Integrable systems in celestial mechanics

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Ó Mathúna, Diarmuid (VerfasserIn)
Format: Buch
Sprache:German
Veröffentlicht: Boston u. a. Birkhäuser 2008
Schriftenreihe:Progress in mathematical physics 51
Schlagworte:
Online-Zugang:Inhaltsverzeichnis
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nam a2200000 cb4500
001 BV035055387
003 DE-604
005 20081023
007 t|
008 080916s2008 xx d||| |||| 00||| ger d
020 |a 9780817645953  |9 978-0-8176-4595-3 
035 |a (OCoLC)72655605 
035 |a (DE-599)BVBBV035055387 
040 |a DE-604  |b ger  |e rakwb 
041 0 |a ger 
049 |a DE-384 
050 0 |a QB351 
082 0 |a 521  |2 22 
084 |a SK 950  |0 (DE-625)143273:  |2 rvk 
084 |a US 1200  |0 (DE-625)146659:  |2 rvk 
100 1 |a Ó Mathúna, Diarmuid  |e Verfasser  |4 aut 
245 1 0 |a Integrable systems in celestial mechanics  |c Diarmuid Ó Mathúna 
264 1 |a Boston u. a.  |b Birkhäuser  |c 2008 
300 |a X, 234 S.  |b graph. Darst. 
336 |b txt  |2 rdacontent 
337 |b n  |2 rdamedia 
338 |b nc  |2 rdacarrier 
490 1 |a Progress in mathematical physics  |v 51 
650 4 |a Celestial mechanics 
650 4 |a Two-body problem 
650 0 7 |a Integrables System  |0 (DE-588)4114032-1  |2 gnd  |9 rswk-swf 
650 0 7 |a Himmelsmechanik  |0 (DE-588)4127484-2  |2 gnd  |9 rswk-swf 
689 0 0 |a Himmelsmechanik  |0 (DE-588)4127484-2  |D s 
689 0 1 |a Integrables System  |0 (DE-588)4114032-1  |D s 
689 0 |5 DE-604 
830 0 |a Progress in mathematical physics  |v 51  |w (DE-604)BV013823265  |9 51 
856 4 2 |m HBZ Datenaustausch  |q application/pdf  |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016723984&sequence=000004&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA  |3 Inhaltsverzeichnis 
943 1 |a oai:aleph.bib-bvb.de:BVB01-016723984 

Datensatz im Suchindex

_version_ 1819660689703174144
adam_text Titel: Integrable systems in celestial mechanics Autor: Ó Mathúna, Diarmuid Jahr: 2008 Contents Preface............................................................ ix 0 General Introduction............................................... 1 1 Lagrangian Mechanics..............................................21 1 Lagrangian Systems............................................... 21 2 Ignorable Coordinates............................................. 22 3 Separable Systems................................................. 24 4 Liouville Systems.................................................. 26 2 The Kepler Problem................................................29 1 Features of the Ellipse: Geometry and Analysis..................... 29 2 The Two-Body Problem............................................ 33 3 The Kepler Problem: Vectorial Treatment.......................... 35 4 The Kepler Problem: Lagrangian Analysis.......................... 41 3 The Euler Problem I — Planar Case................................. 49 1 The Gravitational Field of Two Fixed Centers: Planar Case.......... 49 2 The Lagrangian in Liouville Form: The Energy Integral.............. 51 3 The First Integrals in Liouville Coordinates ........................ 53 4 The First Integrals in Spheroidal Coordinates ...................... 54 5 Reduction of the Equations: The Regularizing Variable............. 56 6 Some Particular Cases............................................. 58 7 Analysis of the Generic Equation .................................. 62 8 The Equation for S = cosa: Specification of A...................... 65 9 The Equation for R................................................ 77 10 The Time-Angle Relation .......................................... 88 11 The Complementary Range........................................ 93 12 The Singular Case: C = 0........................................... 98 13 Summary of the Orbit Solutions ................................... 105 4 The Euler Problem II — Three-dimensional Case ....................113 1 The Gravitational Field of Two Fixed Centers: General Case ........ 113 2 The Ignorable Coordinate: Liouville s Form and the Energy Integral. 115 viii Contents 3 The First Integrals in Liouville Coordinates ........................ 118 4 The First Integrals in Spheroidal Coordinates...................... 119 5 Reduction of Equations: The Regularization........................ 120 6 Normalization of the Quarries..................................... 121 7 The cr-equation in the Case ß = 0.................................. 123 8 The R-equation.................................................... 125 9 The Integration of the Third (Longitude) Coordinate ............... 133 10 The Time-Angle Relation .......................................... 142 5 The Earth Satellite — General Analysis..............................143 1 The Geopotential and the Density Distribution..................... 143 2 The Vinti Potential ................................................ 147 3 The Vinti Dynamical Problem...................................... 150 4 The Integration of the Lagrangian Equations....................... 153 5 Reduction of the Equations; Regularization; Normalization......... 155 6 The a -Equation: Definition of A ................................... 157 7 The R-Equation.................................................... 159 8 The Integration of the cp-Coordinate............................... 172 9 The Time-Angle Relation .......................................... 182 6 The Earth Satellite — Some Special Orbits...........................193 1 Orbits in the Near Equatorial Band................................. 193 2 The Equatorial Orbit............................................... 196 3 The Polar Orbit.................................................... 199 4 The Critical Inclination.......................................... 205 Appendix: Calculation and Exhibition of Orbits; The Time-Angle Relation...........................................211 1 Orbits in Chapter 3................................................ 213 2 Orbits in Chapters 5 and 6......................................... 214 3 The Time-Angle Relation .......................................... 215 4 Orbits Derived from Given Initial Conditions in Chapter 3.......... 216 References............................................................227 Index.................................................................231
any_adam_object 1
author Ó Mathúna, Diarmuid
author_facet Ó Mathúna, Diarmuid
author_role aut
author_sort Ó Mathúna, Diarmuid
author_variant m d ó md mdó
building Verbundindex
bvnumber BV035055387
callnumber-first Q - Science
callnumber-label QB351
callnumber-raw QB351
callnumber-search QB351
callnumber-sort QB 3351
callnumber-subject QB - Astronomy
classification_rvk SK 950
US 1200
ctrlnum (OCoLC)72655605
(DE-599)BVBBV035055387
dewey-full 521
dewey-hundreds 500 - Natural sciences and mathematics
dewey-ones 521 - Celestial mechanics
dewey-raw 521
dewey-search 521
dewey-sort 3521
dewey-tens 520 - Astronomy and allied sciences
discipline Physik
Mathematik
format Book
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01582nam a2200421 cb4500</leader><controlfield tag="001">BV035055387</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20081023 </controlfield><controlfield tag="007">t|</controlfield><controlfield tag="008">080916s2008 xx d||| |||| 00||| ger d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780817645953</subfield><subfield code="9">978-0-8176-4595-3</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)72655605</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV035055387</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">ger</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QB351</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">521</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 950</subfield><subfield code="0">(DE-625)143273:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">US 1200</subfield><subfield code="0">(DE-625)146659:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Ó Mathúna, Diarmuid</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Integrable systems in celestial mechanics</subfield><subfield code="c">Diarmuid Ó Mathúna</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Boston u. a.</subfield><subfield code="b">Birkhäuser</subfield><subfield code="c">2008</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">X, 234 S.</subfield><subfield code="b">graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Progress in mathematical physics</subfield><subfield code="v">51</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Celestial mechanics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Two-body problem</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Integrables System</subfield><subfield code="0">(DE-588)4114032-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Himmelsmechanik</subfield><subfield code="0">(DE-588)4127484-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Himmelsmechanik</subfield><subfield code="0">(DE-588)4127484-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Integrables System</subfield><subfield code="0">(DE-588)4114032-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Progress in mathematical physics</subfield><subfield code="v">51</subfield><subfield code="w">(DE-604)BV013823265</subfield><subfield code="9">51</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HBZ Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&amp;doc_library=BVB01&amp;local_base=BVB01&amp;doc_number=016723984&amp;sequence=000004&amp;line_number=0001&amp;func_code=DB_RECORDS&amp;service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-016723984</subfield></datafield></record></collection>
id DE-604.BV035055387
illustrated Illustrated
indexdate 2024-12-23T21:12:37Z
institution BVB
isbn 9780817645953
language German
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-016723984
oclc_num 72655605
open_access_boolean
owner DE-384
owner_facet DE-384
physical X, 234 S. graph. Darst.
publishDate 2008
publishDateSearch 2008
publishDateSort 2008
publisher Birkhäuser
record_format marc
series Progress in mathematical physics
series2 Progress in mathematical physics
spellingShingle Ó Mathúna, Diarmuid
Integrable systems in celestial mechanics
Progress in mathematical physics
Celestial mechanics
Two-body problem
Integrables System (DE-588)4114032-1 gnd
Himmelsmechanik (DE-588)4127484-2 gnd
subject_GND (DE-588)4114032-1
(DE-588)4127484-2
title Integrable systems in celestial mechanics
title_auth Integrable systems in celestial mechanics
title_exact_search Integrable systems in celestial mechanics
title_full Integrable systems in celestial mechanics Diarmuid Ó Mathúna
title_fullStr Integrable systems in celestial mechanics Diarmuid Ó Mathúna
title_full_unstemmed Integrable systems in celestial mechanics Diarmuid Ó Mathúna
title_short Integrable systems in celestial mechanics
title_sort integrable systems in celestial mechanics
topic Celestial mechanics
Two-body problem
Integrables System (DE-588)4114032-1 gnd
Himmelsmechanik (DE-588)4127484-2 gnd
topic_facet Celestial mechanics
Two-body problem
Integrables System
Himmelsmechanik
url http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016723984&sequence=000004&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA
volume_link (DE-604)BV013823265
work_keys_str_mv AT omathunadiarmuid integrablesystemsincelestialmechanics