Lectures on symplectic geometry

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Silva, Ana Cannas da 1968- (VerfasserIn)
Format: Buch
Sprache:English
Veröffentlicht: Berlin ; Heidelberg Springer 2008
Ausgabe:Corrected 2nd printing
Schriftenreihe:Lecture notes in mathematics 1764
Schlagworte:
Online-Zugang:Inhaltsverzeichnis
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nam a22000008cb4500
001 BV035057286
003 DE-604
005 20231124
007 t|
008 080917s2008 gw a||| |||| 00||| eng d
020 |a 9783540421955  |c print  |9 978-3-540-42195-5 
035 |a (OCoLC)244058705 
035 |a (DE-599)BVBBV035057286 
040 |a DE-604  |b ger  |e rda 
041 0 |a eng 
044 |a gw  |c DE 
049 |a DE-824  |a DE-29T  |a DE-355  |a DE-91G  |a DE-83  |a DE-11  |a DE-188  |a DE-19  |a DE-20 
082 0 |a 516.36  |2 22/ger 
084 |a SI 850  |0 (DE-625)143199:  |2 rvk 
084 |a SK 370  |0 (DE-625)143234:  |2 rvk 
084 |a 53Dxx  |2 msc/2000 
084 |a MAT 500f  |2 stub 
100 1 |a Silva, Ana Cannas da  |d 1968-  |0 (DE-588)122891333  |4 aut 
245 1 0 |a Lectures on symplectic geometry  |c Ana Cannas da Silva 
250 |a Corrected 2nd printing 
264 1 |a Berlin ; Heidelberg  |b Springer  |c 2008 
300 |a xiv, 247 Seiten  |b Illustrationen 
336 |b txt  |2 rdacontent 
337 |b n  |2 rdamedia 
338 |b nc  |2 rdacarrier 
490 1 |a Lecture notes in mathematics  |v 1764 
650 7 |a Symplectische ruimten  |2 gtt 
650 4 |a Symplectic geometry 
650 0 7 |a Symplektische Geometrie  |0 (DE-588)4194232-2  |2 gnd  |9 rswk-swf 
689 0 0 |a Symplektische Geometrie  |0 (DE-588)4194232-2  |D s 
689 0 |5 DE-604 
776 0 8 |i Erscheint auch als  |n Online-Ausgabe  |z 978-3-540-45330-7 
830 0 |a Lecture notes in mathematics  |v 1764  |w (DE-604)BV000676446  |9 1764 
856 4 2 |m Digitalisierung UB Regensburg  |q application/pdf  |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016725855&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA  |3 Inhaltsverzeichnis 
943 1 |a oai:aleph.bib-bvb.de:BVB01-016725855 

Datensatz im Suchindex

DE-19_call_number 1601/SI 850-1764(.008)
DE-19_location 95
DE-BY-TUM_call_number 0102 MAT 001z 2001 B 999
DE-BY-TUM_katkey 1694182
DE-BY-TUM_location 01
DE-BY-TUM_media_number 040010152159
DE-BY-UBM_katkey 4757989
DE-BY-UBM_media_number 41620570670014
_version_ 1823055230179213312
adam_text Contents Foreword .......................................................... v Introduction ....................................................... xiii Part I Symplectic Manifolds 1 Symplectic Forms .............................................. 3 1.1 Skew-Symmetric Bilinear Maps .............................. 3 1.2 Symplectic Vector Spaces .................................... 4 1.3 Symplectic Manifolds ....................................... 6 1.4 Symplectomorphisms ....................................... 7 Homework 1: Symplectic Linear Algebra ......................... 8 2 Symplectic Form on the Cotangent Bundle ........................ 9 2.1 Cotangent Bundle .......................................... 9 2.2 Tautological and Canonical Forms in Coordinates ............... 10 2.3 Coordinate-Free Definitions .................................. 10 2.4 Naturality of the Tautological and Canonical Forms .............. 11 Homework 2: Symplectic Volume ................................ 14 Part II Symplectomorphisms 3 Lagrangian Submanifolds ...................................: · ■ · 17 3.1 Submanifolds .............................................. 17 3.2 Lagrangian Submanifolds of T*X ............................. 18 3.3 Conormal Bundles .......................................... 19 3.4 Application to Symplectomorphisms .......................... 20 Homework 3: Tautological Form and Symplectomorphisms ......... 22 viii Contents 4 Generating Functions ........................................... 25 4.1 Constructing Symplectomorphisms ............................ 25 4.2 Method of Generating Functions .............................. 26 4.3 Application to Geodesic Flow ................................ 28 Homework 4: Geodesic Flow .................................... 30 5 Recurrence .................................................... 33 5.1 Periodic Points ............................................. 33 5.2 Billiards .................................................. 35 5.3 Poincaré Recurrence ........................................ 36 Partili Local Forms 6 Preparation for the Local Theory ................................ 41 6.1 Isotopies and Vector Fields ................................... 41 6.2 Tubular Neighborhood Theorem .............................. 43 6.3 Homotopy Formula ......................................... 45 Homework 5: Tubular Neighborhoods in Ш ....................... 47 7 Moser Theorems ............................................... 49 7.1 Notions of Equivalence for Symplectic Structures ............... 49 7.2 Moser Trick ............................................... 50 7.3 Moser Relative Theorem .................................... 52 8 Darboux-Moser- Weinstein Theory ............................... 55 8.1 Darboux Theorem .......................................... 55 8.2 Lagrangian Subspaces ....................................... 56 8.3 Weinstein Lagrangian Neighborhood Theorem .................. 57 Homework 6: Oriented Surfaces ................................. 60 9 Weinstein Tubular Neighborhood Theorem ....................... 61 9.1 Observation from Linear Algebra ............................. 61 9.2 Tubular Neighborhoods ..................................... 61 9.3 Application 1 : Tangent Space to the Group of Symplectomorphisms ............................... 63 9.4 Application 2: Fixed Points of Symplectomorphisms ............. 65 Part IV Contact Manifolds 10 Contact Forms ................................................. 69 10.1 Contact Structures .......................................... 69 10.2 Examples ................................................. 70 10.3 First Properties ............................................ 71 Homework 7: Manifolds of Contact Elements ..................... 73 Contents ix 11 Contact Dynamics.............................................. 75 11.1 Reeb Vector Fields ......................................... 75 11.2 Symplectization ............................................ 76 11.3 Conjectures of Seifert and Weinstein .......................... 77 Part V Compatible Almost Complex Structures 12 Almost Complex Structures ..................................... 83 12.1 Three Geometries .......................................... 83 12.2 Complex Structures on Vector Spaces .......................... 84 12.3 Compatible Structures ....................................... 86 Homework 8: Compatible Linear Structures ...................... 88 13 Compatible Triples ............................................. 89 13.1 Compatibility .............................................. 89 13.2 Triple of Structures ......................................... 90 13.3 First Consequences ......................................... 91 Homework 9: Contractibility .................................... 92 14 Dolbeault Theory .............................................. 93 14.1 Splittings ................................................. 93 14.2 Forms of Type (£,m) ........................................ 94 14.3 J-Holomorphic Functions .................................... 95 14.4 Dolbeault Cohomology ...................................... 96 Homework 10: Integrability ..................................... 98 Part VI Kahler Manifolds 15 Complex Manifolds ............................................101 15.1 Complex Charts ............................................101 15.2 Forms on Complex Manifolds ................................103 15.3 Differentials ...............................................104 Homework 11: Complex Projective Space .........................107 16 Kahler Forms ..................................................109 16.1 Kahler Forms ..............................................109 16.2 An Application ............................................111 16.3 Recipe to Obtain Kahler Forms ...............................112 16.4 Local Canonical Form for Kahler Forms .......................113 Homework 12: The Fubini-Study Structure .......................115 x Contents 17 Compact Kahler Manifolds .....................................117 17.1 Hodge Theory .............................................117 17.2 Immediate Topological Consequences .........................119 17.3 Compact Examples and Counterexamples ......................120 17.4 Main Kahler Manifolds ......................................122 Part VII Hamiltonian Mechanics 18 Hamiltonian Vector Fields ......................................127 18.1 Hamiltonian and Symplectic Vector Fields ......................127 18.2 Classical Mechanics ........................................129 18.3 Brackets ..................................................130 18.4 Integrable Systems .........................................131 Homework 13: Simple Pendulum ................................134 19 Variational Principles ...........................................135 19.1 Equations of Motion ........................................135 19.2 Principle of Least Action ....................................136 19.3 Variational Problems ........................................137 19.4 vSolving the Euler-Lagrange Equations .........................138 19.5 Minimizing Properties ......................................140 Homework 14: Minimizing Geodesies ............................141 20 Legendre Transform ............................................143 20.1 Strict Convexity ............................................143 20.2 Legendre Transform ........................................144 20.3 Application to Variational Problems ...........................145 Homework 15: Legendre Transform ..............................147 Part VIII Moment Maps 21 Actions .......................................................151 21.1 One-Parameter Groups of Diffeomorphisms ....................151 21.2 Lie Groups ................................................152 21.3 Smooth Actions ............................................152 21.4 Symplectic and Hamiltonian Actions ..........................153 21.5 Adjoint and Coadjoint Representations .........................154 Homework 16: Hermitian Matrices ..............................156 22 Hamiltonian Actions ...........................................157 22.1 Moment and Comoment Maps ................................157 22.2 Orbit Spaces ...............................................159 Contents xi 22.3 Preview of Reduction....................................... 160 22.4 Classical Examples .........................................161 Homework 17: Coadjoint Orbits .................................163 Part IX Symplectic Reduction 23 The Marsden- Weinstein-Meyer Theorem .........................167 23.1 Statement .................................................167 23.2 Ingredients ................................................168 23.3 Proof of the Marsden- Weinstein-Meyer Theorem ................171 24 Reduction .....................................................173 24.1 Noether Principle ...........................................173 24.2 Elementary Theory of Reduction ..............................173 24.3 Reduction for Product Groups ................................175 24.4 Reduction at Other Levels ...................................176 24.5 Orbifolds .................................................176 Homework 18: Spherical Pendulum ..............................178 Part X Moment Maps Revisited 25 Moment Map in Gauge Theory ..................................183 25.1 Connections on a Principal Bundle ............................183 25.2 Connection and Curvature Forms .............................184 25.3 Symplectic Structure on the Space of Connections ...............186 25.4 Action of the Gauge Group ..................................187 25.5 Case of Circle Bundles ......................................187 Homework 19: Examples of Moment Maps .......................191 26 Existence and Uniqueness of Moment Maps .......................193 26.1 Lie Algebras of Vector Fields ................................193 26.2 Lie Algebra Cohomology ....................................194 26.3 Existence of Moment Maps ..................................195 26.4 Uniqueness of Moment Maps ................................ Ì 96 Homework 20: Examples of Reduction ...........................198 27 Convexity .....................................................199 27.1 Convexity Theorem .........................................199 27.2 Effective Actions ...........................................201 27.3 Examples .................................................202 Homework 21: Connectedness ...................................204 xii Contents Part XI Symplectic Toric Manifolds 28 Classification of Symplectic Toric Manifolds .......................209 28.1 Delzant Polytopes ..........................................209 28.2 Delzant Theorem ...........................................211 28.3 Sketch of Delzant Construction ...............................212 29 Delzant Construction ...........................................215 29.1 Algebraic Set-Up ...........................................215 29.2 The Zero-Level ............................................216 29.3 Conclusion of the Delzant Construction ........................218 29.4 Idea Behind the Delzant Construction ..........................219 Homework 22: Delzant Theorem .................................221 30 Duistermaat-Heckman Theorems ................................223 30.1 Duistermaat-Heckman Polynomial ............................223 30.2 Local Form for Reduced Spaces ..............................225 30.3 Variation of the Symplectic Volume ...........................227 Homework 23: S -Equivariant Cohomology .......................229 References .........................................................233 Index ...................................... ........239
any_adam_object 1
author Silva, Ana Cannas da 1968-
author_GND (DE-588)122891333
author_facet Silva, Ana Cannas da 1968-
author_role aut
author_sort Silva, Ana Cannas da 1968-
author_variant a c d s acd acds
building Verbundindex
bvnumber BV035057286
classification_rvk SI 850
SK 370
classification_tum MAT 500f
ctrlnum (OCoLC)244058705
(DE-599)BVBBV035057286
dewey-full 516.36
dewey-hundreds 500 - Natural sciences and mathematics
dewey-ones 516 - Geometry
dewey-raw 516.36
dewey-search 516.36
dewey-sort 3516.36
dewey-tens 510 - Mathematics
discipline Mathematik
edition Corrected 2nd printing
format Book
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01750nam a22004458cb4500</leader><controlfield tag="001">BV035057286</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20231124 </controlfield><controlfield tag="007">t|</controlfield><controlfield tag="008">080917s2008 gw a||| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783540421955</subfield><subfield code="c">print</subfield><subfield code="9">978-3-540-42195-5</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)244058705</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV035057286</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">gw</subfield><subfield code="c">DE</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-824</subfield><subfield code="a">DE-29T</subfield><subfield code="a">DE-355</subfield><subfield code="a">DE-91G</subfield><subfield code="a">DE-83</subfield><subfield code="a">DE-11</subfield><subfield code="a">DE-188</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-20</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">516.36</subfield><subfield code="2">22/ger</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SI 850</subfield><subfield code="0">(DE-625)143199:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 370</subfield><subfield code="0">(DE-625)143234:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">53Dxx</subfield><subfield code="2">msc/2000</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 500f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Silva, Ana Cannas da</subfield><subfield code="d">1968-</subfield><subfield code="0">(DE-588)122891333</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Lectures on symplectic geometry</subfield><subfield code="c">Ana Cannas da Silva</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">Corrected 2nd printing</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin ; Heidelberg</subfield><subfield code="b">Springer</subfield><subfield code="c">2008</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">xiv, 247 Seiten</subfield><subfield code="b">Illustrationen</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Lecture notes in mathematics</subfield><subfield code="v">1764</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Symplectische ruimten</subfield><subfield code="2">gtt</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Symplectic geometry</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Symplektische Geometrie</subfield><subfield code="0">(DE-588)4194232-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Symplektische Geometrie</subfield><subfield code="0">(DE-588)4194232-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe</subfield><subfield code="z">978-3-540-45330-7</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Lecture notes in mathematics</subfield><subfield code="v">1764</subfield><subfield code="w">(DE-604)BV000676446</subfield><subfield code="9">1764</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Regensburg</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&amp;doc_library=BVB01&amp;local_base=BVB01&amp;doc_number=016725855&amp;sequence=000002&amp;line_number=0001&amp;func_code=DB_RECORDS&amp;service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-016725855</subfield></datafield></record></collection>
id DE-604.BV035057286
illustrated Illustrated
indexdate 2025-02-03T17:41:49Z
institution BVB
isbn 9783540421955
language English
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-016725855
oclc_num 244058705
open_access_boolean
owner DE-824
DE-29T
DE-355
DE-BY-UBR
DE-91G
DE-BY-TUM
DE-83
DE-11
DE-188
DE-19
DE-BY-UBM
DE-20
owner_facet DE-824
DE-29T
DE-355
DE-BY-UBR
DE-91G
DE-BY-TUM
DE-83
DE-11
DE-188
DE-19
DE-BY-UBM
DE-20
physical xiv, 247 Seiten Illustrationen
publishDate 2008
publishDateSearch 2008
publishDateSort 2008
publisher Springer
record_format marc
series Lecture notes in mathematics
series2 Lecture notes in mathematics
spellingShingle Silva, Ana Cannas da 1968-
Lectures on symplectic geometry
Lecture notes in mathematics
Symplectische ruimten gtt
Symplectic geometry
Symplektische Geometrie (DE-588)4194232-2 gnd
subject_GND (DE-588)4194232-2
title Lectures on symplectic geometry
title_auth Lectures on symplectic geometry
title_exact_search Lectures on symplectic geometry
title_full Lectures on symplectic geometry Ana Cannas da Silva
title_fullStr Lectures on symplectic geometry Ana Cannas da Silva
title_full_unstemmed Lectures on symplectic geometry Ana Cannas da Silva
title_short Lectures on symplectic geometry
title_sort lectures on symplectic geometry
topic Symplectische ruimten gtt
Symplectic geometry
Symplektische Geometrie (DE-588)4194232-2 gnd
topic_facet Symplectische ruimten
Symplectic geometry
Symplektische Geometrie
url http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016725855&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA
volume_link (DE-604)BV000676446
work_keys_str_mv AT silvaanacannasda lecturesonsymplecticgeometry