Boundary control of PDEs a course on backstepping designs

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Krstic, Miroslav 1964- (VerfasserIn), Smyshlyaev, Andrey (VerfasserIn)
Format: Buch
Sprache:English
Veröffentlicht: Philadelphia, PA Society for Industrial and Applied Mathematics 2008
Schriftenreihe:Advances in design and control 16
Schlagworte:
Online-Zugang:Inhaltsverzeichnis
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nam a2200000 cb4500
001 BV035069742
003 DE-604
005 20121001
007 t|
008 080925s2008 xxuad|| |||| 00||| eng d
010 |a 2008006666 
020 |a 9780898716504  |9 978-0-89871-650-4 
020 |a 0898716500  |9 0-89871-650-0 
035 |a (OCoLC)199456142 
035 |a (DE-599)BVBBV035069742 
040 |a DE-604  |b ger  |e aacr 
041 0 |a eng 
044 |a xxu  |c US 
049 |a DE-355  |a DE-29T  |a DE-91G  |a DE-703  |a DE-83  |a DE-11  |a DE-739 
050 0 |a QA402.3 
082 0 |a 515/.353 
084 |a SK 540  |0 (DE-625)143245:  |2 rvk 
084 |a MAT 354f  |2 stub 
084 |a MAT 496f  |2 stub 
084 |a 93C20  |2 msc 
084 |a MAT 916f  |2 stub 
084 |a MSR 660f  |2 stub 
100 1 |a Krstic, Miroslav  |d 1964-  |e Verfasser  |0 (DE-588)118153315  |4 aut 
245 1 0 |a Boundary control of PDEs  |b a course on backstepping designs  |c Miroslav Krstic ; Andrey Smyshlyaev 
264 1 |a Philadelphia, PA  |b Society for Industrial and Applied Mathematics  |c 2008 
300 |a X, 192 S.  |b Ill., graph. Darst.  |c 27 cm 
336 |b txt  |2 rdacontent 
337 |b n  |2 rdamedia 
338 |b nc  |2 rdacarrier 
490 1 |a Advances in design and control  |v 16 
500 |a Includes bibliographical references (p. 177-190) and index 
650 4 |a Problèmes aux limites 
650 4 |a Théorie de la commande - Mathématiques 
650 4 |a Équations aux dérivées partielles 
650 4 |a Control theory 
650 4 |a Boundary layer 
650 4 |a Differential equations, Partial 
650 0 7 |a Kontrolltheorie  |0 (DE-588)4032317-1  |2 gnd  |9 rswk-swf 
650 0 7 |a Partielle Differentialgleichung  |0 (DE-588)4044779-0  |2 gnd  |9 rswk-swf 
650 0 7 |a Nichtlineare Regelung  |0 (DE-588)4132964-8  |2 gnd  |9 rswk-swf 
650 0 7 |a Randwertproblem  |0 (DE-588)4048395-2  |2 gnd  |9 rswk-swf 
689 0 0 |a Partielle Differentialgleichung  |0 (DE-588)4044779-0  |D s 
689 0 1 |a Randwertproblem  |0 (DE-588)4048395-2  |D s 
689 0 2 |a Kontrolltheorie  |0 (DE-588)4032317-1  |D s 
689 0 3 |a Nichtlineare Regelung  |0 (DE-588)4132964-8  |D s 
689 0 |5 DE-604 
700 1 |a Smyshlyaev, Andrey  |e Verfasser  |4 aut 
830 0 |a Advances in design and control  |v 16  |w (DE-604)BV021715022  |9 16 
856 4 2 |m Digitalisierung UB Regensburg  |q application/pdf  |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016738139&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA  |3 Inhaltsverzeichnis 
943 1 |a oai:aleph.bib-bvb.de:BVB01-016738139 

Datensatz im Suchindex

DE-BY-TUM_call_number 0702 MAT 354f 2010 B 3159
DE-BY-TUM_katkey 1747582
DE-BY-TUM_location 07
DE-BY-TUM_media_number 040071271162
_version_ 1820877319851474944
adam_text Contents Preface Introduction 1 . 1 Boundary Control ............................ 1 .2 Backstepping ............................... 2 .3 A Short List of Existing Books on Control of PDEs .......... 2 .4 No Model Reduction in This Book ................... 3 .5 Control Objectives for PDE Systems .................. 3 .6 Classes of PDEs and Benchmark PDEs Dealt with in This Book .... 3 .7 Choices of Boundary Controls ...................... 4 .8 The Domain Dimension: 1 D, 2D, and 3D Problems .......... 5 .9 Observers ................................ 6 .10 Adaptive Control of PDEs ........................ 6 .11 Nonlinear PDEs ............................. 6 .12 Organization of the Book ........................ 6 .13 Why We Don t State Theorems ..................... 8 .14 Focus on Unstable PDEs and Feedback Design Difficulties ...... 9 .15 The Main Idea of Backstepping Control ................ 9 . 16 Emphasis on Problems in One Dimension ............... 11 .17 Unique to This Book: Elements of Adaptive and Nonlinear Designs for PDEs ................................. 11 1.18 How to Teach from This Book ...................... 11 Lyapunov Stability 13 2.1 A Basic PDE Model ........................... 14 2.2 Lyapunov Analysis for a Heat Equation in Terms oí ¿.τ Energy ... 16 2.3 Pointwise-in-Space Boundedness and Stability in Higher Norms ... 19 2.4 Notes and References .......................... 22 Exercises ..................................... 22 Exact Solutions to PDEs 23 3.1 Separation of Variables ......................... 23 3.2 Notes and References .......................... 27 Exercises ..................................... 27 v¡ Contents 4 Parabolic PDEs: Reaction-Advection-Diffusion and Other Equations 29 4.1 Backstepping: The Main Idea ...................... 30 4.2 Gain Kernel PDE ............................ 31 4.3 Converting the Gain Kernel PDE into an Integral Equation ...... 33 4.4 Method of Successive Approximations ................. 34 4.5 Inverse Transformation ......................... 35 4.6 Neumann Actuation ........................... 41 4.7 Reaction-Advection-Diffusion Equation ................ 42 4.8 Reaction-Advection-Diffusion Systems with Spatially Varying Coefficients ............................... 44 4.9 Other Spatially Causal Plants ...................... 46 4.10 Comparison with ODE Backstepping .................. 47 4.11 Notes and References .......................... 50 Exercises ..................................... 50 5 Observer Design 53 5.1 Observer Design for PDEs ........................ 53 5.2 Output Feedback ............................. 56 5.3 Observer Design for Collocated Sensor and Actuator .......... 57 5.4 Compensator Transfer Function ..................... 60 5.5 Notes and References .......................... 63 Exercises ..................................... 63 6 Complex-Valued PDEs: Schrödinger and Ginzburg-Landau Equations 65 6.1 Schrödinger Equation .......................... 65 6.2 Ginzburg-Landau Equation ....................... 67 6.3 Notes and References .......................... 75 Exercises ..................................... 76 7 Hyperbolic PDEs: Wave Equations 79 7.1 Classical Boundary Damping/Passive Absorber Control ........ 80 7.2 Backstepping Design: A String with One Free End and Actuation on the Other End .............................. 83 7.3 Wave Equation with Kelvin- Voigt Damping .............. 85 7.4 Notes and References .......................... 87 Exercises ..................................... 88 8 Beam Equations 89 8.1 Shear Beam ............................... 91 8.2 Euler-Bernoulli Beam .......................... 95 8.3 Notes and References .......................... 101 Exercises ..................................... 105 9 First-Order Hyperbolic PDEs and Delay Equations 109 9.1 First-Order Hyperbolic PDEs ...................... 109 9.2 ODE Systems with Actuator Delay ................... Ill 9.3 Notes and References .......................... 113 Exercises ........................ 114 Contents vii 10 Kuramoto-Sivashinsky, Korteweg-de Vries, and Other Exotic Equations 115 10.1 Kuramoto-Sivashinsky Equation .................... П6 10.2 Korteweg-de Vries Equation ......................117 10.3 Notes and References ..........................118 Exercises .....................................118 11 Navier-Stokes Equations 119 11.1 Channel Flow PDEs and Their Linearization .............. 119 11.2 From Physical Space to Wavenumber Space .............. 121 11.3 Control Design for Orr-Sommerfeld and Squire Subsystems ...... 122 11.4 Notes and References .......................... 127 Exercises ..................................... 128 12 Motion Planning for PDEs 131 12.1 Trajectory Generation .......................... 132 12.2 Trajectory Tracking ........................... 139 12.3 Notes and References .......................... 141 Exercises ..................................... 141 13 Adaptive Control for PDEs 145 13.1 State-Feedback Design with Passive ldentilier .............146 13.2 Output-Feedback Design with Swapping Identifier ...........151 13.3 Notes and References ..........................157 Exercises .....................................158 14 Towards Nonlinear PDEs 161 14.1 The Nonlinear Optimal Control Alternative ............... 162 14.2 Feedback Linearization for a Nonlinear PDE: Transformation in Two Stages .................................. 163 14.3 PDEs for the Kernels of the Spatial Volterra Series in the Nonlinear Feedback Operator ............................ 165 14.4 Numerical Results ............................ 167 14.5 What Class of Nonlinear PDEs Can This Approach Be Applied to in General? ................................. 167 14.6 Notes and References .......................... 170 Exercise ...................................... 171 Appendix Bessel Functions 173 A.I Bessel Function JH ............................173 A.2 Modified Bessel Function /„.......................174 Bibliography 177 Index 191
any_adam_object 1
author Krstic, Miroslav 1964-
Smyshlyaev, Andrey
author_GND (DE-588)118153315
author_facet Krstic, Miroslav 1964-
Smyshlyaev, Andrey
author_role aut
aut
author_sort Krstic, Miroslav 1964-
author_variant m k mk
a s as
building Verbundindex
bvnumber BV035069742
callnumber-first Q - Science
callnumber-label QA402
callnumber-raw QA402.3
callnumber-search QA402.3
callnumber-sort QA 3402.3
callnumber-subject QA - Mathematics
classification_rvk SK 540
classification_tum MAT 354f
MAT 496f
MAT 916f
MSR 660f
ctrlnum (OCoLC)199456142
(DE-599)BVBBV035069742
dewey-full 515/.353
dewey-hundreds 500 - Natural sciences and mathematics
dewey-ones 515 - Analysis
dewey-raw 515/.353
dewey-search 515/.353
dewey-sort 3515 3353
dewey-tens 510 - Mathematics
discipline Mathematik
Mess-/Steuerungs-/Regelungs-/Automatisierungstechnik / Mechatronik
format Book
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02535nam a2200625 cb4500</leader><controlfield tag="001">BV035069742</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20121001 </controlfield><controlfield tag="007">t|</controlfield><controlfield tag="008">080925s2008 xxuad|| |||| 00||| eng d</controlfield><datafield tag="010" ind1=" " ind2=" "><subfield code="a">2008006666</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780898716504</subfield><subfield code="9">978-0-89871-650-4</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0898716500</subfield><subfield code="9">0-89871-650-0</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)199456142</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV035069742</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">xxu</subfield><subfield code="c">US</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-355</subfield><subfield code="a">DE-29T</subfield><subfield code="a">DE-91G</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-83</subfield><subfield code="a">DE-11</subfield><subfield code="a">DE-739</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA402.3</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515/.353</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 540</subfield><subfield code="0">(DE-625)143245:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 354f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 496f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">93C20</subfield><subfield code="2">msc</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 916f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MSR 660f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Krstic, Miroslav</subfield><subfield code="d">1964-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)118153315</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Boundary control of PDEs</subfield><subfield code="b">a course on backstepping designs</subfield><subfield code="c">Miroslav Krstic ; Andrey Smyshlyaev</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Philadelphia, PA</subfield><subfield code="b">Society for Industrial and Applied Mathematics</subfield><subfield code="c">2008</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">X, 192 S.</subfield><subfield code="b">Ill., graph. Darst.</subfield><subfield code="c">27 cm</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Advances in design and control</subfield><subfield code="v">16</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references (p. 177-190) and index</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Problèmes aux limites</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Théorie de la commande - Mathématiques</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Équations aux dérivées partielles</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Control theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Boundary layer</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Differential equations, Partial</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Kontrolltheorie</subfield><subfield code="0">(DE-588)4032317-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Partielle Differentialgleichung</subfield><subfield code="0">(DE-588)4044779-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Nichtlineare Regelung</subfield><subfield code="0">(DE-588)4132964-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Randwertproblem</subfield><subfield code="0">(DE-588)4048395-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Partielle Differentialgleichung</subfield><subfield code="0">(DE-588)4044779-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Randwertproblem</subfield><subfield code="0">(DE-588)4048395-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Kontrolltheorie</subfield><subfield code="0">(DE-588)4032317-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="3"><subfield code="a">Nichtlineare Regelung</subfield><subfield code="0">(DE-588)4132964-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Smyshlyaev, Andrey</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Advances in design and control</subfield><subfield code="v">16</subfield><subfield code="w">(DE-604)BV021715022</subfield><subfield code="9">16</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Regensburg</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&amp;doc_library=BVB01&amp;local_base=BVB01&amp;doc_number=016738139&amp;sequence=000002&amp;line_number=0001&amp;func_code=DB_RECORDS&amp;service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-016738139</subfield></datafield></record></collection>
id DE-604.BV035069742
illustrated Illustrated
indexdate 2024-12-23T21:12:56Z
institution BVB
isbn 9780898716504
0898716500
language English
lccn 2008006666
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-016738139
oclc_num 199456142
open_access_boolean
owner DE-355
DE-BY-UBR
DE-29T
DE-91G
DE-BY-TUM
DE-703
DE-83
DE-11
DE-739
owner_facet DE-355
DE-BY-UBR
DE-29T
DE-91G
DE-BY-TUM
DE-703
DE-83
DE-11
DE-739
physical X, 192 S. Ill., graph. Darst. 27 cm
publishDate 2008
publishDateSearch 2008
publishDateSort 2008
publisher Society for Industrial and Applied Mathematics
record_format marc
series Advances in design and control
series2 Advances in design and control
spellingShingle Krstic, Miroslav 1964-
Smyshlyaev, Andrey
Boundary control of PDEs a course on backstepping designs
Advances in design and control
Problèmes aux limites
Théorie de la commande - Mathématiques
Équations aux dérivées partielles
Control theory
Boundary layer
Differential equations, Partial
Kontrolltheorie (DE-588)4032317-1 gnd
Partielle Differentialgleichung (DE-588)4044779-0 gnd
Nichtlineare Regelung (DE-588)4132964-8 gnd
Randwertproblem (DE-588)4048395-2 gnd
subject_GND (DE-588)4032317-1
(DE-588)4044779-0
(DE-588)4132964-8
(DE-588)4048395-2
title Boundary control of PDEs a course on backstepping designs
title_auth Boundary control of PDEs a course on backstepping designs
title_exact_search Boundary control of PDEs a course on backstepping designs
title_full Boundary control of PDEs a course on backstepping designs Miroslav Krstic ; Andrey Smyshlyaev
title_fullStr Boundary control of PDEs a course on backstepping designs Miroslav Krstic ; Andrey Smyshlyaev
title_full_unstemmed Boundary control of PDEs a course on backstepping designs Miroslav Krstic ; Andrey Smyshlyaev
title_short Boundary control of PDEs
title_sort boundary control of pdes a course on backstepping designs
title_sub a course on backstepping designs
topic Problèmes aux limites
Théorie de la commande - Mathématiques
Équations aux dérivées partielles
Control theory
Boundary layer
Differential equations, Partial
Kontrolltheorie (DE-588)4032317-1 gnd
Partielle Differentialgleichung (DE-588)4044779-0 gnd
Nichtlineare Regelung (DE-588)4132964-8 gnd
Randwertproblem (DE-588)4048395-2 gnd
topic_facet Problèmes aux limites
Théorie de la commande - Mathématiques
Équations aux dérivées partielles
Control theory
Boundary layer
Differential equations, Partial
Kontrolltheorie
Partielle Differentialgleichung
Nichtlineare Regelung
Randwertproblem
url http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016738139&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA
volume_link (DE-604)BV021715022
work_keys_str_mv AT krsticmiroslav boundarycontrolofpdesacourseonbacksteppingdesigns
AT smyshlyaevandrey boundarycontrolofpdesacourseonbacksteppingdesigns