Generalized harmonic analysis and Tauberian theorems
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Cambridge, Mass.
MIT Press
1966
|
Ausgabe: | 1. paperback ed. |
Schlagworte: | |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV027268915 | ||
003 | DE-604 | ||
005 | 20180410 | ||
007 | t| | ||
008 | 110326s1966 xx |||| 00||| eng d | ||
035 | |a (OCoLC)604230330 | ||
035 | |a (DE-599)BVBBV027268915 | ||
040 | |a DE-604 |b ger |e rakwb | ||
041 | 0 | |a eng | |
049 | |a DE-188 | ||
084 | |a SK 450 |0 (DE-625)143240: |2 rvk | ||
100 | 1 | |a Wiener, Norbert |d 1894-1964 |e Verfasser |0 (DE-588)118632558 |4 aut | |
245 | 1 | 0 | |a Generalized harmonic analysis and Tauberian theorems |c Norbert Wiener |
250 | |a 1. paperback ed. | ||
264 | 1 | |a Cambridge, Mass. |b MIT Press |c 1966 | |
300 | |a 242 S. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
650 | 0 | 7 | |a Harmonische Analyse |0 (DE-588)4023453-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Approximationstheorie |0 (DE-588)4120913-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Tauber-Sätze |g Zahlentheorie |0 (DE-588)4369582-6 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Harmonische Analyse |0 (DE-588)4023453-8 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Tauber-Sätze |g Zahlentheorie |0 (DE-588)4369582-6 |D s |
689 | 1 | |5 DE-604 | |
689 | 2 | 0 | |a Approximationstheorie |0 (DE-588)4120913-8 |D s |
689 | 2 | |5 DE-604 | |
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-021307689 |
Datensatz im Suchindex
_version_ | 1819279265267449856 |
---|---|
any_adam_object | |
author | Wiener, Norbert 1894-1964 |
author_GND | (DE-588)118632558 |
author_facet | Wiener, Norbert 1894-1964 |
author_role | aut |
author_sort | Wiener, Norbert 1894-1964 |
author_variant | n w nw |
building | Verbundindex |
bvnumber | BV027268915 |
classification_rvk | SK 450 |
ctrlnum | (OCoLC)604230330 (DE-599)BVBBV027268915 |
discipline | Mathematik |
edition | 1. paperback ed. |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01249nam a2200373 c 4500</leader><controlfield tag="001">BV027268915</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20180410 </controlfield><controlfield tag="007">t|</controlfield><controlfield tag="008">110326s1966 xx |||| 00||| eng d</controlfield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)604230330</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV027268915</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-188</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 450</subfield><subfield code="0">(DE-625)143240:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Wiener, Norbert</subfield><subfield code="d">1894-1964</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)118632558</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Generalized harmonic analysis and Tauberian theorems</subfield><subfield code="c">Norbert Wiener</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">1. paperback ed.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge, Mass.</subfield><subfield code="b">MIT Press</subfield><subfield code="c">1966</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">242 S.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Harmonische Analyse</subfield><subfield code="0">(DE-588)4023453-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Approximationstheorie</subfield><subfield code="0">(DE-588)4120913-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Tauber-Sätze</subfield><subfield code="g">Zahlentheorie</subfield><subfield code="0">(DE-588)4369582-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Harmonische Analyse</subfield><subfield code="0">(DE-588)4023453-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Tauber-Sätze</subfield><subfield code="g">Zahlentheorie</subfield><subfield code="0">(DE-588)4369582-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Approximationstheorie</subfield><subfield code="0">(DE-588)4120913-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-021307689</subfield></datafield></record></collection> |
id | DE-604.BV027268915 |
illustrated | Not Illustrated |
indexdate | 2024-12-24T00:25:05Z |
institution | BVB |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-021307689 |
oclc_num | 604230330 |
open_access_boolean | |
owner | DE-188 |
owner_facet | DE-188 |
physical | 242 S. |
publishDate | 1966 |
publishDateSearch | 1966 |
publishDateSort | 1966 |
publisher | MIT Press |
record_format | marc |
spelling | Wiener, Norbert 1894-1964 Verfasser (DE-588)118632558 aut Generalized harmonic analysis and Tauberian theorems Norbert Wiener 1. paperback ed. Cambridge, Mass. MIT Press 1966 242 S. txt rdacontent n rdamedia nc rdacarrier Harmonische Analyse (DE-588)4023453-8 gnd rswk-swf Approximationstheorie (DE-588)4120913-8 gnd rswk-swf Tauber-Sätze Zahlentheorie (DE-588)4369582-6 gnd rswk-swf Harmonische Analyse (DE-588)4023453-8 s DE-604 Tauber-Sätze Zahlentheorie (DE-588)4369582-6 s Approximationstheorie (DE-588)4120913-8 s |
spellingShingle | Wiener, Norbert 1894-1964 Generalized harmonic analysis and Tauberian theorems Harmonische Analyse (DE-588)4023453-8 gnd Approximationstheorie (DE-588)4120913-8 gnd Tauber-Sätze Zahlentheorie (DE-588)4369582-6 gnd |
subject_GND | (DE-588)4023453-8 (DE-588)4120913-8 (DE-588)4369582-6 |
title | Generalized harmonic analysis and Tauberian theorems |
title_auth | Generalized harmonic analysis and Tauberian theorems |
title_exact_search | Generalized harmonic analysis and Tauberian theorems |
title_full | Generalized harmonic analysis and Tauberian theorems Norbert Wiener |
title_fullStr | Generalized harmonic analysis and Tauberian theorems Norbert Wiener |
title_full_unstemmed | Generalized harmonic analysis and Tauberian theorems Norbert Wiener |
title_short | Generalized harmonic analysis and Tauberian theorems |
title_sort | generalized harmonic analysis and tauberian theorems |
topic | Harmonische Analyse (DE-588)4023453-8 gnd Approximationstheorie (DE-588)4120913-8 gnd Tauber-Sätze Zahlentheorie (DE-588)4369582-6 gnd |
topic_facet | Harmonische Analyse Approximationstheorie Tauber-Sätze Zahlentheorie |
work_keys_str_mv | AT wienernorbert generalizedharmonicanalysisandtauberiantheorems |