A modern approach to functional integration

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Klauder, John R. 1932- (VerfasserIn)
Format: Buch
Sprache:English
Veröffentlicht: New York [u.a.] Birkhäuser 2011
Schriftenreihe:Applied and numerical harmonic analysis
Schlagworte:
Online-Zugang:Inhaltstext
Inhaltsverzeichnis
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nam a2200000 c 4500
001 BV025603790
003 DE-604
005 20110728
007 t
008 100417s2011 d||| |||| 00||| eng d
016 7 |a 1000359522  |2 DE-101 
020 |a 9780817647902  |9 978-0-8176-4790-2 
020 |a 9780817647919  |c ebook  |9 978-0-8176-4791-9 
035 |a (OCoLC)705356664 
035 |a (DE-599)BVBBV025603790 
040 |a DE-604  |b ger  |e rakwb 
041 0 |a eng 
049 |a DE-11  |a DE-20  |a DE-384  |a DE-91G  |a DE-19  |a DE-188 
084 |a SK 430  |0 (DE-625)143239:  |2 rvk 
084 |a SK 620  |0 (DE-625)143249:  |2 rvk 
084 |a SK 820  |0 (DE-625)143258:  |2 rvk 
084 |a SK 920  |0 (DE-625)143272:  |2 rvk 
084 |a SK 950  |0 (DE-625)143273:  |2 rvk 
084 |a PHY 020f  |2 stub 
084 |a 510  |2 sdnb 
084 |a PHY 013f  |2 stub 
100 1 |a Klauder, John R.  |d 1932-  |e Verfasser  |0 (DE-588)136019986  |4 aut 
245 1 0 |a A modern approach to functional integration  |c John R. Klauder 
264 1 |a New York [u.a.]  |b Birkhäuser  |c 2011 
300 |a XV, 279 S.  |b graph. Darst. 
336 |b txt  |2 rdacontent 
337 |b n  |2 rdamedia 
338 |b nc  |2 rdacarrier 
490 0 |a Applied and numerical harmonic analysis 
650 0 7 |a Quantenphysik  |0 (DE-588)4266670-3  |2 gnd  |9 rswk-swf 
650 0 7 |a Integration  |g Mathematik  |0 (DE-588)4072852-3  |2 gnd  |9 rswk-swf 
650 0 7 |a Mathematische Physik  |0 (DE-588)4037952-8  |2 gnd  |9 rswk-swf 
650 0 7 |a Funktionalintegration  |0 (DE-588)4155674-4  |2 gnd  |9 rswk-swf 
650 0 7 |a Quantentheorie  |0 (DE-588)4047992-4  |2 gnd  |9 rswk-swf 
689 0 0 |a Integration  |g Mathematik  |0 (DE-588)4072852-3  |D s 
689 0 1 |a Quantentheorie  |0 (DE-588)4047992-4  |D s 
689 0 |5 DE-604 
689 1 0 |a Funktionalintegration  |0 (DE-588)4155674-4  |D s 
689 1 1 |a Mathematische Physik  |0 (DE-588)4037952-8  |D s 
689 1 2 |a Quantenphysik  |0 (DE-588)4266670-3  |D s 
689 1 |5 DE-604 
856 4 2 |q text/html  |u http://deposit.dnb.de/cgi-bin/dokserv?id=3430434&prov=M&dok_var=1&dok_ext=htm  |3 Inhaltstext 
856 4 2 |m HBZ Datenaustausch  |q application/pdf  |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=020198960&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA  |3 Inhaltsverzeichnis 
943 1 |a oai:aleph.bib-bvb.de:BVB01-020198960 

Datensatz im Suchindex

DE-BY-TUM_call_number 0202/PHY 013f 2011 A 4805
DE-BY-TUM_katkey 1773503
DE-BY-TUM_media_number 040071327841
_version_ 1816713602763063296
adam_text Titel: A modern approach to functional integration Autor: Klauder, John R. Jahr: 2011 Contents Preface.VII 1 Introduction. 1 1.1 Overview and Latest Developments. 1 1.2 Topics Receiving Particular Emphasis. 2 1.3 Basic Background. 3 1.4 Elementary Integral Facts. 5 Part I Stochastic Theory 2 Probability. 9 2.1 Random Variables. 9 2.1.1 Probability distributions . 10 2.2 Characteristic Functions. 13 2.2.1 Convergence properties - 1. 14 2.2.2 Convergence properties - 2. 15 2.2.3 Characteristic function for a Cantor-like measure. 16 2.2.4 An application of the characteristic function. 17 2.3 Infinitely Divisible Distributions. 18 2.3.1 Divisibility. 19 2.3.2 Infinite divisibility. 20 2.4 Central Limit Theorem—and Its Avoidance. 21 3 Infinite-Dimensional Integrals . 27 3.1 Basics. 27 3.2 Support Properties. 29 3.3 Characteristic Functional. 30 3.4 Tightest Support Conditions. 32 3.5 From Sequences to Functions. 33 3.6 Bochner-Minlos Theorem. 36 XII Contents 3.7 Functional Derivatives. 38 3.8 Functional Fourier Transformations. 39 3.9 Change of Variables . 41 3.9.1 Change of infinitely many variables. 43 4 Stochastic Variable Theory. 47 4.1 General Remarks. 47 4.1.1 Stationary processes. 48 4.1.2 Ergodic processes . 48 4.1.3 Gaussian examples. 51 4.2 Wiener Process, a.k.a. Brownian Motion. 52 4.2.1 Definition of a standard Wiener process. 52 4.2.2 Continuity of Brownian paths. 53 4.2.3 Stochastic equivalence . 55 4.2.4 Independent increments. 56 4.2.5 Some joint and conditional probability densities. 57 4.2.6 Itô calculus. 58 4.2.7 Stochastic integrals. 59 4.3 Wiener Measure. 61 4.3.1 General Wiener process. 62 4.3.2 Pinned Brownian motion. 63 4.3.3 Generalized Brownian bridges. 63 4.3.4 Alternative Brownian bridges. 64 4.4 The Feynman-Kac Formula.*. 64 4.5 Ornstein-Uhlenbeck Process. 66 4.5.1 Addition of a potential to an O-U process. 67 4.6 Realization of a General Gaussian Process. 67 4.7 Generalized Stochastic Process. 69 4.7.1 Gaussian white noise. 69 4.8 Stochastic Differential Equations a.k.a. Langevin Equations . 71 4.9 Poisson Process. 73 Part II Quantum Theory 5 Background to an Analysis of Quantum Mechanics. 79 5.1 Hubert Space and Operators: Basic Properties. 79 5.1.1 Hilbert space. 79 5.1.2 Fourier representation. 81 5.1.3 L2 representatives. 81 5.1.4 Segal-Bargmann representation. 83 5.1.5 Reproducing kernel Hilbert spaces. 83 5.1.6 Operators for Hilbert space. 86 5.2 Hilbert Space and Operators: Advanced Properties . 90 5.3 Basic Lie Group Theory. 95 Contents XIII 5.3.1 Lie algebras . 96 5.3.2 Invariant group measures. 97 5.3.3 Group representations . 98 5.4 Outline of Abstract Quantum Mechanics.102 5.4.1 Schrödinger picture.103 5.4.2 Heisenberg picture.104 Quantum Mechanical Path Integrals.107 6.1 Configuration Space Path Integrals.107 6.1.1 Schrödinger equation (special case).107 6.1.2 The free particle .109 6.1.3 Quadratic path integrals .110 6.1.4 Harmonic oscillator.112 6.1.5 Eigenfunctions and eigenvalues.113 6.1.6 Connection with operators.114 6.1.7 Validity of the lattice space regularization.116 6.1.8 Classical symptoms of quantum illnesses .116 6.1.9 The question of a measure for the Feynman path integral.118 6.1.10 Proposal of Gel'fand and Yaglom to introduce a measure.118 6.1.11 Proposal of Itô to introduce a measure.120 6.2 Phase Space Path Integrals.121 6.2.1 Momentum space propagator.121 6.2.2 Physical interpretation of path integrals.123 6.2.3 Selected applications.124 6.2.4 Choice of canonical coordinates.128 6.3 Action Principle—and Equations of Motion.130 Coherent State Path Integrals.133 7.1 Canonical Coherent States and Their Properties.133 7.1.1 Coherent states—what are they?.133 7.1.2 Diagonal coherent state matrix elements.137 7.2 Coherent State Propagator .138 7.2.1 Change of coordinates .140 7.2.2 Metrics from coherent states.146 7.2.3 Coherent state path integrals—a one form and a metric.147 7.2.4 Alternative coherent state path integral construction. 148 7.3 Many Degrees of Freedom.149 7.3.1 Configuration space path integrals.149 7.3.2 Phase space path integrals.150 7.3.3 Coherent state path integrals.151 7.4 Spin Coherent State Path Integrals.152 7.4.1 Spin coherent states.152 XIV Contents 7.4.2 Spin dynamics and the spin coherent state path integral.154 7.5 Affine Coherent State Path Integrals.156 7.5.1 Affine coherent states.156 7.5.2 Affine dynamics and the affine coherent state path integral.158 7.6 Coherent State Path Integrals without a Resolution of Unity . 159 8 Continuous-Time Regularized Path Integrals.161 8.1 Wiener Measure Regularization of Phase Space Path Integrals. 161 8.1.1 Covariance under canonical coordinate transformations. 163 8.1.2 Proof of Wiener measure path integral regularization . 164 8.1.3 Multivariable Wiener measure regularization of path integrals .167 8.2 Continuous-Time Regularization of Spin Variable Path Integrals .168 8.3 Continuous-Time Regularization of Affine Variable Path Integrals .170 8.4 Quantization as Geometry.172 9 Classical and Quantum Constraints.175 9.1 Classical Systems with Constraints.175 9.1.1 General classical construction.177 9.1.2 Anomalous constraint situations.180 9.2 Quantum Theory of Constrained Systems.184 9.2.1 Dirac's procedure for quantization of systems with constraints.185 9.3 The Projection Operator Method.187 9.3.1 Observables and the classical limit.189 9.3.2 Basic examples of the projection operator method.190 9.3.3 Additional examples of the projection operator method 195 9.3.4 Representation of the projection operator.199 9.3.5 A universal representation for the projection operator . 201 9.4 Constrained Dynamics in Operator Form.203 9.5 Coherent State Path Integrals for Systems with Constraints. 205 Part III Quantum Field Theory 10 Application to Quantum Field Theory.211 10.1 Introduction and Overview.211 10.1.1 Classical preliminaries .211 10.2 Relativistic Free Fields.212 10.2.1 A brief survey of classical and quantum properties.212 10.3 Functional Integral Formulation.215 Contents XV 10.4 Euclidean-Space Functional Integral Formulation.219 10.4.1 Local products.221 10.5 Interacting Scalar Fields.223 10.5.1 Perturbation theory .224 10.5.2 Spacetime dimension ç = 3.226 10.5.3 Spacetime dimension n = 4.228 10.5.4 Spacetime dimension ç 5.231 10.6 Euclidean-Space Lattice Regularization.233 11 A Modern Approach to Nonrenormalizable Models.235 11.1 Introduction.235 11.2 Nonrenormalizable Classical Models .236 11.2.1 Relativistic models.236 11.2.2 Ultralocal models .236 11.2.3 Independent value models.237 11.2.4 Classical pseudofree models.237 11.3 Euclidean Space Functional Integrals—Preliminary Remarks . 239 11.3.1 Independent value models.239 11.3.2 Ultralocal models .240 11.3.3 Solution of independent value models.241 11.3.4 Solution of ultralocal models.244 11.3.5 An alternative approach to both the IV and UL models—an overview with details to follow.248 11.4 An Alternative Method to Solve the IV and UL Models.249 11.4.1 A reexamination of IV models .249 11.4.2 A reexamination of UL models.253 11.5 Relativistic Nonrenormalizable Scalar Models.254 11.5.1 Motivation for alternative studies of relativistic nonrenormalizable models.255 11.5.2 The free ground state distribution.256 11.5.3 Properties of the matrix Ak-i.257 11.5.4 Mass-like moments in the ground state distribution-----258 11.5.5 Mashing the relativistic measure.258 11.5.6 Lattice Hamiltonian for the free and pseudofree models 260 11.5.7 The importance of sharp time moments.262 11.5.8 Statement of the fundamental problem.263 11.6 The Continuum Limit, and Term-by-Term Finiteness of a Perturbation Analysis.264 11.6.1 Field strength renormalization.264 11.6.2 Mass and coupling constant renormalization.265 11.7 Conclusion .266 References.269 Index. .275
any_adam_object 1
author Klauder, John R. 1932-
author_GND (DE-588)136019986
author_facet Klauder, John R. 1932-
author_role aut
author_sort Klauder, John R. 1932-
author_variant j r k jr jrk
building Verbundindex
bvnumber BV025603790
classification_rvk SK 430
SK 620
SK 820
SK 920
SK 950
classification_tum PHY 020f
PHY 013f
ctrlnum (OCoLC)705356664
(DE-599)BVBBV025603790
discipline Physik
Mathematik
format Book
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>00000nam a2200000 c 4500</leader><controlfield tag="001">BV025603790</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20110728</controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">100417s2011 d||| |||| 00||| eng d</controlfield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">1000359522</subfield><subfield code="2">DE-101</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780817647902</subfield><subfield code="9">978-0-8176-4790-2</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780817647919</subfield><subfield code="c">ebook</subfield><subfield code="9">978-0-8176-4791-9</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)705356664</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV025603790</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-11</subfield><subfield code="a">DE-20</subfield><subfield code="a">DE-384</subfield><subfield code="a">DE-91G</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-188</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 430</subfield><subfield code="0">(DE-625)143239:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 620</subfield><subfield code="0">(DE-625)143249:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 820</subfield><subfield code="0">(DE-625)143258:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 920</subfield><subfield code="0">(DE-625)143272:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 950</subfield><subfield code="0">(DE-625)143273:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">PHY 020f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">510</subfield><subfield code="2">sdnb</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">PHY 013f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Klauder, John R.</subfield><subfield code="d">1932-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)136019986</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">A modern approach to functional integration</subfield><subfield code="c">John R. Klauder</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New York [u.a.]</subfield><subfield code="b">Birkhäuser</subfield><subfield code="c">2011</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XV, 279 S.</subfield><subfield code="b">graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Applied and numerical harmonic analysis</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Quantenphysik</subfield><subfield code="0">(DE-588)4266670-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Integration</subfield><subfield code="g">Mathematik</subfield><subfield code="0">(DE-588)4072852-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mathematische Physik</subfield><subfield code="0">(DE-588)4037952-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Funktionalintegration</subfield><subfield code="0">(DE-588)4155674-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Quantentheorie</subfield><subfield code="0">(DE-588)4047992-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Integration</subfield><subfield code="g">Mathematik</subfield><subfield code="0">(DE-588)4072852-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Quantentheorie</subfield><subfield code="0">(DE-588)4047992-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Funktionalintegration</subfield><subfield code="0">(DE-588)4155674-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Mathematische Physik</subfield><subfield code="0">(DE-588)4037952-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="2"><subfield code="a">Quantenphysik</subfield><subfield code="0">(DE-588)4266670-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="q">text/html</subfield><subfield code="u">http://deposit.dnb.de/cgi-bin/dokserv?id=3430434&amp;prov=M&amp;dok_var=1&amp;dok_ext=htm</subfield><subfield code="3">Inhaltstext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HBZ Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&amp;doc_library=BVB01&amp;local_base=BVB01&amp;doc_number=020198960&amp;sequence=000002&amp;line_number=0001&amp;func_code=DB_RECORDS&amp;service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-020198960</subfield></datafield></record></collection>
id DE-604.BV025603790
illustrated Illustrated
indexdate 2024-11-25T17:37:10Z
institution BVB
isbn 9780817647902
9780817647919
language English
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-020198960
oclc_num 705356664
open_access_boolean
owner DE-11
DE-20
DE-384
DE-91G
DE-BY-TUM
DE-19
DE-BY-UBM
DE-188
owner_facet DE-11
DE-20
DE-384
DE-91G
DE-BY-TUM
DE-19
DE-BY-UBM
DE-188
physical XV, 279 S. graph. Darst.
publishDate 2011
publishDateSearch 2011
publishDateSort 2011
publisher Birkhäuser
record_format marc
series2 Applied and numerical harmonic analysis
spellingShingle Klauder, John R. 1932-
A modern approach to functional integration
Quantenphysik (DE-588)4266670-3 gnd
Integration Mathematik (DE-588)4072852-3 gnd
Mathematische Physik (DE-588)4037952-8 gnd
Funktionalintegration (DE-588)4155674-4 gnd
Quantentheorie (DE-588)4047992-4 gnd
subject_GND (DE-588)4266670-3
(DE-588)4072852-3
(DE-588)4037952-8
(DE-588)4155674-4
(DE-588)4047992-4
title A modern approach to functional integration
title_auth A modern approach to functional integration
title_exact_search A modern approach to functional integration
title_full A modern approach to functional integration John R. Klauder
title_fullStr A modern approach to functional integration John R. Klauder
title_full_unstemmed A modern approach to functional integration John R. Klauder
title_short A modern approach to functional integration
title_sort a modern approach to functional integration
topic Quantenphysik (DE-588)4266670-3 gnd
Integration Mathematik (DE-588)4072852-3 gnd
Mathematische Physik (DE-588)4037952-8 gnd
Funktionalintegration (DE-588)4155674-4 gnd
Quantentheorie (DE-588)4047992-4 gnd
topic_facet Quantenphysik
Integration Mathematik
Mathematische Physik
Funktionalintegration
Quantentheorie
url http://deposit.dnb.de/cgi-bin/dokserv?id=3430434&prov=M&dok_var=1&dok_ext=htm
http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=020198960&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA
work_keys_str_mv AT klauderjohnr amodernapproachtofunctionalintegration