Tensors in mechanics and elasticity

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Brillouin, Léon (VerfasserIn)
Format: Buch
Sprache:English
Veröffentlicht: New York, NY [u.a.] Acad. Press 1966
Ausgabe:2. print.
Schriftenreihe:Engineering physics 2
Schlagworte:
Online-Zugang:Inhaltsverzeichnis
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nam a2200000 cb4500
001 BV026441862
003 DE-604
005 20130603
007 t|
008 110326s1966 xx d||| |||| 00||| eng d
035 |a (OCoLC)918500078 
035 |a (DE-599)BVBBV026441862 
040 |a DE-604  |b ger  |e rakwb 
041 0 |a eng 
049 |a DE-188 
084 |a UF 1000  |0 (DE-625)145552:  |2 rvk 
100 1 |a Brillouin, Léon  |e Verfasser  |4 aut 
240 1 0 |a Les tenseurs en mécanique et en elsticité 
245 1 0 |a Tensors in mechanics and elasticity  |c Leon Brillouin 
250 |a 2. print. 
264 1 |a New York, NY [u.a.]  |b Acad. Press  |c 1966 
300 |a XVIII, 478 S.  |b graph. Darst. 
336 |b txt  |2 rdacontent 
337 |b n  |2 rdamedia 
338 |b nc  |2 rdacarrier 
490 1 |a Engineering physics  |v 2 
650 0 7 |a Elastizitätstheorie  |0 (DE-588)4123124-7  |2 gnd  |9 rswk-swf 
650 0 7 |a Kontinuumsmechanik  |0 (DE-588)4032296-8  |2 gnd  |9 rswk-swf 
650 0 7 |a Tensor  |0 (DE-588)4184723-4  |2 gnd  |9 rswk-swf 
650 0 7 |a Elastizität  |0 (DE-588)4014159-7  |2 gnd  |9 rswk-swf 
650 0 7 |a Mechanik  |0 (DE-588)4038168-7  |2 gnd  |9 rswk-swf 
650 0 7 |a Tensorrechnung  |0 (DE-588)4192487-3  |2 gnd  |9 rswk-swf 
689 0 0 |a Tensorrechnung  |0 (DE-588)4192487-3  |D s 
689 0 1 |a Elastizitätstheorie  |0 (DE-588)4123124-7  |D s 
689 0 |8 1\p  |5 DE-604 
689 1 0 |a Tensor  |0 (DE-588)4184723-4  |D s 
689 1 1 |a Elastizität  |0 (DE-588)4014159-7  |D s 
689 1 |8 2\p  |5 DE-604 
689 2 0 |a Tensor  |0 (DE-588)4184723-4  |D s 
689 2 1 |a Mechanik  |0 (DE-588)4038168-7  |D s 
689 2 |8 3\p  |5 DE-604 
689 3 0 |a Tensorrechnung  |0 (DE-588)4192487-3  |D s 
689 3 1 |a Mechanik  |0 (DE-588)4038168-7  |D s 
689 3 |8 4\p  |5 DE-604 
689 4 0 |a Tensorrechnung  |0 (DE-588)4192487-3  |D s 
689 4 1 |a Kontinuumsmechanik  |0 (DE-588)4032296-8  |D s 
689 4 |8 5\p  |5 DE-604 
830 0 |a Engineering physics  |v 2  |w (DE-604)BV026472753  |9 2 
856 4 2 |m HEBIS Datenaustausch  |q application/pdf  |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=022012802&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA  |3 Inhaltsverzeichnis 
883 1 |8 1\p  |a cgwrk  |d 20201028  |q DE-101  |u https://d-nb.info/provenance/plan#cgwrk 
883 1 |8 2\p  |a cgwrk  |d 20201028  |q DE-101  |u https://d-nb.info/provenance/plan#cgwrk 
883 1 |8 3\p  |a cgwrk  |d 20201028  |q DE-101  |u https://d-nb.info/provenance/plan#cgwrk 
883 1 |8 4\p  |a cgwrk  |d 20201028  |q DE-101  |u https://d-nb.info/provenance/plan#cgwrk 
883 1 |8 5\p  |a cgwrk  |d 20201028  |q DE-101  |u https://d-nb.info/provenance/plan#cgwrk 
943 1 |a oai:aleph.bib-bvb.de:BVB01-022012802 

Datensatz im Suchindex

_version_ 1819761925080219648
adam_text Table of Conienfs Preface to First French Edition v Preface to English Translation vii Translator’s Preface ix General Works on Tensors xviili CHAPTER I — General Remarks and First Examples 1 1 Introduction 1 2 The Role of Tensors and Their Usefulness I 3 Some Examples of Tensors 3 4 The Stress Tensor in Elasticity 7 5 How the Stress Tensor Transforms under a Change of Cartesian Axes 10 6 Tensors of the Second Rank; Symmetry or Antisymmetry; Degeneracy 12 7 What Is a Matrix? 15 8 Different Reference Spaces; Affine Vector Space, Metric Space 17 9 Thermodynamic Diagrams as Examples of Affine Geometry 20 CHAPTER II — Vector Geometry, Definition of Tensors 25 1 Axioms of Vector Geometry 25 2 Transformations of Rectilinear Axes 27 3 Covariance and Contra variance; Rectilinear Axes 30 4 Summations and Dummy Indices 33 5 Co variant Vector and Linear Form; Dual Space 34 6 General Definition of a Tensor 36 7 Methods of Forming Tensors; Operations of Elementary Algebra 38 8 The Contracted Product; A Criterion for Tensor Character 40 9 Examples: Force, Momentum, Velocity 42 10 Distinction between Tensors and Matrices 43 xi TABLE OF CONTENTS xii 11 Curvilinear Coordinates 44 12 Symmetry and Antisymmetry 46 13 Examples of Antisymmetric Tensors Formed by Means of Vector Products Exterior Products 49 14 Remarks on the Use of Tensors of Definite Symmetry and the Rule of Section 8 51 CHAPTER III — Pseudo-Tensors in Vector Geometry; Tensor Densities and Capacities 53 1 Types of Pseudo-Tensors and Their Use 53 2 Reduction of Antisymmetric Tensors to Pseudo-Tensors of a Different Rank; the Pseudo-Scalar 54 3 Another Example of a Pseudo-Scalar; Scalar Densities and Capacities 56 4 Tensor Densities and Capacities 57 5 Examples of Pseudo-Tensors; the Volume Element Represents the Typical Scalar Capacity 58 6 The Antisymmetric Tensor with Two Indices in Three-Dimen- sional Space Reduces to a Pseudo-Tensor 60 7 Summary of General Results 63 8 These Pseudo-Tensors Yield Axial Vectors in a Three-Dimen- sional Euclidean Space 65 9 General Method of Forming Pseudo-Tensors of the Two Types, Capacities or Densities 66 10 Examples of These Transformations 69 CHAPTER IV — The Principal Differential Operators in Vector Geo- metry 71 1 Introduction 71 2 The Ordinary Definitions of the Operators: Gradient, Curl Divergence, Laplacian A 72 3 Nature of the Precautions to be Taken 75 4 Gradient and Curl 76 5 Geometric Meaning of the Curl in Three Dimensions 79 6 The Curl in an Arbitrary Number of Dimensions 82 7 The Divergence Operator 84 8 Algebraic Confirmation of the Role of the Divergence 86 TABLE OF CONTENTS xiii 9 The Divergence Applied to Tensor Densities of Rank Higher Than One 88 10 Examples of Divergences; Alternate Notation 89 CHAPTER V — Postulate of Parallel Displacement; Covariant Derivative in Affine Geometry 91 1 Method of H Weyl 91 2 Postulate of Parallel Displacement: Affine Relationship, Geodesic Coordinates 91 3 Covariant Derivative of a Contravariant or Covariant Vector 95 4 Covariant Derivative of an Arbitrary Tensor 98 5 Co variant Derivatives of Pseudo-Tensors 100 6 Remarks on the Divergences of Tensor Densities of Arbitrary Rank 102 7 Absolute Derivative of a Vector, Geodesic Lines 104 8 Displacement of a Quantity to a Finite Distance and Inte- grability Conditions 105 9 Finite Displacement of a Tensor, the Integrable Case 107 10 Displacement over a Closed Path of an Arbitrary Tensor or Pseudo-Tensor Ill 11 Geometric Meaning of These Equations: Curvature of Space 112 12 A Space of Null Curvature is Linear 115 CHAPTER VI — Metric Geometry, Riemann Space 117 1 Elementary Definitions 117 2 General Definition; Fundamental Metric Tensor 118 3 Simple Examples Curvilinear Coordinates in a Three-Dimen- sional Euclidean Space 121 4 Interpretation of the gik Their Geometric Meaning 125 5 Displacement of Indices; Covariant or Contravariant Components of the Same Vector or Tensor; Absolute Value; Scalar Product 128 6 Geometric Meaning of These Operations; Components of a Vector along the Coordinate Lines and Perpendicular Projection 131 7 The Tangent Euclidean Space; Reduction of the Table gik to Diagonal Form 133 8 How Does the Determinant g Transform under Changes of Axes ? 136 9 The Expressions g 112 and |g|-1/2 as Types of Scalar Densities and Capacities 137 XIV TABLE OF CONTENTS CHAPTER VII — Differential Operators and the Covariant Derivative in Metric Geometry 141 1 Extension of the Formulas of Chapter IV 141 2 The Laplacian A 142 3 Some Applications 144 4 Comparison of Ordinary Vector Notations and Tensor Notation; Essential Differences in the Definitions 145 5 The Problem of Displacement of Measuring Units; Gage Invariance 148 6 Covariant Derivative in Metric Geometry in Riemann Space Christoff el Symbols 150 7 The Covariant Derivatives of the gik and of the Determinant g Vanish; All Scalar Densities or Capacities Have Vanishing Co variant Derivatives 153 8 Geometric Results and Meaning of the Rules of Parallel Displace- ment; Geodesic Coordinates 156 9 Properties of Geodesics; Minimum Length 157 10 Examples 161 11 Curvature of a Riemann Space The Riemann-Christoffel Tensor 166 12 The Contracted Tensor of Ricci and Einstein and the Displace- ment of Pseudo-Tensors around a Closed Path 169 13 Bianchi’s Identities 171 14 Normal Coordinates of Riemann; A Space of Null Curvature Is Euclidean 173 15 Riemann Curvature; Mean Curvature of Ricci 175 CHAPTER VIII — The Application of Riemann Geometries to Analytical Mechanics 177 1 Usefulness of Riemann Geometry in Classical Mechanics 177 2 d’Alembert’s Principle 178 3 Lagrange’s Equations 181 4 The Case of Time-Independent Constraints 183 5 Geometric Interpretation 184 6 Time-Independent Constraints with Potential Energy; How to Reduce a Mechanical Problem to a Search for a Geodesic 188 7 Geodesics in “Space-Time”; Allusion to Relativistic Mechanics 191 8 Time-Dependent Holonomic Constraints or Moving Reference Systems 194 TABLE OF CONTENTS xv 9 Systems with Variable Constraints; Geometric Interpretation in Space-Time 197 10 Discussion and Examples 200 11 Lagrange’s Principle of Least Action 206 12 Conservative Systems with Time-Independent Holonomic Constraints 211 13 Analytical Mechanics Compared with Geometrical Optics Maupertuis’ Principle and Fermat’s Principle 215 14 Hamilton’s Equations, General Form 217 15 Hamilton’s Equations; Conservative Systems 222 16 Discussion and Examples 227 17 Some Consequences and Extensions of the Principle of Least Action 231 18 A Thermodynamic Analogy; Distinction between Heat and Mechanical Work 235 19 A Very Slow Transformation Leads to Boltzmann’s Formula 238 20 Adiabatic Transformation; Adiabatic Invariant of Ehrenfest 240 21 Radiation Pressure 243 CHAPTER IX — The Transition to Wave Mechanics 247 1 The Introduction of Quanta into Physics 247 2 Energy, Frequency and Mass 248 3 Frequency Assigned to Hamilton’s Waves; Wavelength and Momentum 250 4 Physical Optics and Geometrical Optics; Fermat’s Principle 253 5 Formation of a Wave Equation for Mechanics 258 6 General Method of Formation of the Wave Equation in Schrödinger’s Mechanics 261 7 Commutation Rules 264 8 Propagation of a Group of Waves; Phase Velocity and Group Velocity 265 9 Groups of Waves in Space 270 10 Wave Groups in Wave Mechanics 274 CHAPTER X — Elasticity 277 1 Tensors in Elasticity 277 2 Review of Some Definitions 278 xvi TABLE OF CONTENTS 3 Elastic Stresses 281 4 Resultant Force on a Volume Element 284 5 Study of Deformations in Cartesian Coordinates 287 6 Strains General Definition 292 7 Isotropic Body Invariants of the Strain 296 8 Definition of a Potential Energy Density for a Strained Solid 299 9 The Elastic Coefficients; Voigt’s Coefficients; Lame’s Notation The Cauchy Relations 304 10 Relation between the Stresses and Strains 310 11 The Solid Medium in Motion; Euler’s Coordinates 315 ,12 Example of the Study of a Body under an Initial Strain Role of an Initial Internal or External Pressure on the Elastic Properties 317 13 Equations of Motion in Lagrange’s Coordinates; Boussinesq’s Formulas 323 14 A General Minimum Principle 327 CHAPTER XI — Elastic Waves in Solids 1 Propagation of Elastic Waves in a Crystal 329 2 Proper Vibrations of a Rectangular Parallelepiped; Cyclic Conditions 335 3 Reflection of an Elastic Wave at a Plane Surface 342 4 Enumeration of the Proper Vibrations of a Finite Solid 347 5 Direct Study of Interference and Standing Waves from Reflec- tion at Plane Mirrors 352 6 Proper Vibrations of a Solid Enclosed in a Rectangular Parallel- epiped with Smooth Rigid Walls 358 7 Influence of Higher Order Terms and Perturbations in Wave Propagation 364 8 Examples of These Secondary Effects in Traveling Waves 367 9 The Case of Standing Waves 370 10 Radiation Pressure of Standing Waves 372 11 The Calculation of Radiation Pressure by the Boltzmann- Ehrenfest Formula 378 12 The Radiation Stress Tensor of a Traveling Wave 380 13 Examples of Applications of These Tensors 384 TABLE OF CONTENTS xvii 14 Mean Values for Completely Diffuse Elastic Waves 388 15 Elastic Waves in a Fluid; Liquids as a Special Case of Solids 393 16 Conditions for Measuring the Radiation Pressure at a Submerged Disk 398 17 What Can Be Said about the Elastic Coefficients A, B, C in the Second Approximation ? 401 CHAPTER XII — Quantum Theory of the Solid State 1 Introduction; Analysis of Thermal Motion of Solids 405 2 Interpretation of the Thermal Expansion of Solids 407 3 Vibrations of a String with a Discontinuous Structure; Cutoff Frequency 410 4 Various Possible Extensions Case of Vibrations of a Line of Atoms 414 5 Enumeration of Proper Vibrations Transition to the Two- Dimensional Lattice 419 6 Three-Dimensional Crystal Lattice; Its Proper Vibrations 422 7 Simplifying Hypotheses for an Isotropic Solid; Debye’s Method 427 8 The Quantum Theory of Thermal Motion in a Solid 431 9 Discussion; Comparison with Experiment 438 10 Radiation Pressure and Thermal Expansion of Solids 443 11 Comparisons with Experiment, Thermal Expansion 445 12 Thermodynamics of the Ideal Solid 448 13 Discussion and Review of Essential Points 452 14 Attempt to Extend the Theory to Liquids 456 Index
any_adam_object 1
author Brillouin, Léon
author_facet Brillouin, Léon
author_role aut
author_sort Brillouin, Léon
author_variant l b lb
building Verbundindex
bvnumber BV026441862
classification_rvk UF 1000
ctrlnum (OCoLC)918500078
(DE-599)BVBBV026441862
discipline Physik
edition 2. print.
format Book
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02626nam a2200625 cb4500</leader><controlfield tag="001">BV026441862</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20130603 </controlfield><controlfield tag="007">t|</controlfield><controlfield tag="008">110326s1966 xx d||| |||| 00||| eng d</controlfield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)918500078</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV026441862</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-188</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UF 1000</subfield><subfield code="0">(DE-625)145552:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Brillouin, Léon</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="240" ind1="1" ind2="0"><subfield code="a">Les tenseurs en mécanique et en elsticité</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Tensors in mechanics and elasticity</subfield><subfield code="c">Leon Brillouin</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">2. print.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New York, NY [u.a.]</subfield><subfield code="b">Acad. Press</subfield><subfield code="c">1966</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XVIII, 478 S.</subfield><subfield code="b">graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Engineering physics</subfield><subfield code="v">2</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Elastizitätstheorie</subfield><subfield code="0">(DE-588)4123124-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Kontinuumsmechanik</subfield><subfield code="0">(DE-588)4032296-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Tensor</subfield><subfield code="0">(DE-588)4184723-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Elastizität</subfield><subfield code="0">(DE-588)4014159-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mechanik</subfield><subfield code="0">(DE-588)4038168-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Tensorrechnung</subfield><subfield code="0">(DE-588)4192487-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Tensorrechnung</subfield><subfield code="0">(DE-588)4192487-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Elastizitätstheorie</subfield><subfield code="0">(DE-588)4123124-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Tensor</subfield><subfield code="0">(DE-588)4184723-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Elastizität</subfield><subfield code="0">(DE-588)4014159-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Tensor</subfield><subfield code="0">(DE-588)4184723-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2="1"><subfield code="a">Mechanik</subfield><subfield code="0">(DE-588)4038168-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="8">3\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="3" ind2="0"><subfield code="a">Tensorrechnung</subfield><subfield code="0">(DE-588)4192487-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="3" ind2="1"><subfield code="a">Mechanik</subfield><subfield code="0">(DE-588)4038168-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="3" ind2=" "><subfield code="8">4\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="4" ind2="0"><subfield code="a">Tensorrechnung</subfield><subfield code="0">(DE-588)4192487-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="4" ind2="1"><subfield code="a">Kontinuumsmechanik</subfield><subfield code="0">(DE-588)4032296-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="4" ind2=" "><subfield code="8">5\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Engineering physics</subfield><subfield code="v">2</subfield><subfield code="w">(DE-604)BV026472753</subfield><subfield code="9">2</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HEBIS Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&amp;doc_library=BVB01&amp;local_base=BVB01&amp;doc_number=022012802&amp;sequence=000001&amp;line_number=0001&amp;func_code=DB_RECORDS&amp;service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">3\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">4\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">5\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-022012802</subfield></datafield></record></collection>
id DE-604.BV026441862
illustrated Illustrated
indexdate 2024-12-24T00:47:09Z
institution BVB
language English
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-022012802
oclc_num 918500078
open_access_boolean
owner DE-188
owner_facet DE-188
physical XVIII, 478 S. graph. Darst.
publishDate 1966
publishDateSearch 1966
publishDateSort 1966
publisher Acad. Press
record_format marc
series Engineering physics
series2 Engineering physics
spellingShingle Brillouin, Léon
Tensors in mechanics and elasticity
Engineering physics
Elastizitätstheorie (DE-588)4123124-7 gnd
Kontinuumsmechanik (DE-588)4032296-8 gnd
Tensor (DE-588)4184723-4 gnd
Elastizität (DE-588)4014159-7 gnd
Mechanik (DE-588)4038168-7 gnd
Tensorrechnung (DE-588)4192487-3 gnd
subject_GND (DE-588)4123124-7
(DE-588)4032296-8
(DE-588)4184723-4
(DE-588)4014159-7
(DE-588)4038168-7
(DE-588)4192487-3
title Tensors in mechanics and elasticity
title_alt Les tenseurs en mécanique et en elsticité
title_auth Tensors in mechanics and elasticity
title_exact_search Tensors in mechanics and elasticity
title_full Tensors in mechanics and elasticity Leon Brillouin
title_fullStr Tensors in mechanics and elasticity Leon Brillouin
title_full_unstemmed Tensors in mechanics and elasticity Leon Brillouin
title_short Tensors in mechanics and elasticity
title_sort tensors in mechanics and elasticity
topic Elastizitätstheorie (DE-588)4123124-7 gnd
Kontinuumsmechanik (DE-588)4032296-8 gnd
Tensor (DE-588)4184723-4 gnd
Elastizität (DE-588)4014159-7 gnd
Mechanik (DE-588)4038168-7 gnd
Tensorrechnung (DE-588)4192487-3 gnd
topic_facet Elastizitätstheorie
Kontinuumsmechanik
Tensor
Elastizität
Mechanik
Tensorrechnung
url http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=022012802&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA
volume_link (DE-604)BV026472753
work_keys_str_mv AT brillouinleon lestenseursenmecaniqueetenelsticite
AT brillouinleon tensorsinmechanicsandelasticity