Mathematical physiology 2 Systems physiology

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Keener, James (VerfasserIn), Sneyd, James (VerfasserIn)
Format: Buch
Sprache:English
Veröffentlicht: New York, NY Springer 2009
Ausgabe:2. ed.
Schriftenreihe:Interdisciplinary applied mathematics 8,2
Online-Zugang:Inhaltsverzeichnis
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nam a2200000 cc4500
001 BV035086047
003 DE-604
005 20220224
007 t
008 081007s2009 ad|| |||| 00||| eng d
020 |a 9780387793870  |c geb.  |9 978-0-387-79387-0 
035 |a (OCoLC)315711407 
035 |a (DE-599)BVBBV035086047 
040 |a DE-604  |b ger  |e rakwb 
041 0 |a eng 
049 |a DE-703  |a DE-91G  |a DE-355  |a DE-526  |a DE-83  |a DE-188  |a DE-19  |a DE-11 
082 0 |a 571 
084 |a SK 950  |0 (DE-625)143273:  |2 rvk 
084 |a 92C30  |2 msc 
100 1 |a Keener, James  |e Verfasser  |4 aut 
245 1 0 |a Mathematical physiology  |n 2  |p Systems physiology  |c James Keener ; James Sneyd 
250 |a 2. ed. 
264 1 |a New York, NY  |b Springer  |c 2009 
300 |a Getr. Zählung  |b Ill., graph. Darst. 
336 |b txt  |2 rdacontent 
337 |b n  |2 rdamedia 
338 |b nc  |2 rdacarrier 
490 1 |a Interdisciplinary applied mathematics  |v 8,2 
490 0 |a Mathematical biology 
490 0 |a Interdisciplinary applied mathematics  |v ... 
490 0 |a Mathematical biology 
700 1 |a Sneyd, James  |e Verfasser  |4 aut 
773 0 8 |w (DE-604)BV035086036  |g 2 
776 0 8 |i Erscheint auch als  |n Online-Ausgabe  |z 978-0-387-79388-7 
830 0 |a Interdisciplinary applied mathematics  |v 8,2  |w (DE-604)BV004216726  |9 8,2 
856 4 2 |m Digitalisierung UB Bayreuth  |q application/pdf  |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016754230&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA  |3 Inhaltsverzeichnis 
999 |a oai:aleph.bib-bvb.de:BVB01-016754230 

Datensatz im Suchindex

DE-BY-TUM_call_number 0202/BIO 210f 2007 A 5686-2(2)
0102/BIO 210f 2001 A 20408-2(2)
DE-BY-TUM_katkey 1659128
DE-BY-TUM_media_number 040010144262
040020826133
_version_ 1816712873759473664
adam_text Table of Contents CONTENTS, II: Systems Physiology Preface to the Second Edition vii Preface to the First Edition ix Acknowledgments xiii 11 The Circulatory System 471 11.1 Blood Flow .................................... 473 11.2 Compliance ................................... 476 11.3 The Microcirculation and Filtration ..................... 479 11.4 Cardiac Output ................................. 482 11.5 Circulation .................................... 484 11.5.1 A Simple Circulatory System .................... 484 11.5.2 A Linear Circulatory System .................... 486 11.5.3 A Multicompartment Circulatory System ............ 488 11.6 Cardiovascular Regulation .......................... 495 11.6.1 Autoregulation ............................ 497 11.6.2 The Baroreceptor Loop ....................... 500 11.7 Fetal Circulation ................................ 507 11.7.1 Pathophysiology of the Circulatory System ........... 511 xvi Table of Contents 11.8 The Arterial Pulse ................................ 513 11.8.1 The Conservation Laws ....................... 513 11.8.2 The Windkessel Model ........................ 514 11.8.3 A Small-Amplitude Pressure Wave ................. 516 11.8.4 Shock Waves in the Aorta ...................... 516 11.9 Exercises ..................................... 521 12 The Heart 523 12.1 The Electrocardiogram ............................ 525 12.1.1 The Scalar ECG ............................ 525 12.1.2 The Vector ECG ............................ 526 12.2 Cardiac Cells ................................... 534 12.2.1 Purkinje Fibers ............................ 535 12.2.2 Sinoatrial Node ............................ 541 12.2.3 Ventricular Cells ........................... 543 12.2.4 Cardiac Excitation-Contraction Coupling ............ 546 12.2.5 Common-Pool and Local-Control Models ............ 548 12.2.6 The L-type Ca2+ Channel ...................... 550 12.2.7 The Ryanodine Receptor ...................... 551 12.2.8 TheNa^Ca^ Exchanger ...................... 552 12.3 Cellular Coupling ................................ 553 12.3.1 One-Dimensional Fibers ....................... 554 12.3.2 Propagation Failure ......................... 561 12.3.3 Myocardial Tissue: The Bidomain Model ............. 566 12.3.4 Pacemakers .............................. 572 12.4 Cardiac Arrhythmias .............................. 583 12.4.1 Cellular Arrhythmias ......................... 584 12.4.2 Atrioventricular Node — Wenckebach Rhythms ......... 586 12.4.3 Reentrant Arrhythmias ....................... 593 12.5 Defibrillation ................................... 604 12.5.1 The Direct Stimulus Threshold ................... 608 12.5.2 The Defibrillation Threshold .................... 610 12.6 Appendix: The Sawtooth Potential ...................... 613 12.7 Appendix: The Phase Equations ....................... 614 12.8 Appendix: The Cardiac Bidomain Equations ............... 618 12.9 Exercises ..................................... 622 13 Blood 627 13.1 Blood Plasma .................................. 628 13.2 Blood Cell Production ............................. 630 13.2.1 Periodic Hematological Diseases .................. 632 13.2.2 A Simple Model of Blood Cell Growth .............. 633 13.2.3 Peripheral or Local Control? .................... 639 Table of Contents xvii 13.3 Erythrocytes ................................... 643 13.3.1 Myoglobin and Hemoglobin .................... 643 13.3.2 Hemoglobin Saturation Shifts ................... 648 13.3.3 Carbon Dioxide Transport ...................... 649 13.4 Leukocytes .................................... 652 13.4.1 Leukocyte Chemotaxis ........................ 653 13.4.2 The Inflammatory Response .................... 655 13.5 Control of Lymphocyte Differentiation ................... 665 13.6 Clotting ...................................... 669 13.6.1 The Clotting Cascade ......................... 669 13.6.2 Clotting Models ............................ 671 13.6.3 In Vitro Clotting and the Spread of Inhibition .......... 671 13.6.4 Platelets ................................ 675 13.7 Exercises ..................................... 678 14 Respiration 683 14.1 Capillary-Alveoli Gas Exchange ....................... 684 14.1.1 Diffusion Across an Interface .................... 684 14.1.2 Capillary-Alveolar Transport .................... 685 14.1.3 Carbon Dioxide Removal ...................... 688 14.1.4 Oxygen Uptake ............................ 689 14.1.5 Carbon Monoxide Poisoning .................... 692 14.2 Ventilation and Perfusion ........................... 694 14.2.1 The Oxygen-Carbon Dioxide Diagram .............. 698 14.2.2 Respiratory Exchange Ratio .................... 698 14.3 Regulation of Ventilation ........................... 701 14.3.1 A More Detailed Model of Respiratory Regulation ....... 706 14.4 The Respiratory Center ............................ 708 14.4.1 A Simple Mutual Inhibition Model ................ 710 14.5 Exercises ..................................... 714 15 Muscle 717 15.1 Crossbridge Theory ............................... 719 15.2 The Force-Velocity Relationship: The Hill Model ............. 724 15.2.1 Fitting Data .............................. 726 15.2.2 Some Solutions of the Hill Model ................. 727 15.3 A Simple Crossbridge Model: The Huxley Model ............. 730 15.3.1 Isotonic Responses .......................... 737 15.3.2 Other Choices for Rate Functions ................. 738 15.4 Determination of the Rate Functions .................... 739 15.4.1 A Continuous Binding Site Model ................. 739 15.4.2 A General Binding Site Model ................... 741 15.4.3 The Inverse Problem ......................... 742 xviii Table of Contents 15.5 The Discrete Distribution of Binding Sites ................. 747 15.6 High Time-Resolution Data .......................... 748 15.6.1 High Time-Resolution Experiments ................ 748 15.6.2 The Model Equations ........................ 749 15.7 In Vitro Assays .................................. 755 15.8 Smooth Muscle ................................. 756 15.8.1 The Hai-Murphy Model ....................... 756 15.9 Large-Scale Muscle Models .......................... 759 15.10 Molecular Motors ................................ 759 15.10.1 Brownian Ratchets .......................... 760 15.10.2 The Tilted Potential .......................... 765 15.10.3 Flashing Ratchets ........................... 767 15.11 Exercises ..................................... 770 16 The Endocrine System 773 16.1 The Hypothalamus and Pituitary Gland .................. 775 16.1.1 Pulsatile Secretion of Luteinizing Hormone ........... 777 16.1.2 Neural Pulse Generator Models .................. 779 16.2 Ovulation in Mammals ............................. 784 16.2.1 A Model of the Menstrual Cycle .................. 784 16.2.2 The Control of Ovulation Number ................. 788 16.2.3 Other Models of Ovulation ..................... 802 16.3 Insulin and Glucose .............................. 803 16.3.1 Insulin Sensitivity .......................... 804 16.3.2 Pulsatile Insulin Secretion ..................... 806 16.4 Adaptation of Hormone Receptors ..................... 813 16.5 Exercises ..................................... 816 17 Renal Physiology 821 17.1 The Glomerulus ................................. 821 17.1.1 Autoregulation and Tubuloglomerular Oscillations ....... 825 17.2 Urinary Concentration: The Loop of Henle ................ 831 17.2.1 The Countercurrent Mechanism .................. 836 Π .2.2 The Countercurrent Mechanism in Nephrons .......... 837 17.3 Models of Tubular Transport ......................... 848 17.4 Exercises ..................................... 849 18 The Gastrointestinal System 851 18.1 Fluid Absorption ................................ 851 18.1.1 A Simple Model of Fluid Absorption ............... 853 18.1.2 Standing-Gradient Osmotic Flow ................. 857 18.1.3 Uphill Water Transport ....................... 864 Table of Contents xix 18.2 Gastric Protection ............................... 866 18.2.1 A Steady-State Model ........................ 867 18.2.2 Gastric Acid Secretion and Neutralization ............ 873 18.3 Coupled Oscillators in the Small Intestine ................. 874 18.3.1 Temporal Control of Contractions ................. 874 18.3.2 Waves of Electrical Activity ..................... 875 18.3.3 Models of Coupled Oscillators ................... 878 18.3.4 Interstitial Cells of Cajal ....................... 887 18.3.5 Biophysical and Anatomical Models ............... 888 18.4 Exercises ..................................... 890 19 The Retina and Vision 893 19.1 Retinal Light Adaptation ........................... 895 19.1.1 Weber s Law and Contrast Detection ............... 897 19.1.2 Intensity-Response Curves and the Naka-Rushton Equation . 898 19.2 Photoreceptor Physiology ........................... 902 19.2.1 The Initial Cascade .......................... 905 19.2.2 Light Adaptation in Cones ..................... 907 19.3 A Model of Adaptation in Amphibian Rods ................ 912 19.3.1 Single-Photon Responses ...................... 915 19.4 Lateral Inhibition ................................ 917 19.4.1 A Simple Model of Lateral Inhibition ............... 919 19.4.2 Photoreceptor and Horizontal Cell Interactions ......... 921 19.5 Detection of Motion and Directional Selectivity .............. 926 19.6 Receptive Fields ................................. 929 19.7 The Pupil Light Reflex ............................. 933 19.7.1 Linear Stability Analysis ....................... 935 19.8 Appendix: Linear Systems Theory ...................... 936 19.9 Exercises ..................................... 939 20 The Inner Ear 943 20.1 Frequency Tuning ................................ 946 20.1.1 Cochlear Macromechanics ..................... 947 20.2 Models of the Cochlea ............................. 949 20.2.1 Equations of Motion for an Incompressible Fluid ....... 949 20.2.2 The Basilar Membrane as a Harmonic Oscillator ........ 950 20.2.3 An Analytical Solution ........................ 952 20.2.4 Long-Wave and Short-Wave Models ................ 953 20.2.5 More Complex Models ........................ 962 20.3 Electrical Resonance in Hair Cells ...................... 962 20.3.1 An Electrical Circuit Analogue ................... 964 20.3.2 A Mechanistic Model of Frequency Tuning ........... 966 xx Table of Contents 20.4 The Nonlinear Cochlear Amplifier ...................... 969 20.4.1 Negative Stiffness, Adaptation, and Oscillations ........ 969 20.4.2 Nonlinear Compression and Hopf Bifurcations ......... 971 20.5 Exercises ..................................... 973 Appendix: Units and Physical Constants A-l References R-l Index II CONTENTS, I: Cellular Physiology Preface to the Second Edition vii Preface to the First Edition ix Acknowledgments xiii 1 Biochemical Reactions 1 1.1 The Law of Mass Action ............................ 1 1.2 Thermodynamics and Rate Constants .................... 3 1.3 Detailed Balance ................................ 6 1.4 Enzyme Kinetics ................................ 7 1.4.1 The Equilibrium Approximation .................. 8 1.4.2 The Quasi-Steady-State Approximation ............. 9 1.4.3 Enzyme Inhibition .......................... 12 1.4.4 Cooperativity ............................. 15 1.4.5 Reversible Enzyme Reactions ................... 20 1.4.6 The Goldbeter-Koshland Function ................ 21 1.5 Glycolysis and Glycolytic Oscillations .................... 23 1.6 Appendix: Math Background ......................... 33 1.6.1 Basic Techniques ........................... 35 1.6.2 Asymptotic Analysis ......................... 37 1.6.3 Enzyme Kinetics and Singular Perturbation Theory ...... 39 1.7 Exercises ..................................... 42 2 Cellular Homeostasis 49 2.1 The Cell Membrane ............................... 49 2.2 Diffusion ..................................... 51 2.2.1 Fick s Law ............................... 52 2.2.2 Diffusion Coefficients ........................ 53 2.2.3 Diffusion Through a Membrane: Ohm s Law .......... 54 Table of Contents xxi 2.2.4 Diffusion into a Capillary ...................... 55 2.2.5 Buffered Diffusion .......................... 55 2.3 Facilitated Diffusion .............................. 58 2.3.1 Facilitated Diffusion in Muscle Respiration ........... 61 2.4 Carrier-Mediated Transport .......................... 63 2.4.1 Glucose Transport .......................... 64 2.4.2 Symports and Antiports ....................... 67 2.4.3 Sodium-Calcium Exchange ..................... 69 2.5 Active Transport ................................. 73 2.5.1 A Simple ATPase ........................... 74 2.5.2 Active Transport of Charged Ions ................. 76 2.5.3 A Model of the Na4 - К 1 ATPase .................. 77 2.5.4 Nuclear Transport .......................... 79 2.6 The Membrane Potential ........................... 80 2.6.1 The Nernst Equilibrium Potential ................. 80 2.6.2 Gibbs-Donnan Equilibrium .................... 82 2.6.3 Electrodiffusion: The Goldman-Hodgkin-Katz Equations . . 83 2.6.4 Electrical Circuit Model of the Cell Membrane ......... 86 2.7 Osmosis ...................................... 88 2.8 Control of Cell Volume ............................. 90 2.8.1 A Pump-Leak Model ......................... 91 2.8.2 Volume Regulation and Ionic Transport ............. 98 2.9 Appendix: Stochastic Processes ....................... 103 2.9.1 Markov Processes ........................... 103 2.9.2 Discrete-State Markov Processes .................. 105 2.9.3 Numerical Simulation of Discrete Markov Processes ..... 107 2.9.4 Diffusion ................................ 109 2.9.5 Sample Paths; the Langevin Equation .............. 110 2.9.6 The Fokker-Planck Equation and the Mean First Exit Time . Ill 2.9.7 Diffusion and Fick s Law ...................... 114 2.10 Exercises ..................................... 115 3 Membrane Ion Channels 121 3.1 Current-Voltage Relations ........................... 121 3.1.1 Steady-State and Instantaneous Current-Voltage Relations . 123 3.2 Independence, Saturation, and the Ussing Flux Ratio .......... 125 3.3 Electrodiffusion Models ............................ 128 3.3.1 Multi-Ion Flux: The Poisson-Nernst-Planck Equations ... . 129 3.4 Barrier Models ................................. 134 3.4.1 Nonsaturating Barrier Models ................... 136 3.4.2 Saturating Barrier Models: One-Ion Pores ............ 139 3.4.3 Saturating Barrier Models: Multi-Ion Pores ........... 143 3.4.4 Electrogenic Pumps and Exchangers ............... 145 xxii Table of Contents 3.5 Channel Gating ................................. 147 3.5.1 A Two-State K+ Channel ....................... 148 3.5.2 Multiple Subunits ........................... 149 3.5.3 The Sodium Channel ......................... 150 3.5.4 Agonist-Controlled Ion Channels ................. 152 3.5.5 Drugs and Toxins ........................... 153 3.6 Single-Channel Analysis ............................ 155 3.6.1 Single-Channel Analysis of a Sodium Channel ......... 155 3.6.2 Single-Channel Analysis of an Agonist-Controlled Ion Channel ................................. 158 3.6.3 Comparing to Experimental Data ................. 160 3.7 Appendix: Reaction Rates ........................... 162 3.7.1 The Boltzmann Distribution .................... 163 3.7.2 A Fokker-Planck Equation Approach ............... 165 3.7.3 Reaction Rates and Kramers Result ............... 166 3.8 Exercises ..................................... 170 4 Passive Electrical Flow in Neurons 175 4.1 The Cable Equation .............................. 177 4.2 Dendritic Conduction ............................. 180 4.2.1 Boundary Conditions ........................ 181 4.2.2 Input Resistance ........................... 182 4.2.3 Branching Structures ........................ 182 4.2.4 A Dendrite with Synaptic Input .................. 185 4.3 The Rail Model of a Neuron .......................... 187 4.3.1 A Semi-Infinite Neuron with a Soma ............... 187 4.3.2 A Finite Neuron and Soma ..................... 189 4.3.3 Other Compartmental Models ................... 192 4.4 Appendix: Transform Methods ........................ 192 4.5 Exercises ..................................... 193 5 Excitability 195 5.1 The Hodgkin-Huxley Model ......................... 196 5.1.1 History of the Hodgkin-Huxley Equations ........... 198 5.1.2 Voltage and Time Dependence of Conductances ........ 200 5.1.3 Qualitative Analysis ......................... 210 5.2 The FitzHugh-Nagumo Equations ...................... 216 5.2.1 The Generalized FitzHugh-Nagumo Equations ......... 219 5.2.2 Phase-Plane Behavior ........................ 220 5.3 Exercises ..................................... 223 Table of Contents xxiii 6 Wave Propagation in Excitable Systems 229 6.1 Brief Overview of Wave Propagation .................... 229 6.2 Traveling Fronts ................................. 231 6.2.1 The Bistable Equation ........................ 231 6.2.2 Myelination .............................. 236 6.2.3 The Discrete Bistable Equation .................. 238 6.3 Traveling Pulses ................................. 242 6.3.1 The FitzHugh-Nagumo Equations ................ 242 6.3.2 The Hodgkin-Huxley Equations .................. 250 6.4 Periodic Wave Trains .............................. 252 6.4.1 Piecewise-Linear FitzHugh-Nagumo Equations ........ 253 6.4.2 Singular Perturbation Theory ................... 254 6.4.3 Kinematics ............................... 256 6.5 Wave Propagation in Higher Dimensions .................. 257 6.5.1 Propagating Fronts .......................... 258 6.5.2 Spatial Patterns and Spiral Waves ................. 262 6.6 Exercises ..................................... 268 7 Calcium Dynamics 273 7.1 Calcium Oscillations and Waves ....................... 276 7.2 Well-Mixed Cell Models: Calcium Oscillations ............... 281 7.2.1 Influx .................................. 282 7.2.2 Mitochondria ............................. 282 7.2.3 Calcium Buffers ............................ 282 7.2.4 Calcium Pumps and Exchangers .................. 283 7.2.5 IP3 Receptors ............................. 285 7.2.6 Simple Models of Calcium Dynamics ............... 293 7.2.7 Open-and Closed-Cell Models ................... 296 7.2.8 IP3 Dynamics ............................. 298 7.2.9 Ryanodine Receptors ......................... 301 7.3 Calcium Waves ................................. 303 7.3.1 Simulation of Spiral Waves in Xenopus .............. 306 7.3.2 Traveling Wave Equations and Bifurcation Analysis ...... 307 7.4 Calcium Buffering ............................... 309 7.4.1 Fast Buffers or Excess Buffers ................... 310 7.4.2 The Existence of Buffered Waves ................. 313 7.5 Discrete Calcium Sources ........................... 315 7.5.1 The Fire-Diffuse-Fire Model .................... 318 7.6 Calcium Puffs and Stochastic Modeling .................. 321 7.6.1 Stochastic IPR Models ........................ 323 7.6.2 Stochastic Models of Calcium Waves ............... 324 xxjv Table of Contents 7.7 Intercellular Calcium Waves ......................... 326 7.7.1 Mechanically Stimulated Intercellular Ca2+Waves ....... 327 7.7.2 Partial Regeneration ......................... 330 7.7.3 Coordinated Oscillations in Hepatocytes ............. 331 7.8 Appendix: Mean Field Equations ....................... 332 7.8.1 Microdomains............................. 332 7.8.2 Homogenization; Effective Diffusion Coefficients ....... 336 7.8.3 Bidomain Equations ......................... 341 7.9 Exercises ..................................... 341 8 Intercellular Communication 347 8.1 Chemical Synapses ............................... 348 8.1.1 Quantal Nature of Synaptic Transmission ............ 349 8.1.2 Presynaptic Voltage-Gated Calcium Channels .......... 352 8.1.3 Presynaptic Calcium Dynamics and Facilitation ........ 358 8.1.4 Neurotransmitter Kinetics ..................... 364 8.1.5 The Postsynaptic Membrane Potential .............. 370 8.1.6 Agonist-Controlled Ion Channels ................. 371 8.1.7 Drugs and Toxins ........................... 373 8.2 Gap Junctions .................................. 373 8.2.1 Effective Diffusion Coefficients ................... 374 8.2.2 Homogenization ........................... 376 8.2.3 Measurement of Permeabilities .................. 377 8.2.4 The Role of Gap-Junction Distribution .............. 377 8.3 Exercises ..................................... 383 9 Neuroendocrine Cells 385 9.1 Pancreatic Cells ................................. 386 9.1.1 Bursting in the Pancreatic Cell .................. 386 9.1.2 ER Calcium as a Slow Controlling Variable ........... 392 9.1.3 Slow Bursting and Glycolysis .................... 399 9.1.4 Bursting in Clusters ......................... 403 9.1.5 A Qualitative Bursting Model .................... 410 9.1.6 Bursting Oscillations in Other Cell Types ............. 412 9.2 Hypothalamic and Pituitary Cells ...................... 419 9.2.1 The Gonadotroph ........................... 419 9.3 Exercises ..................................... 424 10 Regulation of Cell Function 427 10.1 Regulation of Gene Expression ........................ 428 10.1.1 The trp Repressor........................... 429 10.1.2 The lac Operon ............................ 432 Table of Contents xxv 10.2 Circadian Clocks ................................ 438 10.3 The Cell Cycle .................................. 442 10.3.1 A Simple Generic Model ....................... 445 10.3.2 Fission Yeast .............................. 452 10.3.3 A Limit Cycle Oscillator in the Xenopus Oocyte ......... 461 10.3.4 Conclusion ............................... 468 10.4 Exercises ..................................... 468 Appendix: Units and Physical Constants A-l References R-l Index 1-1
adam_txt Table of Contents CONTENTS, II: Systems Physiology Preface to the Second Edition vii Preface to the First Edition ix Acknowledgments xiii 11 The Circulatory System 471 11.1 Blood Flow . 473 11.2 Compliance . 476 11.3 The Microcirculation and Filtration . 479 11.4 Cardiac Output . 482 11.5 Circulation . 484 11.5.1 A Simple Circulatory System . 484 11.5.2 A Linear Circulatory System . 486 11.5.3 A Multicompartment Circulatory System . 488 11.6 Cardiovascular Regulation . 495 11.6.1 Autoregulation . 497 11.6.2 The Baroreceptor Loop . 500 11.7 Fetal Circulation . 507 11.7.1 Pathophysiology of the Circulatory System . 511 xvi Table of Contents 11.8 The Arterial Pulse . 513 11.8.1 The Conservation Laws . 513 11.8.2 The Windkessel Model . 514 11.8.3 A Small-Amplitude Pressure Wave . 516 11.8.4 Shock Waves in the Aorta . 516 11.9 Exercises . 521 12 The Heart 523 12.1 The Electrocardiogram . 525 12.1.1 The Scalar ECG . 525 12.1.2 The Vector ECG . 526 12.2 Cardiac Cells . 534 12.2.1 Purkinje Fibers . 535 12.2.2 Sinoatrial Node . 541 12.2.3 Ventricular Cells . 543 12.2.4 Cardiac Excitation-Contraction Coupling . 546 12.2.5 Common-Pool and Local-Control Models . 548 12.2.6 The L-type Ca2+ Channel . 550 12.2.7 The Ryanodine Receptor . 551 12.2.8 TheNa^Ca^ Exchanger . 552 12.3 Cellular Coupling . 553 12.3.1 One-Dimensional Fibers . 554 12.3.2 Propagation Failure . 561 12.3.3 Myocardial Tissue: The Bidomain Model . 566 12.3.4 Pacemakers . 572 12.4 Cardiac Arrhythmias . 583 12.4.1 Cellular Arrhythmias . 584 12.4.2 Atrioventricular Node — Wenckebach Rhythms . 586 12.4.3 Reentrant Arrhythmias . 593 12.5 Defibrillation . 604 12.5.1 The Direct Stimulus Threshold . 608 12.5.2 The Defibrillation Threshold . 610 12.6 Appendix: The Sawtooth Potential . 613 12.7 Appendix: The Phase Equations . 614 12.8 Appendix: The Cardiac Bidomain Equations . 618 12.9 Exercises . 622 13 Blood 627 13.1 Blood Plasma . 628 13.2 Blood Cell Production . 630 13.2.1 Periodic Hematological Diseases . 632 13.2.2 A Simple Model of Blood Cell Growth . 633 13.2.3 Peripheral or Local Control? . 639 Table of Contents xvii 13.3 Erythrocytes . 643 13.3.1 Myoglobin and Hemoglobin . 643 13.3.2 Hemoglobin Saturation Shifts . 648 13.3.3 Carbon Dioxide Transport . 649 13.4 Leukocytes . 652 13.4.1 Leukocyte Chemotaxis . 653 13.4.2 The Inflammatory Response . 655 13.5 Control of Lymphocyte Differentiation . 665 13.6 Clotting . 669 13.6.1 The Clotting Cascade . 669 13.6.2 Clotting Models . 671 13.6.3 In Vitro Clotting and the Spread of Inhibition . 671 13.6.4 Platelets . 675 13.7 Exercises . 678 14 Respiration 683 14.1 Capillary-Alveoli Gas Exchange . 684 14.1.1 Diffusion Across an Interface . 684 14.1.2 Capillary-Alveolar Transport . 685 14.1.3 Carbon Dioxide Removal . 688 14.1.4 Oxygen Uptake . 689 14.1.5 Carbon Monoxide Poisoning . 692 14.2 Ventilation and Perfusion . 694 14.2.1 The Oxygen-Carbon Dioxide Diagram . 698 14.2.2 Respiratory Exchange Ratio . 698 14.3 Regulation of Ventilation . 701 14.3.1 A More Detailed Model of Respiratory Regulation . 706 14.4 The Respiratory Center . 708 14.4.1 A Simple Mutual Inhibition Model . 710 14.5 Exercises . 714 15 Muscle 717 15.1 Crossbridge Theory . 719 15.2 The Force-Velocity Relationship: The Hill Model . 724 15.2.1 Fitting Data . 726 15.2.2 Some Solutions of the Hill Model . 727 15.3 A Simple Crossbridge Model: The Huxley Model . 730 15.3.1 Isotonic Responses . 737 15.3.2 Other Choices for Rate Functions . 738 15.4 Determination of the Rate Functions . 739 15.4.1 A Continuous Binding Site Model . 739 15.4.2 A General Binding Site Model . 741 15.4.3 The Inverse Problem . 742 xviii Table of Contents 15.5 The Discrete Distribution of Binding Sites . 747 15.6 High Time-Resolution Data . 748 15.6.1 High Time-Resolution Experiments . 748 15.6.2 The Model Equations . 749 15.7 In Vitro Assays . 755 15.8 Smooth Muscle . 756 15.8.1 The Hai-Murphy Model . 756 15.9 Large-Scale Muscle Models . 759 15.10 Molecular Motors . 759 15.10.1 Brownian Ratchets . 760 15.10.2 The Tilted Potential . 765 15.10.3 Flashing Ratchets . 767 15.11 Exercises . 770 16 The Endocrine System 773 16.1 The Hypothalamus and Pituitary Gland . 775 16.1.1 Pulsatile Secretion of Luteinizing Hormone . 777 16.1.2 Neural Pulse Generator Models . 779 16.2 Ovulation in Mammals . 784 16.2.1 A Model of the Menstrual Cycle . 784 16.2.2 The Control of Ovulation Number . 788 16.2.3 Other Models of Ovulation . 802 16.3 Insulin and Glucose . 803 16.3.1 Insulin Sensitivity . 804 16.3.2 Pulsatile Insulin Secretion . 806 16.4 Adaptation of Hormone Receptors . 813 16.5 Exercises . 816 17 Renal Physiology 821 17.1 The Glomerulus . 821 17.1.1 Autoregulation and Tubuloglomerular Oscillations . 825 17.2 Urinary Concentration: The Loop of Henle . 831 17.2.1 The Countercurrent Mechanism . 836 Π .2.2 The Countercurrent Mechanism in Nephrons . 837 17.3 Models of Tubular Transport . 848 17.4 Exercises . 849 18 The Gastrointestinal System 851 18.1 Fluid Absorption . 851 18.1.1 A Simple Model of Fluid Absorption . 853 18.1.2 Standing-Gradient Osmotic Flow . 857 18.1.3 Uphill Water Transport . 864 Table of Contents xix 18.2 Gastric Protection . 866 18.2.1 A Steady-State Model . 867 18.2.2 Gastric Acid Secretion and Neutralization . 873 18.3 Coupled Oscillators in the Small Intestine . 874 18.3.1 Temporal Control of Contractions . 874 18.3.2 Waves of Electrical Activity . 875 18.3.3 Models of Coupled Oscillators . 878 18.3.4 Interstitial Cells of Cajal . 887 18.3.5 Biophysical and Anatomical Models . 888 18.4 Exercises . 890 19 The Retina and Vision 893 19.1 Retinal Light Adaptation . 895 19.1.1 Weber's Law and Contrast Detection . 897 19.1.2 Intensity-Response Curves and the Naka-Rushton Equation . 898 19.2 Photoreceptor Physiology . 902 19.2.1 The Initial Cascade . 905 19.2.2 Light Adaptation in Cones . 907 19.3 A Model of Adaptation in Amphibian Rods . 912 19.3.1 Single-Photon Responses . 915 19.4 Lateral Inhibition . 917 19.4.1 A Simple Model of Lateral Inhibition . 919 19.4.2 Photoreceptor and Horizontal Cell Interactions . 921 19.5 Detection of Motion and Directional Selectivity . 926 19.6 Receptive Fields . 929 19.7 The Pupil Light Reflex . 933 19.7.1 Linear Stability Analysis . 935 19.8 Appendix: Linear Systems Theory . 936 19.9 Exercises . 939 20 The Inner Ear 943 20.1 Frequency Tuning . 946 20.1.1 Cochlear Macromechanics . 947 20.2 Models of the Cochlea . 949 20.2.1 Equations of Motion for an Incompressible Fluid . 949 20.2.2 The Basilar Membrane as a Harmonic Oscillator . 950 20.2.3 An Analytical Solution . 952 20.2.4 Long-Wave and Short-Wave Models . 953 20.2.5 More Complex Models . 962 20.3 Electrical Resonance in Hair Cells . 962 20.3.1 An Electrical Circuit Analogue . 964 20.3.2 A Mechanistic Model of Frequency Tuning . 966 xx Table of Contents 20.4 The Nonlinear Cochlear Amplifier . 969 20.4.1 Negative Stiffness, Adaptation, and Oscillations . 969 20.4.2 Nonlinear Compression and Hopf Bifurcations . 971 20.5 Exercises . 973 Appendix: Units and Physical Constants A-l References R-l Index II CONTENTS, I: Cellular Physiology Preface to the Second Edition vii Preface to the First Edition ix Acknowledgments xiii 1 Biochemical Reactions 1 1.1 The Law of Mass Action . 1 1.2 Thermodynamics and Rate Constants . 3 1.3 Detailed Balance . 6 1.4 Enzyme Kinetics . 7 1.4.1 The Equilibrium Approximation . 8 1.4.2 The Quasi-Steady-State Approximation . 9 1.4.3 Enzyme Inhibition . 12 1.4.4 Cooperativity . 15 1.4.5 Reversible Enzyme Reactions . 20 1.4.6 The Goldbeter-Koshland Function . 21 1.5 Glycolysis and Glycolytic Oscillations . 23 1.6 Appendix: Math Background . 33 1.6.1 Basic Techniques . 35 1.6.2 Asymptotic Analysis . 37 1.6.3 Enzyme Kinetics and Singular Perturbation Theory . 39 1.7 Exercises . 42 2 Cellular Homeostasis 49 2.1 The Cell Membrane . 49 2.2 Diffusion . 51 2.2.1 Fick's Law . 52 2.2.2 Diffusion Coefficients . 53 2.2.3 Diffusion Through a Membrane: Ohm's Law . 54 Table of Contents xxi 2.2.4 Diffusion into a Capillary . 55 2.2.5 Buffered Diffusion . 55 2.3 Facilitated Diffusion . 58 2.3.1 Facilitated Diffusion in Muscle Respiration . 61 2.4 Carrier-Mediated Transport . 63 2.4.1 Glucose Transport . 64 2.4.2 Symports and Antiports . 67 2.4.3 Sodium-Calcium Exchange . 69 2.5 Active Transport . 73 2.5.1 A Simple ATPase . 74 2.5.2 Active Transport of Charged Ions . 76 2.5.3 A Model of the Na4"- К"1" ATPase . 77 2.5.4 Nuclear Transport . 79 2.6 The Membrane Potential . 80 2.6.1 The Nernst Equilibrium Potential . 80 2.6.2 Gibbs-Donnan Equilibrium . 82 2.6.3 Electrodiffusion: The Goldman-Hodgkin-Katz Equations . . 83 2.6.4 Electrical Circuit Model of the Cell Membrane . 86 2.7 Osmosis . 88 2.8 Control of Cell Volume . 90 2.8.1 A Pump-Leak Model . 91 2.8.2 Volume Regulation and Ionic Transport . 98 2.9 Appendix: Stochastic Processes . 103 2.9.1 Markov Processes . 103 2.9.2 Discrete-State Markov Processes . 105 2.9.3 Numerical Simulation of Discrete Markov Processes . 107 2.9.4 Diffusion . 109 2.9.5 Sample Paths; the Langevin Equation . 110 2.9.6 The Fokker-Planck Equation and the Mean First Exit Time . Ill 2.9.7 Diffusion and Fick's Law . 114 2.10 Exercises . 115 3 Membrane Ion Channels 121 3.1 Current-Voltage Relations . 121 3.1.1 Steady-State and Instantaneous Current-Voltage Relations . 123 3.2 Independence, Saturation, and the Ussing Flux Ratio . 125 3.3 Electrodiffusion Models . 128 3.3.1 Multi-Ion Flux: The Poisson-Nernst-Planck Equations . . 129 3.4 Barrier Models . 134 3.4.1 Nonsaturating Barrier Models . 136 3.4.2 Saturating Barrier Models: One-Ion Pores . 139 3.4.3 Saturating Barrier Models: Multi-Ion Pores . 143 3.4.4 Electrogenic Pumps and Exchangers . 145 xxii Table of Contents 3.5 Channel Gating . 147 3.5.1 A Two-State K+ Channel . 148 3.5.2 Multiple Subunits . 149 3.5.3 The Sodium Channel . 150 3.5.4 Agonist-Controlled Ion Channels . 152 3.5.5 Drugs and Toxins . 153 3.6 Single-Channel Analysis . 155 3.6.1 Single-Channel Analysis of a Sodium Channel . 155 3.6.2 Single-Channel Analysis of an Agonist-Controlled Ion Channel . 158 3.6.3 Comparing to Experimental Data . 160 3.7 Appendix: Reaction Rates . 162 3.7.1 The Boltzmann Distribution . 163 3.7.2 A Fokker-Planck Equation Approach . 165 3.7.3 Reaction Rates and Kramers'Result . 166 3.8 Exercises . 170 4 Passive Electrical Flow in Neurons 175 4.1 The Cable Equation . 177 4.2 Dendritic Conduction . 180 4.2.1 Boundary Conditions . 181 4.2.2 Input Resistance . 182 4.2.3 Branching Structures . 182 4.2.4 A Dendrite with Synaptic Input . 185 4.3 The Rail Model of a Neuron . 187 4.3.1 A Semi-Infinite Neuron with a Soma . 187 4.3.2 A Finite Neuron and Soma . 189 4.3.3 Other Compartmental Models . 192 4.4 Appendix: Transform Methods . 192 4.5 Exercises . 193 5 Excitability 195 5.1 The Hodgkin-Huxley Model . 196 5.1.1 History of the Hodgkin-Huxley Equations . 198 5.1.2 Voltage and Time Dependence of Conductances . 200 5.1.3 Qualitative Analysis . 210 5.2 The FitzHugh-Nagumo Equations . 216 5.2.1 The Generalized FitzHugh-Nagumo Equations . 219 5.2.2 Phase-Plane Behavior . 220 5.3 Exercises . 223 Table of Contents xxiii 6 Wave Propagation in Excitable Systems 229 6.1 Brief Overview of Wave Propagation . 229 6.2 Traveling Fronts . 231 6.2.1 The Bistable Equation . 231 6.2.2 Myelination . 236 6.2.3 The Discrete Bistable Equation . 238 6.3 Traveling Pulses . 242 6.3.1 The FitzHugh-Nagumo Equations . 242 6.3.2 The Hodgkin-Huxley Equations . 250 6.4 Periodic Wave Trains . 252 6.4.1 Piecewise-Linear FitzHugh-Nagumo Equations . 253 6.4.2 Singular Perturbation Theory . 254 6.4.3 Kinematics . 256 6.5 Wave Propagation in Higher Dimensions . 257 6.5.1 Propagating Fronts . 258 6.5.2 Spatial Patterns and Spiral Waves . 262 6.6 Exercises . 268 7 Calcium Dynamics 273 7.1 Calcium Oscillations and Waves . 276 7.2 Well-Mixed Cell Models: Calcium Oscillations . 281 7.2.1 Influx . 282 7.2.2 Mitochondria . 282 7.2.3 Calcium Buffers . 282 7.2.4 Calcium Pumps and Exchangers . 283 7.2.5 IP3 Receptors . 285 7.2.6 Simple Models of Calcium Dynamics . 293 7.2.7 Open-and Closed-Cell Models . 296 7.2.8 IP3 Dynamics . 298 7.2.9 Ryanodine Receptors . 301 7.3 Calcium Waves . 303 7.3.1 Simulation of Spiral Waves in Xenopus . 306 7.3.2 Traveling Wave Equations and Bifurcation Analysis . 307 7.4 Calcium Buffering . 309 7.4.1 Fast Buffers or Excess Buffers . 310 7.4.2 The Existence of Buffered Waves . 313 7.5 Discrete Calcium Sources . 315 7.5.1 The Fire-Diffuse-Fire Model . 318 7.6 Calcium Puffs and Stochastic Modeling . 321 7.6.1 Stochastic IPR Models . 323 7.6.2 Stochastic Models of Calcium Waves . 324 xxjv Table of Contents 7.7 Intercellular Calcium Waves . 326 7.7.1 Mechanically Stimulated Intercellular Ca2+Waves . 327 7.7.2 Partial Regeneration . 330 7.7.3 Coordinated Oscillations in Hepatocytes . 331 7.8 Appendix: Mean Field Equations . 332 7.8.1 Microdomains. 332 7.8.2 Homogenization; Effective Diffusion Coefficients . 336 7.8.3 Bidomain Equations . 341 7.9 Exercises . 341 8 Intercellular Communication 347 8.1 Chemical Synapses . 348 8.1.1 Quantal Nature of Synaptic Transmission . 349 8.1.2 Presynaptic Voltage-Gated Calcium Channels . 352 8.1.3 Presynaptic Calcium Dynamics and Facilitation . 358 8.1.4 Neurotransmitter Kinetics . 364 8.1.5 The Postsynaptic Membrane Potential . 370 8.1.6 Agonist-Controlled Ion Channels . 371 8.1.7 Drugs and Toxins . 373 8.2 Gap Junctions . 373 8.2.1 Effective Diffusion Coefficients . 374 8.2.2 Homogenization . 376 8.2.3 Measurement of Permeabilities . 377 8.2.4 The Role of Gap-Junction Distribution . 377 8.3 Exercises . 383 9 Neuroendocrine Cells 385 9.1 Pancreatic Cells . 386 9.1.1 Bursting in the Pancreatic Cell . 386 9.1.2 ER Calcium as a Slow Controlling Variable . 392 9.1.3 Slow Bursting and Glycolysis . 399 9.1.4 Bursting in Clusters . 403 9.1.5 A Qualitative Bursting Model . 410 9.1.6 Bursting Oscillations in Other Cell Types . 412 9.2 Hypothalamic and Pituitary Cells . 419 9.2.1 The Gonadotroph . 419 9.3 Exercises . 424 10 Regulation of Cell Function 427 10.1 Regulation of Gene Expression . 428 10.1.1 The trp Repressor. 429 10.1.2 The lac Operon . 432 Table of Contents xxv 10.2 Circadian Clocks . 438 10.3 The Cell Cycle . 442 10.3.1 A Simple Generic Model . 445 10.3.2 Fission Yeast . 452 10.3.3 A Limit Cycle Oscillator in the Xenopus Oocyte . 461 10.3.4 Conclusion . 468 10.4 Exercises . 468 Appendix: Units and Physical Constants A-l References R-l Index 1-1
any_adam_object 1
any_adam_object_boolean 1
author Keener, James
Sneyd, James
author_facet Keener, James
Sneyd, James
author_role aut
aut
author_sort Keener, James
author_variant j k jk
j s js
building Verbundindex
bvnumber BV035086047
classification_rvk SK 950
ctrlnum (OCoLC)315711407
(DE-599)BVBBV035086047
dewey-full 571
dewey-hundreds 500 - Natural sciences and mathematics
dewey-ones 571 - Physiology & related subjects
dewey-raw 571
dewey-search 571
dewey-sort 3571
dewey-tens 570 - Biology
discipline Biologie
Mathematik
discipline_str_mv Biologie
Mathematik
edition 2. ed.
format Book
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01601nam a2200409 cc4500</leader><controlfield tag="001">BV035086047</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20220224 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">081007s2009 ad|| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780387793870</subfield><subfield code="c">geb.</subfield><subfield code="9">978-0-387-79387-0</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)315711407</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV035086047</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-703</subfield><subfield code="a">DE-91G</subfield><subfield code="a">DE-355</subfield><subfield code="a">DE-526</subfield><subfield code="a">DE-83</subfield><subfield code="a">DE-188</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-11</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">571</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 950</subfield><subfield code="0">(DE-625)143273:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">92C30</subfield><subfield code="2">msc</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Keener, James</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Mathematical physiology</subfield><subfield code="n">2</subfield><subfield code="p">Systems physiology</subfield><subfield code="c">James Keener ; James Sneyd</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">2. ed.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New York, NY</subfield><subfield code="b">Springer</subfield><subfield code="c">2009</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">Getr. Zählung</subfield><subfield code="b">Ill., graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Interdisciplinary applied mathematics</subfield><subfield code="v">8,2</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Mathematical biology</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Interdisciplinary applied mathematics</subfield><subfield code="v">...</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Mathematical biology</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sneyd, James</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="w">(DE-604)BV035086036</subfield><subfield code="g">2</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe</subfield><subfield code="z">978-0-387-79388-7</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Interdisciplinary applied mathematics</subfield><subfield code="v">8,2</subfield><subfield code="w">(DE-604)BV004216726</subfield><subfield code="9">8,2</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Bayreuth</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&amp;doc_library=BVB01&amp;local_base=BVB01&amp;doc_number=016754230&amp;sequence=000002&amp;line_number=0001&amp;func_code=DB_RECORDS&amp;service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-016754230</subfield></datafield></record></collection>
id DE-604.BV035086047
illustrated Illustrated
index_date 2024-07-02T22:08:57Z
indexdate 2024-11-25T17:26:05Z
institution BVB
isbn 9780387793870
language English
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-016754230
oclc_num 315711407
open_access_boolean
owner DE-703
DE-91G
DE-BY-TUM
DE-355
DE-BY-UBR
DE-526
DE-83
DE-188
DE-19
DE-BY-UBM
DE-11
owner_facet DE-703
DE-91G
DE-BY-TUM
DE-355
DE-BY-UBR
DE-526
DE-83
DE-188
DE-19
DE-BY-UBM
DE-11
physical Getr. Zählung Ill., graph. Darst.
publishDate 2009
publishDateSearch 2009
publishDateSort 2009
publisher Springer
record_format marc
series Interdisciplinary applied mathematics
series2 Interdisciplinary applied mathematics
Mathematical biology
spellingShingle Keener, James
Sneyd, James
Mathematical physiology
Interdisciplinary applied mathematics
title Mathematical physiology
title_auth Mathematical physiology
title_exact_search Mathematical physiology
title_exact_search_txtP Mathematical physiology
title_full Mathematical physiology 2 Systems physiology James Keener ; James Sneyd
title_fullStr Mathematical physiology 2 Systems physiology James Keener ; James Sneyd
title_full_unstemmed Mathematical physiology 2 Systems physiology James Keener ; James Sneyd
title_short Mathematical physiology
title_sort mathematical physiology systems physiology
url http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016754230&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA
volume_link (DE-604)BV035086036
(DE-604)BV004216726
work_keys_str_mv AT keenerjames mathematicalphysiology2
AT sneydjames mathematicalphysiology2