Group theoretical methods and applications to molecules and crystals

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Kim, Shoon K. (VerfasserIn)
Format: Buch
Sprache:English
Veröffentlicht: Cambridge [u.a.] Cambridge Univ. Press [2005]
Ausgabe:paperback ed.
Schlagworte:
Online-Zugang:Inhaltsverzeichnis
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nam a2200000 c 4500
001 BV035000216
003 DE-604
005 20080916
007 t|
008 080812s2005 xx d||| |||| 00||| eng d
020 |a 0521640628  |9 0-521-64062-8 
020 |a 9780521020381  |9 978-0-521-02038-1 
035 |a (OCoLC)903504263 
035 |a (DE-599)BVBBV035000216 
040 |a DE-604  |b ger  |e rakddb 
041 0 |a eng 
049 |a DE-355 
084 |a UQ 1350  |0 (DE-625)146479:  |2 rvk 
100 1 |a Kim, Shoon K.  |e Verfasser  |4 aut 
245 1 0 |a Group theoretical methods and applications to molecules and crystals  |c Shoon K. Kim 
250 |a paperback ed. 
264 1 |a Cambridge [u.a.]  |b Cambridge Univ. Press  |c [2005] 
300 |a XVI, 492 S.  |b graph. Darst. 
336 |b txt  |2 rdacontent 
337 |b n  |2 rdamedia 
338 |b nc  |2 rdacarrier 
650 0 7 |a Kristallmathematik  |0 (DE-588)4125615-3  |2 gnd  |9 rswk-swf 
650 0 7 |a Gruppentheorie  |0 (DE-588)4072157-7  |2 gnd  |9 rswk-swf 
689 0 0 |a Kristallmathematik  |0 (DE-588)4125615-3  |D s 
689 0 1 |a Gruppentheorie  |0 (DE-588)4072157-7  |D s 
689 0 |5 DE-604 
856 4 2 |m Digitalisierung UB Regensburg  |q application/pdf  |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016669625&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA  |3 Inhaltsverzeichnis 
943 1 |a oai:aleph.bib-bvb.de:BVB01-016669625 

Datensatz im Suchindex

_version_ 1819623546649837568
adam_text Contents Preface page xv List of symbols xvii 1 Linear transformations 1.1 Vectors 1 1.2 Linear transformations and matrices 2 1.2.1 Functions of a matrix 5 1.2.2 Special matrices 6 1.2.3 Direct products of matrices 6 1.2.4 Direct sums of matrices 7 1.3 Similarity transformations 8 1.3.1 Functions of a matrix (revisited) 8 1.4 The characteristic equation of a matrix 9 1.4.1 Diagonalizability and projection operators 10 1.5 Unitary transformations and normal matrices 12 1.5.1 Examples of normal matrices 13 1.6 Exercises 14 2 The theory of matrix transformations 2.1 Involutional transformations 17 2.2 Application to the Dirac theory of the electron 20 2.2.1 The Dirac y-matrices 20 2.2.2 The Dirac plane waves 21 2.2.3 The symmetric Dirac plane waves 23 2.3 Intertwining matrices 24 2.3.1 Idempotent matrices 26 2.4 Matrix diagonalizations 27 2.5 Basic properties of the characteristic transformation matrices 30 2.6 Construction of a transformation matrix 31 2.7 Illustrative examples 34 3 Elements of abstract group theory 3.1 Group axioms 37 3.1.1 The criterion for a finite group 38 3.1.2 Examples of groups 38 3.2 Group generators for a finite group 40 3.2.1 Examples 42 3.3 Subgroups and coset decompositions 43 3.3.1 The criterion for subgroups 44 vi Contents 3.3.2 Lagrange s theorem 44 3.4 Conjugation and classes 45 3.4.1 Normalizers 45 3.4.2 The centralizer 46 3.4.3 The center 47 3.4.4 Classes 47 3.5 Isomorphism and homomorphism 48 3.5.1 Examples 49 3.5.2 Factor groups 50 3.6 Direct products and semidirect products 51 4 Unitary and orthogonal groups 4.1 The unitary group U(n) 53 4.1.1 Basic properties 53 4.1.2 The exponential form 54 4.2 The orthogonal group O{n, c) 55 4.2.1 Basic properties 55 4.2.2 Improper rotation 56 4.2.3 The real orthogonal group O(n, r) 57 4.2.4 Real exponential form 58 4.3 The rotation group in three dimensions 0(3, r) 58 4.3.1 Basic properties of rotation 58 4.3.2 The conjugate rotations 62 4.3.3 The Euler angles 63 5 The point groups of finite order 5.1 Introduction 66 5.1.1 The uniaxial group Cn 67 5.1.2 Multiaxial groups. The equivalence set of axes and axis-vectors 67 5.1.3 Notations and the multiplication law for point operations 68 5.2 The dihedral group Dn 73 5.3 Proper polyhedral groups Po 75 5.3.1 Proper cubic groups, Tand O 77 5.3.2 Presentations of polyhedral groups 79 5.3.3 Subgroups of proper point groups 82 5.3.4 Theorems on the axis-vectors of proper point groups 83 5.4 The Wyle theorem on proper point groups 85 5.5 Improper point groups 86 5.5.1 General discussion 86 5.5.2 Presentations of improper point groups 88 5.5.3 Subgroups of point groups of finite order 90 5.6 The angular distribution of the axis-vectors of rotation for regular polyhedral groups 91 5.6.1 General discussion 91 5.6.2 Icosahedral group Y 93 5.6.3 Buckminsterfullerene C6o (buckyball) 97 5.7 Coset enumeration 98 Contents vii 6 Theory of group representations 6.1 Hubert spaces and linear operators 102 6.1.1 Hubert spaces 102 6.1.2 Linear operators 103 6.1.3 The matrix representative of an operator 105 6.2 Matrix representations of a group 107 6.2.1 Homomorphism conditions 107 6.2.2 The regular representation 109 6.2.3 Irreducible representations 110 6.3 The basis of a group representation 112 6.3.1 The carrier space of a representation 112 6.3.2 The natural basis of a matrix group 114 6.4 Transformation of functions and operators 115 6.4.1 General discussion 115 6.4.2 The group of transformation operators 117 6.4.3 Transformation of operators under G = {R} 1 19 6.5 Schur s lemma and the orthogonality theorems on irreducible representations 120 6.6 The theory of characters 125 6.6.1 Orthogonality relations 125 6.6.2 Frequencies and irreducibility criteria 126 6.6.3 Group functions 127 6.7 Irreducible representations of point groups 128 6.7.1 The group Cn 129 6.7.2 The group Dn 129 6.7.3 The group Γ 131 6.7.4 The group О 133 6.7.5 The improper point groups 135 6.8 Properties of irreducible bases 135 6.8.1 The orthogonality of basis functions 135 6.8.2 Application to perturbation theory 136 6.9 Symmetry-adapted functions 138 6.9.1 Generating operators 138 6.9.2 The projection operators 141 6.10 Selection rules 144 7 Construction of symmetry-adapted linear combinations based on the correspondence theorem 7.1 Introduction 149 7.2 The basic development 150 7.2.1 Equivalent point space S(n) 150 7.2.2 The correspondence theorem on basis functions 152 7.2.3 Mathematical properties of bases on S(n) 153 7.2.4 Illustrative examples of the SALCs of equivalent scalars 155 7.3 SALCs of equivalent orbitais in general 158 7.3.1 The general expression of SALCs 158 7.3.2 Two-point bases and operator bases 160 7.3.3 Notations for equivalent orbitais 161 viii Contents 7.3.4 Alternative elementary bases 161 7.3.5 Illustrative examples 162 7.4 The general classification of S ALCs 166 7.4.1 U^Ã) SALCs from the equivalent orbitais Є ІЇА) X A^ 167 7.5 Hybrid atomic orbitais 170 7.5.1 The σ -bonding hybrid AOs 171 7.5.2 General hybrid AOs 173 7.6 Symmetry coordinates of molecular vibration based on the correspon¬ dence theorem 174 7.6.1 External symmetry coordinates of vibration 175 7.6.2 Internal vibrational coordinates 177 7.6.3 Illustrative examples 179 8 Subduced and induced representations 8.1 Subduced representations 188 8.2 Induced representations 189 8.2.1 Transitivity of induction 191 8.2.2 Characters of induced representations 191 8.2.3 The irreducibility condition for induced representations 191 8.3 Induced representations from the irreps of anormal subgroup 193 8.3.1 Conjugate representations 193 8.3.2 Little groups and orbits 194 8.3.3 Examples 195 8.4 Irreps of a solvable group by induction 197 8.4.1 Solvable groups 197 8.4.2 Induced representations for a solvable group 198 8.4.3 Case I (reducible) 199 8.4.4 Case II (irreducible) 201 8.4.5 Examples 202 8.5 General theorems on induced and subduced representations and construction of unirreps via small representations 203 8.5.1 Induction and subduction 203 8.5.2 Small representations of a little group 205 8.5.3 Induced representations from small representations 206 9 Elements of continuous groups 9.1 Introduction 209 9.1.1 Mixed continuous groups 210 9.2 The Hurwitz integral 211 9.2.1 Orthogonality relations 215 9.3 Group generators and Lie algebra 215 9.4 The connectedness of a continuous group and the multivalued representations 219 10 The representations of the rotation group 10.1 The structure of SU(2) 224 10.1.1 The generators of Щ2) 224 10.1.2 The parameter space Q ofSU(2) 226 Contents ix 10.1.3 Spinors 228 10.1.4 Quaternions 228 10.2 The homomorphism between Щ2) and SO(3, r) 229 10.3 Unirreps W e) of the rotation group 232 10.3.1 The homogeneity of ľP](S) 233 10.3.2 Theumtarityofű^S) 234 10.3.3 TheirreducibilityofD^ÍÖ) 234 10.3.4 The completeness of the unirreps {£^(0); j = OĄ,l,...} 235 10.3.5 Orthogonality relations of 1УЈ)(в) 235 10.3.6 The Hurwitz density function for St/(2) 236 10.4 The generalized spinors and the angular momentum eigenfunctions 237 10.4.1 The generalized spinors 237 10.4.2 The transformation of the total angular momentum eigenfunc¬ tions under the general rotation Uj 238 10.4.3 The vector addition model 240 10.4.4 The Ciebsch-Gordan coefficients 241 10.4.5 The angular momentum eigenfunctions for one electron 245 11 Single- and double-valued representations of point groups 11.1 The double-valued representations of point groups expressed by the projective representations 247 11.1.1 The projective set of a point group 247 11.1.2 The orthogonality relations for projective unirreps 248 11.2 The structures of double point groups 250 11.2.1 Defining relations of double point groups 250 11.2.2 The structure of the double dihedral group D „ 251 11.2.3 The structure of the double octahedral group O 253 11.3 The unirreps of double point groups expressed by the projective unirreps of point groups 257 11.3.1 The uniaxial group Oc 257 11.3.2 The group Cn 258 11.3.3 The group A« 258 11.3.4 The group £)„ 260 11.3.5 The group О 261 11.3.6 The tetrahedral group T 263 12 Projective representations 12.1 Basic concepts 266 12.2 Projective equivalence 268 12.2.1 Standard factor systems 269 12.2.2 Normalized factor systems 270 12.2.3 Groups of factor systems and multiplicators 271 12.2.4 Examples of projective representations 272 12.3 The orthogonality theorem on projective irreps 274 12.4 Covering groups and representation groups 276 12.4.1 Covering groups 276 12.4.2 Representation groups 278 χ Contents 12.5 Representation groups of double point groups 279 12.5.1 Representation groups of double proper point groups P 279 12.5.2 Representation groups of double rotation-inversion groups P i 281 12.6 Projective unirreps of double rotation-inversion point groups P 283 12.6.1 The projective unirreps of Сѓгј 285 12.6.2 The projective unirreps of D n¡ 286 12.6.3 The projective unirreps of O 287 13 The 230 space groups 13.1 The Euclidean group in three dimensions EPi 289 13.2 Introduction to space groups 293 13.3 The general structure of Bravais lattices 295 13.3.1 Primitive bases 295 13.3.2 The projection operators for a Bravais lattice 298 13.3.3 Algebraic expressions for the Bravais lattices 299 13.4 The 14 Bravais lattice types 302 13.4.1 The hexagonal system H (D6¡) 302 13.4.2 The tetragonal system Q (D4i) 303 13.4.3 The rhombohedral system RH (Ą,) 306 13.4.4 The orthorhombic system O (Ą,) 307 13.4.5 The cubic system С (О;) 308 13.4.6 The monoclinic system M (Сг;) 309 13.4.7 The triclinic system T (Q) 311 13.4.8 Remarks 311 13.5 The 32 crystal classes and the lattice types 313 13.6 The 32 minimal general generator sets for the 230 space groups 315 13.6.1 Introduction 315 13.6.2 The space groups of the class £>4 316 13.7 Equivalence criteria for space groups 318 13.8 Notations and defining relations 321 13.8.1 Notations 321 13.8.2 Defining relations of the crystal classes 322 13.9 The space groups of the cubic system 323 13.9.1 The class T 326 13.9.2 The class T¡ (=Гћ) 327 13.9.3 The class О 329 13.9.4 The class Tp (=Td) 330 13.9.5 The class Q (=( ) 331 13.10 The space groups of the rhombohedral system 332 13.10.1 The class C3 333 13.10.2 The class C3i 333 13.10.3 The class Ą 333 13.10.4 The class C3v 334 13.10.5 The class Ą, (=DM) 335 13.11 The hierarchy of space groups in a crystal system 336 13.11.1 The cubic system 337 13.11.2 The hexagonal system 337 Contents xi 13.11.3 The rhombohedral system 337 13.11.4 The tetragonal system 338 13.12 Concluding remarks 338 14 Representations of the space groups 14.1 The unirreps of translation groups 340 14.2 The reciprocal lattices 342 14.2.1 General discussion 342 14.2.2 Reciprocal lattices of the cubic system 344 14.2.3 The Miller indices 345 14.2.4 The density of lattice points on a plane 346 14.3 Brillouin zones 347 14.3.1 General construction of Brillouin zones 347 14.3.2 The wave vector point groups 348 14.3.3 The Brillouin zones of the cubic system 349 14.4 The small representations of wave vector space groups 352 14.4.1 The wave vector space groups Gk 352 14.4.2 Small representations of Gk via the projective representations ofGi 354 14.4.3 Examples of the small representations of Gk 356 14.5 The unirreps of the space groups 358 14.5.1 The irreducible star 359 14.5.2 A summary of the induced representation of the space groups 360 15 Applications of unirreps of space groups to energy bands and vibrational modes of crystals 15.1 Energy bands and the eigenmnctions of an electron in a crystal 362 15.2 Energy bands and the eigeníunctions for the free-electron model in a crystal 365 15.2.1 The notations for a small representation of Gk 368 15.2.2 Example 1. A simple cubic lattice 368 15.2.3 Example 2. The diamond crystal 371 15.3 Symmetry coordinates of vibration of a crystal 377 15.3.1 General discussion 3 77 15.3.2 The small representations of the wave vector groups Gk based on the equivalent Bloch functions 379 15.4 The symmetry coordinates of vibration for the diamond crystal 382 15.4.1 General discussion 382 15.4.2 Construction of the symmetry coordinates of vibration 385 16 Time reversal, anti-unitary point groups and their co-representations 16.1 Time-reversal symmetry, classical 391 16.1.1 General introduction 391 16.1.2 The time correlation function 393 1 6.1.3 Onsager s reciprocity relation for transport coefficients 394 xii Contents 16.2 Time-reversal symmetry, quantum mechanical 396 16.2.1 General introduction 396 16.2.2 The properties of the time-reversal operator 0 400 16.2.3 The time-reversal symmetry of matrix elements of a physical quantity 401 16.3 Anti-unitary point groups 403 16.3.1 General discussion 403 16.3.2 The classification of ferromagnetics and ferroelectrics 407 16.4 The co-representations of anti-unitary point groups 409 16.4.1 General discussion 409 16.4.2 Three types of co-unirreps 410 16.5 Construction of the co-unirreps of anti-unitary point groups 413 16.5.1 G 414 16.5.2 Q, C andC* 415 16.5.3 DenanáDl 417 16.5.4 The cubic groups 418 16.6 Complex conjugate representations 419 16.7 The orthogonality theorem on the co-unirreps 422 16.8 Orthogonality relations for the characters, the irreducibility condition and the type criteria for co-unirreps 424 16.8.1 Orthogonality relations for the characters of co-unirreps 424 16.8.2 Irreducibility criteria for co-unirreps 424 16.8.3 The type criterion for a co-unirrep 425 17 Anti-unitary space groups and their co-representations 17.1 Introduction 428 17.2 Anti-unitary space groups of the first kind 430 17.2.1 The cubic system 432 17.2.2 The hexagonal system 433 17.2.3 The rhombohedral system 433 17.2.4 The tetragonal system 433 17.2.5 The orthorhombic system 433 17.2.6 The monoclinic system 435 17.2.7 The triclinic system 435 17.3 Anti-unitary space groups of the second kind 438 17.3.1 Illustrative examples 441 17.3.2 Concluding remarks 441 17.4 The type criteria for the co-unirreps of anti-unitary space groups and anti-unitary wave vector groups 442 17.5 The representation groups of anti-unitary point groups 445 17.6 The projective co-unirreps of anti-unitary point groups 450 17.6.1 Examples for the construction of the projective co-unirreps of H 458 17.7 The co-unirreps of anti-unitary wave vector space groups 460 17.7.1 Concluding remarks 463 17.8 Selection rules under an anti-unitary group 464 17.8.1 General discussion 464 Contents xiii 17.8.2 Transitions between states belonging to different co-unirreps 465 17.8.3 Transitions between states belonging to the same co-unirrep 467 17.8.4 Selection rules under a gray point group 470 Appendix. Character tables for the crystal point groups 472 References 483 Index 487
any_adam_object 1
author Kim, Shoon K.
author_facet Kim, Shoon K.
author_role aut
author_sort Kim, Shoon K.
author_variant s k k sk skk
building Verbundindex
bvnumber BV035000216
classification_rvk UQ 1350
ctrlnum (OCoLC)903504263
(DE-599)BVBBV035000216
discipline Physik
edition paperback ed.
format Book
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01403nam a2200361 c 4500</leader><controlfield tag="001">BV035000216</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20080916 </controlfield><controlfield tag="007">t|</controlfield><controlfield tag="008">080812s2005 xx d||| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0521640628</subfield><subfield code="9">0-521-64062-8</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780521020381</subfield><subfield code="9">978-0-521-02038-1</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)903504263</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV035000216</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-355</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UQ 1350</subfield><subfield code="0">(DE-625)146479:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Kim, Shoon K.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Group theoretical methods and applications to molecules and crystals</subfield><subfield code="c">Shoon K. Kim</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">paperback ed.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge [u.a.]</subfield><subfield code="b">Cambridge Univ. Press</subfield><subfield code="c">[2005]</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XVI, 492 S.</subfield><subfield code="b">graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Kristallmathematik</subfield><subfield code="0">(DE-588)4125615-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Gruppentheorie</subfield><subfield code="0">(DE-588)4072157-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Kristallmathematik</subfield><subfield code="0">(DE-588)4125615-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Gruppentheorie</subfield><subfield code="0">(DE-588)4072157-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Regensburg</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&amp;doc_library=BVB01&amp;local_base=BVB01&amp;doc_number=016669625&amp;sequence=000002&amp;line_number=0001&amp;func_code=DB_RECORDS&amp;service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-016669625</subfield></datafield></record></collection>
id DE-604.BV035000216
illustrated Illustrated
indexdate 2024-12-23T21:10:09Z
institution BVB
isbn 0521640628
9780521020381
language English
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-016669625
oclc_num 903504263
open_access_boolean
owner DE-355
DE-BY-UBR
owner_facet DE-355
DE-BY-UBR
physical XVI, 492 S. graph. Darst.
publishDate 2005
publishDateSearch 2005
publishDateSort 2005
publisher Cambridge Univ. Press
record_format marc
spellingShingle Kim, Shoon K.
Group theoretical methods and applications to molecules and crystals
Kristallmathematik (DE-588)4125615-3 gnd
Gruppentheorie (DE-588)4072157-7 gnd
subject_GND (DE-588)4125615-3
(DE-588)4072157-7
title Group theoretical methods and applications to molecules and crystals
title_auth Group theoretical methods and applications to molecules and crystals
title_exact_search Group theoretical methods and applications to molecules and crystals
title_full Group theoretical methods and applications to molecules and crystals Shoon K. Kim
title_fullStr Group theoretical methods and applications to molecules and crystals Shoon K. Kim
title_full_unstemmed Group theoretical methods and applications to molecules and crystals Shoon K. Kim
title_short Group theoretical methods and applications to molecules and crystals
title_sort group theoretical methods and applications to molecules and crystals
topic Kristallmathematik (DE-588)4125615-3 gnd
Gruppentheorie (DE-588)4072157-7 gnd
topic_facet Kristallmathematik
Gruppentheorie
url http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016669625&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA
work_keys_str_mv AT kimshoonk grouptheoreticalmethodsandapplicationstomoleculesandcrystals