">(DE-625)143261:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Gamst, Glenn</subfield><subfield code="d">1953-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1053130651</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Analysis of variance designs</subfield><subfield code="b">a conceptual and computational approach with SPSS and SAS</subfield><subfield code="c">Glenn Gamst ; Lawrence S. Meyers ; A. J. Guarino</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">1. publ.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge [u.a.]</subfield><subfield code="b">Cambridge Univ. Press</subfield><subfield code="c">2008</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XVI, 578 S.</subfield><subfield code="b">Ill., graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Varianzanalyse</subfield><subfield code="0">(DE-588)4187413-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Varianzanalyse</subfield><subfield code="0">(DE-588)4187413-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Meyers, Lawrence S.</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1016538456</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Guarino, A. J.</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1135502064</subfield><subfield code="4">aut</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HBZ Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&amp;doc_library=BVB01&amp;local_base=BVB01&amp;doc_number=016773749&amp;sequence=000002&amp;line_number=0001&amp;func_code=DB_RECORDS&amp;service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-016773749</subfield></datafield></record></collection>
id DE-604.BV035105837
illustrated Illustrated
index_date 2024-07-02T22:15:52Z
indexdate 2024-07-09T21:22:26Z
institution BVB
isbn 9780521874816
language English
lccn 2008008948
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-016773749
oclc_num 474472571
open_access_boolean
owner DE-20
DE-11
DE-824
owner_facet DE-20
DE-11
DE-824
physical XVI, 578 S. Ill., graph. Darst.
publishDate 2008
publishDateSearch 2008
publishDateSort 2008
publisher Cambridge Univ. Press
record_format marc
spelling Gamst, Glenn 1953- Verfasser (DE-588)1053130651 aut
Analysis of variance designs a conceptual and computational approach with SPSS and SAS Glenn Gamst ; Lawrence S. Meyers ; A. J. Guarino
1. publ.
Cambridge [u.a.] Cambridge Univ. Press 2008
XVI, 578 S. Ill., graph. Darst.
txt rdacontent
n rdamedia
nc rdacarrier
Varianzanalyse (DE-588)4187413-4 gnd rswk-swf
Varianzanalyse (DE-588)4187413-4 s
DE-604
Meyers, Lawrence S. Verfasser (DE-588)1016538456 aut
Guarino, A. J. Verfasser (DE-588)1135502064 aut
HBZ Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016773749&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis
spellingShingle Gamst, Glenn 1953-
Meyers, Lawrence S.
Guarino, A. J.
Analysis of variance designs a conceptual and computational approach with SPSS and SAS
Varianzanalyse (DE-588)4187413-4 gnd
subject_GND (DE-588)4187413-4
title Analysis of variance designs a conceptual and computational approach with SPSS and SAS
title_auth Analysis of variance designs a conceptual and computational approach with SPSS and SAS
title_exact_search Analysis of variance designs a conceptual and computational approach with SPSS and SAS
title_exact_search_txtP Analysis of variance designs a conceptual and computational approach with SPSS and SAS
title_full Analysis of variance designs a conceptual and computational approach with SPSS and SAS Glenn Gamst ; Lawrence S. Meyers ; A. J. Guarino
title_fullStr Analysis of variance designs a conceptual and computational approach with SPSS and SAS Glenn Gamst ; Lawrence S. Meyers ; A. J. Guarino
title_full_unstemmed Analysis of variance designs a conceptual and computational approach with SPSS and SAS Glenn Gamst ; Lawrence S. Meyers ; A. J. Guarino
title_short Analysis of variance designs
title_sort analysis of variance designs a conceptual and computational approach with spss and sas
title_sub a conceptual and computational approach with SPSS and SAS
topic Varianzanalyse (DE-588)4187413-4 gnd
topic_facet Varianzanalyse
url http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016773749&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA
work_keys_str_mv AT gamstglenn analysisofvariancedesignsaconceptualandcomputationalapproachwithspssandsas
AT meyerslawrences analysisofvariancedesignsaconceptualandcomputationalapproachwithspssandsas
AT guarinoaj analysisofvariancedesignsaconceptualandcomputationalapproachwithspssandsas