Quantum biochemistry [electronic structure and biological activity]

Gespeichert in:
Bibliographische Detailangaben
Format: Buch
Sprache:English
Veröffentlicht: Weinheim Wiley-VCH
Schlagworte:
Online-Zugang:Inhaltstext
Inhaltsverzeichnis
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nam a2200000 ca4500
001 BV025560550
003 DE-604
005 20121022
007 t
008 100417nuuuuuuuu |||| 00||| eng d
015 |a 09,N21,1033  |2 dnb 
016 7 |a 994010621  |2 DE-101 
020 |a 9783527323227  |9 978-3-527-32322-7 
035 |a (DE-599)BVBBV025560550 
040 |a DE-604  |b ger  |e rakwb 
041 0 |a eng 
084 |a VE 5650  |0 (DE-625)147118:253  |2 rvk 
084 |a WD 2100  |0 (DE-625)148162:  |2 rvk 
084 |a WD 9000  |0 (DE-625)148252:  |2 rvk 
084 |a CHE 802f  |2 stub 
245 1 0 |a Quantum biochemistry  |b [electronic structure and biological activity]  |c ed. by Chérif F. Matta 
264 1 |a Weinheim  |b Wiley-VCH 
336 |b txt  |2 rdacontent 
337 |b n  |2 rdamedia 
338 |b nc  |2 rdacarrier 
650 0 7 |a Quantenbiochemie  |0 (DE-588)4176595-3  |2 gnd  |9 rswk-swf 
689 0 0 |a Quantenbiochemie  |0 (DE-588)4176595-3  |D s 
689 0 |5 DE-604 
700 1 |a Matta, Chérif F.  |e Sonstige  |0 (DE-588)132780372  |4 oth 
856 4 |u http://deposit.dnb.de/cgi-bin/dokserv?id=3294468&prov=M&dok_var=1&dok_ext=htm  |3 Inhaltstext 
856 4 2 |m DNB Datenaustausch  |q application/pdf  |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=019100186&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA  |3 Inhaltsverzeichnis 
943 1 |a oai:aleph.bib-bvb.de:BVB01-019100186 

Datensatz im Suchindex

DE-BY-TUM_katkey 1888942
_version_ 1816713813664202752
adam_text IMAGE 1 XXXV CONTENTS ACKNOWLEDGMENT VII CONGRATULATIONS TO PROFESSOR ADA YONATH FOR WINNING THE 2009 NOBEL PRIZE IN CHEMISTRY IX INTRODUCTORY REFLECTIONS ON QUANTUM BIOCHEMISTRY: FROM CONTEXT TO CONTENTS XI CHERIFF. MATTA LIST OF CONTRIBUTORS LI VOLL PART ONE NOVEL THEORETICAL, COMPUTATIONAL, AND EXPERIMENTAL METHODS AND TECHNIQUES 1 1 QUANTUM KERNELS AND QUANTUM CRYSTALLOGRAPHY: APPLICATIONS IN BIOCHEMISTRY 3 LULU HUANG, LOU MASSA, AND JEROME KARLE 1.1 INTRODUCTION 3 1.2 ORIGINS OF QUANTUM CRYSTALLOGRAPHY (QCR) 4 1.2.1 GENERAL PROBLEM OF N-REPRESENTABILITY 4 1.2.2 SINGLE DETERMINANT AT-REPRESENTABILITY 5 1.2.3 EXAMPLE APPLICATIONS OF CLINTON'S EQUATIONS 7 1.2.3.1 BERYLLIUM 7 1.2.3.2 MALEIC ANHYDRIDE 9 1.3 BEGINNINGS OF QUANTUM KERNELS 10 1.3.1 COMPUTATIONAL DIFFICULTY OF LARGE MOLECULES 10 1.3.2 QUANTUM KERNEL FORMALISM 11 1.3.3 KERNEL MATRICES: EXAMPLE AND RESULTS 14 1.3.4 APPLICATIONS OF THE IDEA OF KERNELS 17 1.3.4.1 HYDRATED HEXAPEPTIDE MOLECULE 17 1.3.4.2 HYDRATED LEU^ZERVAMICIN 38 1.4 KERNEL DENSITY MATRICES LED TO KERNEL ENERGIES 22 1.4.1 KEM APPLIED TO PEPTIDES 24 BIBLIOGRAFISCHE INFORMATIONEN HTTP://D-NB.INFO/994010621 DIGITALISIERT DURCH IMAGE 2 XXXVI CONTENTS 1.4.2 QUANTUM MODELS WITHIN KEM 29 1.4.2.1 CALCULATIONS AND RESULTS USING DIFFERENT BASIS FUNCTIONS FOR THE ADPGV7B MOLECULE 32 1.4.2.2 CALCULATIONS AND RESULTS USING DIFFERENT QUANTUM METHODS FOR THE ZAIB4 MOLECULE 34 1.4.2.3 COMMENTS REGARDING KEM 36 1.4.3 KEM APPLIED TO INSULIN 36 1.4.3.1 KEM CALCULATION RESULTS 36 1.4.3.2 COMMENTS REGARDING THE INSULIN CALCULATIONS 38 1.4.4 KEM APPLIED TO DNA 39 1.4.4.1 KEM CALCULATION RESULTS 39 1.4.4.2 COMMENTS REGARDING THE DNA CALCULATIONS 41 1.4.5 KEM APPLIED TO TRNA 41 1.4.6 KEM APPLIED TO RATIONAL DESIGN OF DRUGS 43 1.4.6.1 IMPORTANCE OF THE INTERACTION ENERGY FOR RATIONAL DRUG DESIGN 43 1.4.6.2 SAMPLE CALCULATION: ANTIBIOTIC DRUG IN COMPLEX (1O9M) WITH A MODEL AMINOACYL SITE OF THE 30S RIBOSOMAL SUBUNIT 44 1.4.6.3 COMMENTS REGARDING THE DRUG-TARGET INTERACTION CALCULATIONS 46 1.4.7 KEM APPLIED TO COLLAGEN 47 1.4.7.1 INTERACTION ENERGIES 47 1.4.7.2 COLLAGEN 1A89 47 1.4.7.3 COMMENTS REGARDING THE COLLAGEN CALCULATIONS 50 1.4.8 KEM FOURTH-ORDER CALCULATION OF ACCURACY 50 1.4.8.1 MOLECULAR ENERGY AS A SUM OVER KERNEL ENERGIES 50 1.4.8.2 APPLICATION TO LEU'-ZERVAMICIN OF THE FOURTH-ORDER APPROXIMATION OF KEM 51 1.4.9 KEM APPLIED TO VESICULAR STOMATITIS VIRUS NUDEOPROTEIN, 33 000 ATOM MOLECULE 53 1.4.9.1 VESICULAR STOMATITIS VIRUS NUDEOPROTEIN (2QVJ) MOLECULE 53 1.4.9.2 HYDROGEN BOND CALCULATIONS 54 1.4.9.3 COMMENTS REGARDING THE 2QVJ CALCULATIONS 54 1.5 SUMMARY AND CONDUSIONS 55 REFERENCES 57 2 GETTING THE MOST OUT OF ONIOM: GUIDELINES AND PITFALLS 61 FERNANDO R. CLEMENTE, THORN VREVEN, AND MICHAELJ. FRISCH 2.1 INTRODUCTION 61 2.2 QM/MM 62 2.3 ONIOM 63 2.4 GUIDELINES FOR THE APPLICATION OF ONIOM 65 2.4.1 SUMMARY 72 2.5 THE CANCELLATION PROBLEM 72 2.6 USE OF POINT CHARGES 77 2.7 CONDUSIONS 81 REFERENCES 82 IMAGE 3 CONTENTS XXXVII 3 MODELING ENZYMATIC REACTIONS IN METALLOENZYMES AND PHOTOBIOLOGY BY QUANTUM MECHANICS (QM) AND QUANTUM MECHANICS/MOLECULAR MECHANICS (QM/MM) CALCULATIONS 85 LUNG WA CHUNG, XIN LI, AND KEIJI MOROKUMA 3.1 INTRODUCTION 85 3.2 COMPUTATIONAL STRATEGIES (METHODS AND MODELS) 86 3.2.1 QUANTUM MECHANICAL (QM) METHODS 86 3.2.2 ACTIVE-SITE MODEL 88 3.2.3 QM/MM METHODS 88 3.2.4 QM/MM MODEL AND SETUP 90 3.3 METALLOENZYMES 91 3.3.1 HEME-CONTAINING ENZYMES 91 3.3.1.1 BINDING AND PHOTODISSODATION OF DIATOMIC MOLECULES 91 3.3.1.2 HEME OXYGENASE (HO) 95 3.3.1.3 INDOLEAMINES DIOXYGENASE (IDO) AND TRYPTOPHAN DIOXYGENASE (TDO) 97 3.3.1.4 NITRIC OXIDE SYNTHASE (NOS) 101 3.3.2 COBALAMIN-DEPENDENT ENZYMES 305 3.3.2.1 METHYLMALONYL-COA MUTASE 105 3.3.2.2 GLUTAMINE MUTASE 108 3.4 PHOTOBIOLOGY 109 3.4.1 FLUORESCENT PROTEINS (FPS) 109 3.4.1.1 GREEN FLUORESCENT PROTEINS (GFP) 330 3.4.1.2 REVERSIBLE PHOTOSWITCHING FLUORESCENT PROTEINS (RPFPS) 111 3.4.1.3 PHOTOCONVERSION OF FLUORESCENT PROTEINS 115 3.4.2 LUDFERASES 337 3.5 CONDUSION 120 REFERENCES 120 4 FROM MOLECULAR ELECTROSTATIC POTENTIALS TO SOLVATION MODELS AND ENDING WITH BIOMOLECULAR PHOTOPHYSICAL PROCESSES 333 JACOPO TORNASI, CHIARA CAPPELLI, BENEDETTA MENNUCCI, AND ROBERTO CAMMI 131 4.1 INTRODUCTION 333 4.2 THE MOLECULAR ELECTROSTATIC POTENTIAL AND NONCOVALENT INTERACTIONS AMONG MOLECULES 132 4.2.1 MOLECULAR ELECTROSTATIC POTENTIAL 332 4.2.1.1 USEOFMEP 133 4.2.1.2 SEMIDASSICAL APPROXIMATION 133 4.2.1.3 MEP AS A COMPONENT OF THE INTERMOLECULAR INTERACTION 134 4.2.1.4 DEFINITION OF THE COULOMB INTERACTION TERM 335 4.2.1.5 SIMPLIFICATIONS IN THE EXPRESSION OF E ES : POINT CHARGE DESCRIPTIONS 135 4.2.1.6 SIMPLIFICATIONS IN THE EXPRESSION OF UEJ,: ATOMIC CHARGES 136 4.2.1.7 SIMPLIFICATIONS IN THE EXPRESSION OF E^: MULTIPOLAR EXPANSIONS 136 IMAGE 4 XXXVIII CONTENTS 4.2.2 INTERACTION ENERGY BETWEEN TWO MOLECULES 137 4.2.3 EXAMPLES OF ENERGY DECOMPOSITION ANALYSES 139 4.2.3.1 INTERACTIONS WITH A PROTON 139 4.2.3.2 INTERACTIONS WITH OTHER CATIONS 139 4.2.3.3 HYDROGEN BONDING 140 4.2.4 INTERACTION POTENTIALS (FORCE FIELDS) FOR COMPUTER SIMULATIONS OF LIQUID SYSTEMS 140 4.3 SOLVATION: THE "CONTINUUM MODEL" 142 4.3.1 BASIC FORMULATION OF PCM 142 4.3.2 BEYOND THE BASIC FORMULATION 146 4.3.2.1 DIELECTRIC FUNCTION 146 4.3.2.2 CAVITY SURFACE 147 4.3.2.3 DEFINITION OF THE APPARENT CHARGES 147 4.3.2.4 DESCRIPTION OF THE SOLUTE 147 4.3.3 OTHER CONTINUUM SOLVATION METHODS 148 4.3.3.1 APPARENT SURFACE CHARGE (ASC) METHODS 148 4.3.3.2 MULTIPOLE EXPANSION METHODS (MPE) 349 4.3.3.3 GENERALIZED BORN MODEL 149 4.3.3.4 FINITE ELEMENT METHOD (FEM) AND FINITE DIFFERENCE METHOD (FDM) 150 4.4 APPLICATIONS OF THE PCM METHOD 150 4.4.1 SOLVATION ENERGIES I50 4.4.2 ABOUT THE PES 352 4.4.3 CHEMICAL EQUILIBRIA 152 4.4.3.1 TAUTOMERIE EQUILIBRIA 353 4.4.3.2 EQUILIBRIA IN MOLECULAR AGGREGATION 153 4.4.3.3 PKA OF ACIDS 153 4.4.4 REACTION MECHANISMS 154 4.4.5 SOLVENT EFFECTS ON MOLECULAR PROPERTIES AND SPECTROSCOPY 156 4.4.5.1 N-ACETYLPROLINE AMIDE (NAP) 357 4.4.5.2 GLUCOSE 158 4.4.5.3 LOCAL FIELD EFFECTS 159 4.4.5.4 DYNAMIC EFFECTS 360 4.4.6 EFFECT OF THE ENVIRONMENT ON FORMATION AND RELAXATION OF EXCITED STATES 161 4.4.7 ELECTRONIC TRANSITIONS AND RELATED SPECTROSCOPIES 162 4.4.8 PHOTOINDUCED ELECTRON AND ENERGY TRANSFERS 164 REFERENCES 366 5 THE FAST MARCHING METHOD FOR DETERMINING CHEMICAL REACTION MECHANISMS IN COMPLEX SYSTEMS 373 YULI LIU, STEVEN K. BURGER, BIJOY K. DEY, UTPAL SARKAR, MAREK R.JANICKI, AND PAUL W. AYERS 5.1 MOTIVATION 171 IMAGE 5 CONTENTS XXXIX 5.2 BACKGROUND 172 5.2.1 MINIMUM ENERGY PATH 172 5.2.2 TWO END METHODS 372 5.2.3 SURFACE WALKING ALGORITHMS 373 5.2.4 METADYNAMICS METHODS 174 5.2.5 FAST MARCHING METHOD 174 5.3 FAST MARCHING METHOD 175 5.3.1 INTRODUCTION TO FMM 175 5.3.2 UPWIND DIFFERENCE APPROXIMATION 176 5.3.3 HEAPSORT TECHNIQUE 376 5.3.4 SHEPARD INTERPOLATION 377 5.3.5 INTERPOLATING MOVING LEAST-SQUARES METHOD 379 5.3.6 FMM PROGRAM 180 5.3.6.1 SETUP, DEFINITIONS AND NOTATION 180 5.3.6.2 INITIALIZE THE CALCULATION 383 5.3.6.3 UPDATING THE HEAP 181 5.3.6.4 BACKTRACING FROM THE ENDING POINT TO THE STARTING POINT ON THE ENERGY COST SURFACE 181 5.3.7 APPLICATION 182 5.3.7.1 FOUR-WELL ANALYTICAL PES 182 5.3.7.2 S N 2 REACTION J84 5.3.7.3 DISSODATION OF IONIZED O-METHYLHYDROXYLAMINE 185 5.4 QUANTUM MECHANICS/MOLECULAR MECHANICS (QM/MM) METHODS APPLIED TO ENZYME-CATALYZED REACTIONS 187 5.4.1 QM/MM METHODS 387 5.4.2 INCORPORATING THE QM/MM-MFEP METHODS WITH FMM 389 5.4.3 APPLICATION OF THE INCORPORATED FMM AND QM/MM-MFEP METHOD TO ENZYME-CATALYZED REACTIONS 3 90 5.4.3.1 S N 2 REACTION IN SOLVENT 390 5.4.3.2 ISOMERIZATION REACTION CATALYZED BY 4-OXALOCROTONATE TAUTOMERASE (4-OT) 190 5.4.3.3 DECHLORINATION REACTION CATALYZED BY TRANS-3-CHLOROACRYLIC ADD DEHALOGENASE (CAAD) 393 5.5 SUMMARY 393 REFERENCES 392 PART TWO NUCLEIC ACIDS, AMINO ACIDS, PEPTIDES AND THEIR INTERACTIONS 197 6 CHEMICAL ORIGIN OF LIFE: HOW DO FIVE HCN MOLECULES COMBINE TO FORM ADENINE UNDER PREBIOTIC AND INTERSTELLAR CONDITIONS 199 DEBJANI ROY AND PAUL VON RAGUE SCHLEYER 6.1 INTRODUCTION 399 6.1.1 PREBIOTIC CHEMISTRY. EXPERIMENTAL ENDEAVOR TO SYNTHESIZE THE BUILDING BLOCKS OF BIOPOLYMERS 199 IMAGE 6 XL CONTENTS 6.1.2 KEY ROLE OF HCN AS A PRECURSOR FOR PREBIOTIC COMPOUNDS 201 6.1.3 PREBIOTIC EXPERIMENTS AND PROPOSED PATHWAYS FOR THE FORMATION OF ADENINE 202 6.2 COMPUTATIONAL INVESTIGATION 202 6.2.1 METHOD 204 6.2.2 THERMOCHEMISTRY OF PENTAMERIZATION 204 6.2.3 DETAILED STEP BY STEP MEDIANISM 205 6.2.3.1 DAMN VS AICN AS ADENINE PRECURSORS 205 6.2.3.2 IS AN ANIONIC MECHANISM FEASIBLE IN ISOLATION? 205 6.2.3.3 TWO TAUTOMERIE FORMS OF AICN: WHICH ONE IS THE FAVORABLE PRECURSOR FOR ADENINE FORMATION UNDER PREBIOTIC CONDITIONS? 207 6.2.3.4 VALIDATING THE METHODS USED FOR COMPUTING BARRIER HEIGHTS 213 6.3 CONDUSION 233 REFERENCES 216 7 HYDROGEN BONDING AND PROTON TRANSFER IN IONIZED DNA BASE PAIRS, AMINO ACIDS AND PEPTIDES 219 LUIS RODRIGUEZ-SANTIAGO, MARC NOGUERA, JOAN BERTRAN, AND MARIONA SODUPE 7.1 INTRODUCTION 219 7.2 METHODOLOGICAL ASPECTS 220 7.3 IONIZATIONOFDNA BASE PAIRS 221 7.3.1 EQUILIBRIUM GEOMETRIES AND DIMERIZATION ENERGIES 222 7.3.2 SINGLE AND DOUBLE PROTON TRANSFER REACTIONS 223 7.4 IONIZATION OF AMINO ADDS 227 7.4.1 STRUCTURAL FEATURES OF NEUTRALAND RADICAL CATION AMINO ACIDS 227 7.4.2 INTRAMOLECULAR PROTON-TRANSFER PROCESSES 233 7.5 IONIZATION OF PEPTIDES 234 7.5.1 IONIZATION OF N-GLYCYLGLYDNE 234 7.5.2 INFLUENCE OF IONIZATION ON THE RAMACHANDRAN MAPS OF MODEL PEPTIDES 236 7.6 CONDUSIONS 239 REFERENCES 241 8 TO NANO-BIOCHEMISTRY: PICTURE OF THE INTERACTIONS OF DNA WITH GOLD 245 EUGENE S. KRYACHKO 8.1 INTRODUCTORY NANOSDENCE BACKGROUND 245 8.1.1 GOLD IN NANODIMENSIONS 246 8.1.2 GOLD AND DNA: MEETING POINTS IN NANODIMENSIONS 248 8.2 DNA-GOLD BONDING PATTERNS: SOME EXPERIMENTAL FACTS 253 8.3 ADENINE-GOLD INTERACTION 254 8.3.1 ADENINE-AU AND ADENINE-AU 3 BONDING PATTERNS 254 8.3.2 PROPENSITY OF GOLD TO ACT AS NONCONVENTIONAL PROTON ACCEPTOR 257 8.3.2.1 PAUSE: A SHORT EXCURSION TO HYDROGEN BONDING THEORY 259 IMAGE 7 CONTENTS XU 8.3.2.2 PROOF THAT N-H U AU = N-H- * -AU IN A-AU 3 (N I=1 ,3, 7 ) 260 8.3.2.3 NONCONVENTIONAL HYDROGEN BONDS N-H- * -AU IN A-AU 3 (N; = I 37 ) 263 8.3.3 COMPLEX A-AU 3 (N 6 ) 262 8.3.4 INTERACTION BETWEEN ADENINE AND CHAIN AU 3 CLUSTER 262 8.4 GUANINE-GOLD INTERACTION 263 8.5 THYMINE-GOLD INTERACTIONS 268 8.6 CYTOSINE-GOLD INTERACTIONS 272 8.7 BASIC TRENDS OF DNA BASE-GOLD INTERACTION 273 8.7.1 ANCHORING BOND IN DNA BASE-GOLD COMPLEXES 276 8.7.2 ENERGETICS IN Z = 0 CHARGE STATE 278 8.7.3 Z = -1 CHARGE STATE 282 8.8 INTERACTION OF WATSON-CRICK DNA BASE PAIRS WITH GOLD CLUSTERS 286 8.8.1 GENERAL BACKGROUND 286 8.8.2 [A-TJ-AU 3 COMPLEXES 289 8.8.3 [GC]AU 3 COMPLEXES 293 8.8.4 AU 6 CLUSTER BRIDGES THE WC GC PAIR 296 8.9 SUMMARY AND PERSPECTIVES 297 REFERENCES 298 9 QUANTUM MECHANICAL STUDIES OF NONCOVALENT DNA-PROTEIN INTERACTIONS 307 LESLEY R. RUTLEDGE AND STACEY D. WETMORE 9.1 INTRODUCTION 307 9.2 COMPUTATIONAL APPROACHES FOR STUDYING NONCOVALENT INTERACTIONS 308 9.3 HYDROGEN-BONDING INTERACTIONS 335 9.3.1 INTERACTIONS BETWEEN THE PROTEIN BACKBONE AND DNA NUDEOBASES 315 9.3.2 INTERACTIONS BETWEEN PROTEIN SIDE CHAINS AND DNA BACKBONE 316 9.3.3 INTERACTIONS BETWEEN PROTEIN SIDE CHAINS AND DNA NUDEOBASES 317 9.4 INTERACTIONS BETWEEN AROMATIC DNA-PROTEIN COMPONENTS 318 9.4.1 STACKING INTERACTIONS 339 9.4.2 T-SHAPED INTERACTIONS 323 9.5 CATION-IT INTERACTIONS BETWEEN DNA-PROTEIN COMPONENTS 326 9.5.1 CATION-IT INTERACTIONS BETWEEN CHARGED NUDEOBASES AND AROMATIC AMINO ADDS 326 9.5.2 CATION-RT INTERACTIONS INVOLVING CHARGED AROMATIC AMINO ADDS 330 9.5.3 CATION-JT INTERACTIONS INVOLVING CHARGED NON-AROMATIC AMINO ADDS 330 9.5.4 SIMULTANEOUS CATION-JI AND HYDROGEN-BONDING INTERACTIONS (DNA-PROTEIN STAIR MOTIFS) 332 9.6 CONDUSIONS 333 REFERENCES 333 IMAGE 8 XLILL CONTENTS 10 THE VIRIAL FIELD AND TRANSFERABILITY IN DNA BASE-PAIRING 337 RICHARD F.W. BADERAND FERNANDO CORTES-CUZMAN 10.1 A NEW THEOREM RELATING THE DENSITY OF AN ATOM IN A MOLECULE TO THE ENERGY 337 10.2 COMPUTATIONS 339 10.3 CHEMICAL TRANSFERABILITY AND THE ONE-ELECTRON DENSITY MATRIX 339 10.3.1 THE VIRIAL FIELD 340 10.3.2 SHORT-RANGE NATURE OF THE VIRIAL FIELD AND TRANSFERABILITY 342 10.4 CHANGES IN ATOMIC ENERGIES ENCOUNTERED IN DNA BASE PAIRING 343 10.4.1 DIMERIZATION OF THE FOUR BASES A, C, G AND T 346 10.4.2 ENERGY CHANGES IN CC 349 10.4.3 ENERGY CHANGES IN AA1 349 10.4.4 ENERGY CHANGES IN GG4 350 10.4.5 ENERGY CHANGES IN TT2 350 10.5 ENERGY CHANGES IN THE WC PAIRS GC AND AT 350 10.6 DISCUSSION 355 10.6.1 ATTRACTIVE AND REPULSIVE CONTRIBUTIONS TO THE ATOMIC VIRIAL AND ITS SHORT-RANGE NATURE 356 10.6.2 CAN ONE GO DIRECTLY TO THE VIRIAL FIELD? 360 REFERENCES 363 11 AN ELECTRON DENSITY-BASED APPROACH TO THE ORIGIN OF STACKING INTERACTIONS 365 RICARDO A. MOSQUERA, MARIA J. GONZALEZ MOA, LAURA ESTEVEZ, MARCOS MANDADO, AND ANA M. GRANA 11.1 INTRODUCTION 365 11.2 COMPUTATIONAL METHOD 366 11.3 CHARGE-TRANSFER COMPLEXES: QUINHYDRONE 367 11.4 N-N INTERACTIONS IN HETERO-MOLECULAR COMPLEXES: METHYL GALLATE-CAFFEINE ADDUCT 373 11.5 N-N INTERACTIONS BETWEEN DNA BASE PAIR STEPS 374 11.6 N-N INTERACTIONS IN HOMO-MOLECULAR COMPLEXES: CATECHOL 378 11.7 C-H/N COMPLEXES 381 11.8 PROVISIONAL CONDUSIONS AND FUTURE RESEARCH 385 REFERENCES 385 12 POLARIZABILITIES OF AMINO ACIDS: ADDITIVE MODELS AND AB INITIO CALCULATIONS 389 NOUREDDIN EL-BAKALI KASSIMI AND AJITJ. THAKKAR 12.1 INTRODUCTION 389 12.2 MODELS OF POLARIZABILITY 389 12.3 POLARIZABILITIES OF THE AMINO ACIDS 393 IMAGE 9 CONTENTS XLIII 12.4 CONDUDING REMARKS 398 REFERENCES 400 13 METHODS IN BIOCOMPUTATIONAL CHEMISTRY: A LESSON FROM THE AMINO ACIDS 403 HUGOJ. BOHORQUEZ, CONSTANZA CARDENAS, CHERIFF. MATTA, RUSSELLJ. BOYD, AND MANUEL E. PATARROYO 13.1 INTRODUCTION 403 13.2 CONFORMERS, ROTAMERS AND PHYSICOCHEMICAL VARIABLES 404 13.3 QTAIM SIDE CHAIN POLARIZATIONS AND THE THEORETICAL CLASSIFICATION OF AMINO ADDS 408 13.4 QUANTUM MECHANICAL STUDIES OF PEPTIDE-HOST INTERACTIONS 414 13.5 CONDUSIONS 419 REFERENCES 420 14 FROM ATOMS IN AMINO ACIDS TO THE GENETIC CODE AND PROTEIN STABILITY, AND BACKWARDS 423 CHERIFF. MATTA 14.1 CONTEXT OF THE WORK 423 14.2 THE ELECTRON DENSITY Q(R) AS AN INDIRECTLY MEASURABLE DIRAC OBSERVABLE 426 14.3 BRIEF REVIEW OF SOME BASIC CONCEPTS OF THE QUANTUM THEORY OF ATOMS IN MOLECULES 430 14.4 COMPUTATIONAL APPROACH AND LEVEL OF THEORY 438 14.5 EMPIRICAL CORRELATIONS OF QTAIM ATOMIC PROPERTIES OF AMINO ADD SIDE CHAINS WITH EXPERIMENT 439 14.5.1 PARTIAL MOLAR VOLUMES 439 14.5.2 FREE ENERGY OF TRANSFER FROM THE GAS TO THE AQUEOUS PHASE 448 14.5.3 SIMULATION OF GENETIC MUTATIONS WITH AMINO ACIDS PARTITION COEFFICIENTS 448 14.5.4 EFFECT OF GENETIC MUTATION ON PROTEIN STABILITY 451 14.5.5 FROM THE GENETIC CODE TO THE DENSITY AND BACK 454 14.6 MOLECULAR COMPLEMENTARITY 456 14.7 CLOSING REMARKS 462 14.8 APPENDIX A X-RAY AND NEUTRON DIFFRACTION GEOMETRIES OF THE AMINO ADDS IN THE LITERATURE 462 REFERENCES 467 15 ENERGY RICHNESS OF ATP IN TERMS OF ATOMIC ENERGIES: A FIRST STEP 473 CHERIFF. MATTA AND ALYA A ARABI 15.1 INTRODUCTION 473 15.2 HOW "(DE)LOCALIZED" IS THE ENTHALPY OF BOND DISSODATION? 474 15.3 THE CHOICE OF A THEORETICAL LEVEL 477 15.3.1 THE PROBLEM 477 IMAGE 10 XLIV CONTENTS 15.3.2 EMPIRICAL CORRELATION OF TRENDS IN THE ATOMIC CONTRIBUTIONS TO BDE: COMPARISON OF MP2 AND DFT(B3LYP) RESULTS 478 15.3.3 THEORY 478 15.3.3.1 QTAIM ATOMIC ENERGIES FROM THE AB INITIO METHODS 478 15.3.3.2 ATOMIC ENERGIES FROM KOHN-SHAM DENSITY FUNCTIONAL THEORY METHODS 482 15.3.3.3 ATOMIC CONTRIBUTIONS TO THE ENERGY OF REACTION 484 15.4 COMPUTATIONAL DETAILS 484 15.5 (GLOBAL) ENERGIES OF THE HYDROLYSIS OF ATP IN THE ABSENCE AND PRESENCE OF MG 2+ 485 15.6 HOW "(DE)LOCALIZED" IS THE ENERGY OF HYDROLYSIS OF ATP? 485 15.6.1 PHOSPHATE GROUP ENERGIES AND MODIFIED IIPMANN'S GROUP TRANSFER POTENTIALS 485 15.6.2 ATOMIC CONTRIBUTIONS TO THE ENERGY OF HYDROLYSIS OF ATP IN THE ABSENCE AND PRESENCE OF MG 2 " 1 " 487 15.7 OTHER CHANGES UPON HYDROLYSIS OF ATP IN THE PRESENCE AND ABSENCE OF MG 2+ 487 15.7.1 BOND PROPERTIES AND MOLECULAR GRAPHS 487 15.7.2 GROUP CHARGES IN ATP IN THE ABSENCE AND PRESENCE OF MG 2+ 491 15.7.3 MOLECULAR ELECTROSTATIC POTENTIAL IN THE ABSENCE AND PRESENCE OF MG 2+ 492 15.8 CONDUSIONS 493 REFERENCES 496 VOLLI PART THREE REACTIVITY, ENZYME CATALYSIS, BIOCHEMICAL REACTION PATHS AND MECHANISMS 499 16 QUANTUM TRANSITION STATE FOR PEPTIDE BOND FORMATION IN THE RIBOSOME 501 LOU MASSA, CHERIFF. MATTA, ADA YONATH, AND JEROME KARLE 16.1 INTRODUCTION 501 16.2 METHODOLOGY: SEARCHING FOR THE TRANSITION STATE AND CALCULATING ITS PROPERTIES 502 16.3 RESULTS: THE QUANTUM MECHANICAL TRANSITION STATE 506 16.4 DISCUSSION 511 16.5 SUMMARY AND CONDUSIONS 533 REFERENCES 514 17 HYBRID Q M / MM SIMULATIONS OF ENZYME-CATALYZED DNA REPAIR REACTIONS 517 DENIS BUECHER, FANNY MASSON.J. SAMUEL AREY, AND URSULA ROETHLISBERGER 17.1 INTRODUCTION 517 17.2 THEORETICAL BACKGROUND 538 17.3 APPLICATIONS 521 IMAGE 11 CONTENTS XLV 17.3.1 THYMINE DIMER SPLITTING CATALYZED BY DNA PHOTOLYASE 521 17.3.2 REACTION MECHANISM OF ENDONUDEASE IV 525 17.3.3 ROLE OF WATER IN THE CATALYSIS MECHANISM OF DNA REPAIR ENZYME, MUTY 529 17 A CONDUSIONS 533 REFERENCES 534 18 COMPUTATIONAL ELECTRONIC STRUCTURE OF SPIN-COUPLED DIIRON-OXO PROTEINS 537 JORGE H. RODRIGUEZ 18.1 INTRODUCTION 537 18.2 (ANTI)FERROMAGNETIC SPIN COUPLING 538 18.3 SPIN DENSITY FUNCTIONAL THEORY OF ANTIFERROMAGNETIC DIIRON COMPLEXES 539 18.4 PHENOMENOLOGICAL SIMULATION OF MOESSBAUER SPECTRA OF DIIRON-OXO PROTEINS 542 18.4.1 ANTIFERROMAGNETIC DIIRON CENTER OF HEMERYTHRIN 542 18.4.2 NITRIC OXIDE DERIVATIVE OF HR 543 18.4.3 ANTIFERROMAGNETIC DIIRON CENTER OF REDUCED UTEROFERRIN 545 18.5 CONDUSION 546 REFERENCES 548 19 ACCURATE DESCRIPTION OF SPIN STATES AND ITS IMPLICATIONS FOR CATALYSIS 551 MARCEL SWART, MIREIA GUEELL, AND MIQUEL SOLA 19.1 INTRODUCTION 551 19.2 INFLUENCE OF THE BASIS SET 553 19.3 SPIN-CONTAMINATION CORRECTIONS 556 19.4 INFLUENCE OF SELF-CONSISTENCY 558 19.5 SPIN-STATES OF MODEL COMPLEXES 559 19.6 SPIN-STATES INVOLVED IN CATALYTIC CYDES 564 19.6.1 CYTOCHROME P450CAM 564 19.6.2 HIS-PORPHYRIN MODELS 567 19.6.2.1 REFERENCE DATA (HARVEY) 568 19.6.2.2 REFERENCE DATA (GHOSH) 570 19.6.2.3 OTHER MODEL SYSTEMS 573 19.6.3 NIFE HYDROGENASE 574 19.7 CONDUDING REMARKS 579 19.8 COMPUTATIONAL DETAILS 579 REFERENCES 580 20 QUANTUM MECHANICAL APPROACHES TO SELENIUM BIOCHEMISTRY 585 JASON K. PEARSON AND RUSSELL J. BOYD 20.1 INTRODUCTION 585 20.2 QUANTUM MECHANICAL METHODS FOR THE TREATMENT OF SELENIUM 586 IMAGE 12 XLVI CONTENTS 20.3 APPLICATIONS TO SELENIUM BIOCHEMISTRY 587 20.3.1 COMPUTATIONAL STUDIES OF GPX 587 20.3.2 COMPUTATIONAL STUDIES ON GPX MIMICS 589 20.3.2.1 GPX-LIKE ACTIVITY OF EBSELEN 589 20.3.2.2 SUBSTITUENT EFFECTS ON THE GPX-LIKE ACTIVITY OF EBSELEN 596 20.3.2.3 EFFECT OF THE MOLECULAR ENVIRONMENT ON GPX-LIKE ACTIVITY 598 20.4 SUMMARY 600 REFERENCES 600 21 CATALYTIC MECHANISM OF METALLO SS-LACTAMASES: INSIGHTS FROM CALCULATIONS AND EXPERIMENTS 605 MATTEO DAL PERORO, ALEJANDRO J. VILA, AND PAOLO CARTONI 21.1 INTRODUCTION 605 21.2 STRUCTURAL INFORMATION 607 21.3 COMPUTATIONAL DETAILS 608 21.4 PRELIMINARY COMMENT ON THE COMPARISON BETWEEN THEORY AND EXPERIMENT 609 21.5 MICHAELIS COMPLEX IN BL MSSLS 610 21.5.1 SUBSTRATE BINDING DETERMINANTS 610 21.5.2 NUCLEOPHILE STRUCTURAL DETERMINANTS 611 21.6 CATALYTIC MECHANISM OF BL MSSLS 612 21.6.1 CEFOTAXIME ENZYMATIC HYDROLYSIS IN CCRA 633 21.6.2 CEFOTAXIME ENZYMATIC HYDROLYSIS IN BELL 634 21.6.3 ZINC CONTENT AND REACTIVITY OF BL MSSLS 615 21.6.4 REACTIVITY OF SS-LACTAM ANTIBIOTICS OTHER THAN CEFOTAXIME 615 21.7 MICHAELIS COMPLEXES OF OTHER MSSLS 636 21.7.1 B2 MONO-ZN MSSL SUBDASS 616 21.7.2 B3 MSSL SUBDASS 636 21.8 CONCLUDING REMARKS 617 REFERENCES 638 22 COMPUTATIONAL SIMULATION OF THE TERMINAL BIOGENESIS OF SESQUITERPENES: THE CASE OF 8-EPICONFERTIN 623 JOSE ENRIQUE BARQUERA-LOZADA AND GABRIEL CUEVAS 22.1 INTRODUCTION 623 22.2 REACTION MECHANISM 627 22.3 CONDUSIONS 639 REFERENCES 640 23 MECHANISTICS OF ENZYME CATALYSIS: FROM SMALL TO LARGE ACTIVE-SITE MODELS 643 JORGE LLANO AND JAMES V/. GAULD 23.1 INTRODUCTION 23.1.1 FACTORS INFLUENDNG THE CATALYTIC PERFORMANCE OF ENZYMES 643 IMAGE 13 CONTENTS XLVII 23.1.2 COMPUTATIONAL MODELING IN ENZYMOLOGY 648 23.2 ACTIVE-SITE MODELS OF ENZYMATIC CATALYSIS: METHODS AND ACCURACY 650 23.3 REDOX CATALYTIC MECHANISMS 652 23.3.1 NO FORMATION IN NITRIC OXIDE SYNTHASE 652 23.3.2 OXIDATIVE DEALKYLATION IN THE ALKB FAMILY 654 23.4 GENERAL ACID-BASE CATALYTIC MECHANISM OF DEACETYLATION IN LPXC 658 23.5 SUMMARY 660 REFERENCES 662 PART FOUR FROM QUANTUM BIOCHEMISTRY TO QUANTUM PHARMACOLOGY, THERAPEUTICS, AND DRUG DESIGN 667 24 DEVELOPING QUANTUM TOPOLOGICAL MOLECULAR SIMILARITY (QTMS) 669 PAUL LA POPELIER 24.1 INTRODUCTION 669 24.2 ANCHORING IN PHYSICAL ORGANIC CHEMISTRY 671 24.3 EQUILIBRIUM BOND LENGTHS: "THREAT" OR "OPPORTUNITY"? 678 24.4 INTRODUCING CHEMOMETRICS: GOING BEYOND R 2 679 24.5 A HOPPING CENTER OF ACTION 681 24.6 A LEAP 684 24.7 A COUPLE OF GENERAL REFLECTIONS 687 24.8 CONDUSIONS 688 REFERENCES 689 25 QUANTUM-CHEMICAL DESCRIPTORS IN QSAR/QSPR MODELING: ACHIEVEMENTS, PERSPECTIVES AND TRENDS 693 ANNA V. GUBSKAYA 25.1 INTRODUCTION 693 25.2 QUANTUM-CHEMICAL METHODS AND DESCRIPTORS 694 25.2.1 QUANTUM-CHEMICAL METHODS 694 25.2.2 QUANTUM-CHEMICAL DESCRIPTORS: CLASSIFICATION, UPDATES 697 25.3 COMPUTATIONAL APPROACHES FOR ESTABLISHING QUANTITATIVE STRUCTURE-ACTIVITY RELATIONSHIPS 703 25.3.1 SELECTION OF DESCRIPTORS 703 25.3.2 LINEAR REGRESSION TECHNIQUES 705 25.3.3 MACHINE-LEARNING ALGORITHMS 706 25.4 QUANTUM-CHEMICAL DESCRIPTORS IN QSAR/QSPR MODELS 710 25.4.1 BIOCHEMISTRY AND MOLECULAR BIOLOGY 710 25.4.2 MEDIDNAL CHEMISTRY AND DRUG DESIGN 712 25.4.3 MATERIAL AND BIOMATERIAL SDENCE 714 25.5 SUMMARY AND CONDUSIONS 715 REFERENCES 717 IMAGE 14 XLVIII CONTENTS 26 PLATINUM COMPLEXES AS ANTI-CANCER DRUGS: MODELING OF STRUCTURE, ACTIVATION AND FUNCTION 723 KONSTANTINOS GKIONIS, MARK HICKS, ARTURO ROBERTAZZI, J. GRANT HILL, AND JAMES A. PLATTS 26.1 INTRODUCTION TO CISPLATIN CHEMISTRY AND BIOCHEMISTRY 723 26.2 CALCULATION OF CISPLATIN STRUCTURE, ACTIVATION AND DNA INTERACTIONS 726 26.3 PLATINUM-BASED ALTERNATIVES 732 26.4 NON-PLATINUM ALTERNATIVES 735 26.5 ABSORPTION, DISTRIBUTION, METABOLISM, EXCRETION (ADME) ASPECTS 739 REFERENCES 740 27 PROTEIN MISFOLDING: THE QUANTUM BIOCHEMICAL SEARCH FOR A SOLUTION TO ALZHEIMER'S DISEASE 743 DONALD F. WEAVER 27.1 INTRODUCTION 743 27.2 PROTEIN FOLDING AND MISFOLDING 744 27.2.1 PROTEIN FOLDING 744 27.2.2 PROTEIN MISFOLDING 745 27.3 QUANTUM BIOCHEMISTRY IN THE STUDY OF PROTEIN MISFOLDING 745 27.3.1 MOLECULAR MECHANICS 746 27 A ALZHEIMER'S DISEASE: A DISORDER OF PROTEIN MISFOLDING 747 27A.I ALZHEIMER'S - A PROTEIN MISFOLDING DISORDER 748 27.4.2 PROTEIN MISFOLDING OF BETA-AMYLOID 748 27.5 QUANTUM BIOCHEMISTRY AND DESIGNING DRUGS FOR ALZHEIMER'S DISEASE 750 27.5.1 APPROACH 1 - HOMOTAURINE 751 27.5.2 APPROACH 2 - MELATONIN 752 27.6 CONDUSIONS 753 REFERENCES 754 28 TARGETING BUTYRYLCHOLINESTERASE FOR ALZHEIMER'S DISEASE THERAPY 757 KATHERINE V. DARVESH, IAN R. POTTIE, ROBERT S. MCDONALD, EARL MARTIN, AND SULTAN DARVESH 28.1 BUTYRYLCHOLINESTERASE AND THE REGULATION OF CHOLINERGIC NEUROTRANSMISSION 757 28.2 BUTYRYLCHOLINESTERASE: THE SIGNIFICANT OTHER CHOLINESTERASE, IN SICKNESS AND IN HEALTH 760 28.3 OPTIMIZING SPERINE INHIBITORS OF BUTYRYLCHOLINESTERASE BASED ON THE PHENOTHIAZINE SCAFFOLD 763 28.4 BIOLOGICAL EVALUATION OF PHENOTHIAZINE DERIVATIVES AS CHOLINESTERASE INHIBITORS 761 28.5 COMPUTATION OF PHYSICAL PARAMETERS TO INTERPRET STRUCTURE-ACTIVITY RELATIONSHIPS 769 IMAGE 15 CONTENTS XLIX 28.6 ENZYME-INHIBITOR STRUCTURE-ACTIVITY RELATIONSHIPS 772 28.7 CONDUSIONS 777 REFERENCES 778 29 REDUCTION POTENTIALS OF PEPTIDE-BOUND COPPER (II) - RELEVANCE FOR ALZHEIMER'S DISEASE AND PRION DISEASES 781 ARVI RAUK 29.1 INTRODUCTION 781 29.2 COPPER BINDING IN ALBUMIN - TYPE 2 783 29.3 COPPER BINDING TO CERULOPLASMIN - TYPE 1 785 29.4 THE PRION PROTEIN OCTAREPEAT REGION 787 29.5 COPPER AND THE AMYLOID BETA PEPTIDE (ASS) OF ALZHEIMER'S DISEASE 789 29.6 CU(II)/CU(I) REDUCTION POTENTIALS IN CU/ASS 793 29.7 CONCLUDING REMARKS 794 29.A APPENDIX 795 29.A.1 CALCULATION OF REDUCTION POTENTIALS, E, OF COPPER/PEPTIDE COMPLEXES 795 29.A.2 COMPUTATIONAL METHODOLOGY 796 REFERENCES 798 30 THEORETICAL INVESTIGATION OF NSAID PHOTODEGRADATION MECHANISMS 805 KIEF AH A.K. MUSA AND LEIFA. ERIKSSON 30.1 DRUG SAFETY 805 30.2 DRUG PHOTOSENSITIVITY 806 30.2.1 PHOTOALLERGIES 807 30.2.2 PHOTOPHOBIA 807 30.2.3 PHOTOTOXICITY 807 30.3 NON-STEROID ANTI-INFLAMMATORY DRUGS (NSAIDS) 808 30.3.1 NSAID: DEFINITION AND CLASSIFICATION 808 30.3.2 PHARMACOLOGICAL ACTION 808 30.3.3 NSAID USES 809 30.3.4 SIDE EFFECTS 830 30.4 NSAID PHOTOTOXIRITY 833 30.5 THEORETICAL STUDIES 812 30.5.1 OVERVIEW 812 30.5.2 METHODOLOGY 814 30.6 REDOX CHEMISTRY 835 30.7 NSAID ORBITAL STRUCTURES 817 30.8 NSAID ABSORPTION SPECTRA 820 30.9 EXDTED STATE REACTIONS 823 30.9.1 PHOTODEGRADATION FROM THE TI STATE 825 30.9.2 POSSIBLE PHOTODEGRADATION FROM SINGLET EXDTED STATES 826 30.10 REACTIVE OXYGEN SPEDES (ROS) AND RADICAL FORMATION 827 IMAGE 16 LI CONTENTS 30.11 EFFECTS OF THE FORMED ROS AND RADICALS DURING THE PHOTODEGRADATION MECHANISMS 828 30.12 CONDUSIONS 830 REFERENCES 831 PART FIVE BIOCHEMICAL SIGNATURE OF QUANTUM INDETERMINISM 835 31 QUANTUM INDETERMINISM, MUTATION, NATURAL SELECTION, AND THE MEANING OF LIFE 837 DAVID N. STAMOS 31.1 INTRODUCTION 837 31.2 A SHORT HISTORY OF THE DEBATE IN PHILOSOPHY OF BIOLOGY 839 31.3 REPLIES TO MY PAPER 842 31.4 THE QUANTUM INDETERMINISTIC BASIS OF MUTATIONS 845 31.4.1 TAUTOMERIC SHIFTS 845 31.4.2 PROTON TUNNELING 849 31.4.3 AQUEOUS THERMAL MOTION 852 31.5 MUTATION AND THE DIRECTION OF EVOLUTION 853 31.6 MUTATIONAL ORDER 855 31.7 THE NATURE OF NATURAL SELECTION 857 31.8 THE MEANING OF LIFE 863 REFERENCES 867 32 MOLECULAR ORBITALS: DISPOSITIONS OR PREDICTIVE STRUCTURES? 873 JEAN-PIERRE LLORED AND MICHEL BITBOL 32.1 ORIGINS OF QUANTUM MODELS IN CHEMISTRY: THE COMPOSITE AND THE AGGREGATE 874 32.2 EVOLUTION OF THE QUANTUM APPROACHES AND BIOLOGY 876 32.3 PHILOSOPHICAL IMPLICATIONS OF MOLECULAR QUANTUM HOLISM: DISPOSITIONS AND PREDICTIVE STRUCTURES 882 32.3.1 MOLECULAR LANDSCAPES AND PROCESS 882 32.3.2 REALISM OF DISPOSITION AND PREDICTIVE STRUCTURES 886 32.4 CLOSING REMARKS 893 REFERENCES 893 INDEX 897
any_adam_object 1
author_GND (DE-588)132780372
building Verbundindex
bvnumber BV025560550
classification_rvk VE 5650
WD 2100
WD 9000
classification_tum CHE 802f
ctrlnum (DE-599)BVBBV025560550
discipline Chemie / Pharmazie
Biologie
Chemie
format Book
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>00000nam a2200000 ca4500</leader><controlfield tag="001">BV025560550</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20121022</controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">100417nuuuuuuuu |||| 00||| eng d</controlfield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">09,N21,1033</subfield><subfield code="2">dnb</subfield></datafield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">994010621</subfield><subfield code="2">DE-101</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783527323227</subfield><subfield code="9">978-3-527-32322-7</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV025560550</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">VE 5650</subfield><subfield code="0">(DE-625)147118:253</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">WD 2100</subfield><subfield code="0">(DE-625)148162:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">WD 9000</subfield><subfield code="0">(DE-625)148252:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">CHE 802f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Quantum biochemistry</subfield><subfield code="b">[electronic structure and biological activity]</subfield><subfield code="c">ed. by Chérif F. Matta</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Weinheim</subfield><subfield code="b">Wiley-VCH</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Quantenbiochemie</subfield><subfield code="0">(DE-588)4176595-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Quantenbiochemie</subfield><subfield code="0">(DE-588)4176595-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Matta, Chérif F.</subfield><subfield code="e">Sonstige</subfield><subfield code="0">(DE-588)132780372</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2=" "><subfield code="u">http://deposit.dnb.de/cgi-bin/dokserv?id=3294468&amp;prov=M&amp;dok_var=1&amp;dok_ext=htm</subfield><subfield code="3">Inhaltstext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">DNB Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&amp;doc_library=BVB01&amp;local_base=BVB01&amp;doc_number=019100186&amp;sequence=000001&amp;line_number=0001&amp;func_code=DB_RECORDS&amp;service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-019100186</subfield></datafield></record></collection>
id DE-604.BV025560550
illustrated Not Illustrated
indexdate 2024-11-25T17:37:10Z
institution BVB
isbn 9783527323227
language English
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-019100186
open_access_boolean
publishDateSort 0000
publisher Wiley-VCH
record_format marc
spellingShingle Quantum biochemistry [electronic structure and biological activity]
Quantenbiochemie (DE-588)4176595-3 gnd
subject_GND (DE-588)4176595-3
title Quantum biochemistry [electronic structure and biological activity]
title_auth Quantum biochemistry [electronic structure and biological activity]
title_exact_search Quantum biochemistry [electronic structure and biological activity]
title_full Quantum biochemistry [electronic structure and biological activity] ed. by Chérif F. Matta
title_fullStr Quantum biochemistry [electronic structure and biological activity] ed. by Chérif F. Matta
title_full_unstemmed Quantum biochemistry [electronic structure and biological activity] ed. by Chérif F. Matta
title_short Quantum biochemistry
title_sort quantum biochemistry electronic structure and biological activity
title_sub [electronic structure and biological activity]
topic Quantenbiochemie (DE-588)4176595-3 gnd
topic_facet Quantenbiochemie
url http://deposit.dnb.de/cgi-bin/dokserv?id=3294468&prov=M&dok_var=1&dok_ext=htm
http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=019100186&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA
work_keys_str_mv AT mattacheriff quantumbiochemistryelectronicstructureandbiologicalactivity