Geometry, topology and quantum field theory
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Dordrecht [u.a.]
Kluwer Acad. Publ.
2003
|
Schriftenreihe: | Fundamental theories of physics
130 |
Schlagworte: | |
Online-Zugang: | Inhaltstext Inhaltsverzeichnis |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV025524305 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | t | ||
008 | 100417s2003 |||| 00||| eng d | ||
016 | 7 | |a 977619842 |2 DE-101 | |
020 | |a 1402014147 |9 1-402-01414-7 | ||
020 | |a 9781402014147 |9 978-1-402-01414-7 | ||
035 | |a (OCoLC)249344522 | ||
035 | |a (DE-599)BVBBV025524305 | ||
040 | |a DE-604 |b ger |e rakwb | ||
041 | 0 | |a eng | |
049 | |a DE-11 | ||
082 | 0 | |a 530.143 | |
084 | |a UO 4000 |0 (DE-625)146237: |2 rvk | ||
100 | 1 | |a Bandyopadhyay, Pratul |e Verfasser |4 aut | |
245 | 1 | 0 | |a Geometry, topology and quantum field theory |c by Pratul Bandyopadhyay |
264 | 1 | |a Dordrecht [u.a.] |b Kluwer Acad. Publ. |c 2003 | |
300 | |a XI, 217 S. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a Fundamental theories of physics |v 130 | |
650 | 0 | 7 | |a Topologische Quantenfeldtheorie |0 (DE-588)4426450-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Quantenfeldtheorie |0 (DE-588)4047984-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Topologie |0 (DE-588)4060425-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Geometrische Quantisierung |0 (DE-588)4156720-1 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Geometrische Quantisierung |0 (DE-588)4156720-1 |D s |
689 | 0 | 1 | |a Topologische Quantenfeldtheorie |0 (DE-588)4426450-1 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Quantenfeldtheorie |0 (DE-588)4047984-5 |D s |
689 | 1 | 1 | |a Topologie |0 (DE-588)4060425-1 |D s |
689 | 1 | |8 1\p |5 DE-604 | |
830 | 0 | |a Fundamental theories of physics |v 130 |w (DE-604)BV000012461 |9 130 | |
856 | 4 | 2 | |q text/html |u http://deposit.dnb.de/cgi-bin/dokserv?id=2742382&prov=M&dok_var=1&dok_ext=htm |3 Inhaltstext |
856 | 4 | 2 | |m GBV Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=020132123&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-020132123 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804142700763545600 |
---|---|
adam_text | GEOMETRY, TOPOLOGY AND QUANTUM FIELD THEORY BY PRATUL BANDYOPADHYAY
INDIAN STATISTICAL INSTITUTE, KOLKATTA, INDIA KLUWER ACADEMIC PUBLISHERS
DORDRECHT / BOSTON / LONDON CONTENTS PREFACE VU 1 THEORY OF SPINORS 1
1.1 SPINORS AND SPIN STRUCTURE 1 1.1.1 SPINOR SPACE AND SPINOR ALGEBRA 1
1.1.2 SPINORS AND TENSORS 5 1.1.3 UNIVERSAL COVERING SPACE 6 1.1.4
SPINOR STRUCTURE 7 1.2 SPINORS IN DIFFERENT DIMENSIONS 9 1.2.1 SIMPLE
SPINOR GEOMETRY 9 1.2.2 CONFORMAL SPINORS 13 1.2.3 TWISTORS AND CARTAN
SEMISPINORS 14 1.3 SUPERSYMMETRY AND SUPERSPACE . * . 16 1.3.1
SUPERSYMMETRY ALGEBRA 16 1.3.2 SUPERSPACE . . 19 1.3.3 SPINOR STRUCTURE
AND SUPERSPACE 20 2 FERMIONS AND TOPOLOGY 25 2.1 FERMI FIELD AND
NONLINEAR SIGMA MODEL 25 2.1.1 QUANTIZATION OF A FERMI FIELD AND
SYMPLETIC STRUCTURE 25 2.1.2 GAUGE THEORETIC EXTENSION OF A FERMION AND
NONLIN- EAR SIGMA MODEL 29 2.1.3 BOSON-FERMION TRANSFORMATION 31 2.1.4
VORTEX LINE, MAGNETIC FLUX AND FERMION QUANTIZATION 33 2.2 QUANTIZATION
AND ANOMALY . . 36 2.2.1 QUANTUM MECHANICAL SYMMETRY BREAKING AND
ANOMALY 36 2.2.2 PATH INTEGRAL FORMALISM AND CHIRAL ANOMALY 43 2.2.3
QUANTIZATION OF A FERMION AND CHIRAL ANOMALY .... 46 2.3 ANOMALY AND
TOPOLOGY 50 2.3.1 TOPOLOGICAL ASPECTS OF ANOMALY 50 2.3.2 CHIRAL ANOMALY
AND BERRY PHASE 58 2.3.3 BERRY PHASE AND FERMION NUMBER 68 3 ELECTROWEAK
THEORY 71 3.1 WEINBERG - SALAM THEORY 71 3.1.1 SPONTANEOUS SYMMETRY
BREAKING AND THE NATURE OF VACUUM 71 IX 3.1.2 WEINBERG-SALAM THEORY OF
ELECTROWEAK INTERACTION . . 75 3.1.3 RENORMALIZATION OF YANG-MILLS
THEORY WITH SPONTA- NEOUS SYMMETRY BREAKING 80 3.2 TOPOLOGICAL FEATURES
IN FIELD THEORY 84 3.2.1 THE SINE-GORDON MODEL 84 3.2.2 VORTEX LINES 88
3.2.3 THE DIRAC MONOPOLE 90 3.2.4 THE T HOOFT POLYAKOV MONOPOLE 93 3.2.5
INSTANTONS 98 3.3 TOPOLOGICAL ORIGIN OF MASS 103 3.3.1 TOPOLOGICAL
ASPECTS OF CHIRAL ANOMALY AND ORIGIN OF MASS 103 3.3.2 WEAK INTERACTION
GAUGE BOSONS AND TOPOLOGICAL ORI- GIN OF MASS 107 3.3.3 TOPOLOGICAL
FEATURES AND SOME ASPECTS OF WEAK IN- TERACTION PHENOMENOLOGY 112 SKYRME
MODEL 119 4.1 NONLINEAR SIGMA MODEL 119 4.1.1 CHIRAL SYMMETRY BREAKING
AND NONLINEAR SIGMA MODELLL9 4.1.2 NONLINEAR SIGMA MODEL IN DIFFERENT
DIMENSIONS .... 122 4.1.3 TOPOLOGICAL TERM IN NONLINEAR SIGMA MODEL 123
4.2 SKYRME MODEL FOR NUCLEONS 126 4.2.1 SKYRME S APPROACH : MESONIC
FLUID MODEL 126 4.2.2 NUCLEONS AS TOPOLOGICAL SKYRMIONS 127 4.2.3 STATIC
PROPERTIES OF NUCLEONS 131 4.3 BARYONS AS THREE FLAVOR SOLITONS 136
4.3.1 EXTENSION OF NUCLENOIC MODEL TO SU(3) SYMMETRY . . 136 4.3.2
SKYRMIONS AND QUANTUM CHROMODYNAMICS 138 4.3.3 SKYRMION STATISTICS 140
GEOMETRICAL ASPECTS OF A SKYRMION 143 5.1 MICROLOCAL SPACE TIME AND
FERMIONS 143 5.1.1 MICROLOCAL SPACE TIME AND MASSIVE FERMIONS AS
SOLITONSL43 5.1.2 BOSONIC DEGREES OF FREEDOM AND FERMION 145 5.1.3
GEOMETRIC PHASE AND 0-TERM 147 5.2 INTERNAL SYMMETRY OF HADRONS 150
5.2.1 GEOMETRICAL ASPECTS OF CONFORMAL SPINORS 150 5.2.2 REFLECTION
GROUP AND THE INTERNAL SYMMETRY OF HADRONS 152 XI 5.2.3 COMPOSITE STATE
OF SKYRMIONS AND STATIC PROPERTIES OF BARYONS 156 5.3 SUPERSYMMETRY AND
INTERNAL SYMMETRY . 158 5.3.1 CONFORMAL SPINORS AND SUPERSYMMETRY 158
5.3.2 REFLECTION GROUP, SUPERSYMMETRY AND INTERNAL SYM- METRY 161 5.3.3
CONFORMAL SPINORS AND SYMMETRY GROUP OF INTERACTIONS 162 6
NONCOMMUTATIVE GEOMETRY 165 6.1 QUANTUM SPACE TIME 165 6.1.1
NONCOMMUTATIVE GEOMETRY : PHYSICAL PERSPECTIVE . . 165 6.1.2
NONCOMMUTATIVE GEOMETRY AND QUANTUM PHASE SPACE 168 6.1.3 NONCOMMUTATIVE
GEOMETRY AND QUANTUM GROUP ... 174 6.2 NONCOMMUTATIVE GEOMETRY AND
PARTICLE PHYSICS 177 6.2.1 NONCOMMUTATIVE GEOMETRY AND ELECTROWEAK
THEORY . 177 6.2.2 NONCOMMUTATIVE GEOMETRY AND STANDARD MODEL . . . 180
6.2.3 NONCOMMUTATIVE GENERALIZATION OF GAUGE THEORY . . 183 6.3 DISCRETE
SPACE AS THE INTERNAL SPACE 186 6.3.1 NONCOMMUTATIVE GEOMETRY AND
QUANTIZATION OF A FERMION 186 6.3.2 NONCOMMUTATIVE GEOMETRY,
DISCONNECTED GAUGE GROUP AND CHIRAL ANOMALY 190 6.3.3 NONCOMMUTATIVE
GEOMETRY, GEOMETRICAL ASPECTS OF A SKYRMION AND POLYAKOV STRING 193
REFERENCES 205 SUBJECT INDEX 217
|
any_adam_object | 1 |
author | Bandyopadhyay, Pratul |
author_facet | Bandyopadhyay, Pratul |
author_role | aut |
author_sort | Bandyopadhyay, Pratul |
author_variant | p b pb |
building | Verbundindex |
bvnumber | BV025524305 |
classification_rvk | UO 4000 |
ctrlnum | (OCoLC)249344522 (DE-599)BVBBV025524305 |
dewey-full | 530.143 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 530 - Physics |
dewey-raw | 530.143 |
dewey-search | 530.143 |
dewey-sort | 3530.143 |
dewey-tens | 530 - Physics |
discipline | Physik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02038nam a2200481 cb4500</leader><controlfield tag="001">BV025524305</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">100417s2003 |||| 00||| eng d</controlfield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">977619842</subfield><subfield code="2">DE-101</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1402014147</subfield><subfield code="9">1-402-01414-7</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781402014147</subfield><subfield code="9">978-1-402-01414-7</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)249344522</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV025524305</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-11</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">530.143</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UO 4000</subfield><subfield code="0">(DE-625)146237:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Bandyopadhyay, Pratul</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Geometry, topology and quantum field theory</subfield><subfield code="c">by Pratul Bandyopadhyay</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Dordrecht [u.a.]</subfield><subfield code="b">Kluwer Acad. Publ.</subfield><subfield code="c">2003</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XI, 217 S.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Fundamental theories of physics</subfield><subfield code="v">130</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Topologische Quantenfeldtheorie</subfield><subfield code="0">(DE-588)4426450-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Quantenfeldtheorie</subfield><subfield code="0">(DE-588)4047984-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Topologie</subfield><subfield code="0">(DE-588)4060425-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Geometrische Quantisierung</subfield><subfield code="0">(DE-588)4156720-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Geometrische Quantisierung</subfield><subfield code="0">(DE-588)4156720-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Topologische Quantenfeldtheorie</subfield><subfield code="0">(DE-588)4426450-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Quantenfeldtheorie</subfield><subfield code="0">(DE-588)4047984-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Topologie</subfield><subfield code="0">(DE-588)4060425-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Fundamental theories of physics</subfield><subfield code="v">130</subfield><subfield code="w">(DE-604)BV000012461</subfield><subfield code="9">130</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="q">text/html</subfield><subfield code="u">http://deposit.dnb.de/cgi-bin/dokserv?id=2742382&prov=M&dok_var=1&dok_ext=htm</subfield><subfield code="3">Inhaltstext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">GBV Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=020132123&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-020132123</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV025524305 |
illustrated | Not Illustrated |
indexdate | 2024-07-09T22:35:56Z |
institution | BVB |
isbn | 1402014147 9781402014147 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-020132123 |
oclc_num | 249344522 |
open_access_boolean | |
owner | DE-11 |
owner_facet | DE-11 |
physical | XI, 217 S. |
publishDate | 2003 |
publishDateSearch | 2003 |
publishDateSort | 2003 |
publisher | Kluwer Acad. Publ. |
record_format | marc |
series | Fundamental theories of physics |
series2 | Fundamental theories of physics |
spelling | Bandyopadhyay, Pratul Verfasser aut Geometry, topology and quantum field theory by Pratul Bandyopadhyay Dordrecht [u.a.] Kluwer Acad. Publ. 2003 XI, 217 S. txt rdacontent n rdamedia nc rdacarrier Fundamental theories of physics 130 Topologische Quantenfeldtheorie (DE-588)4426450-1 gnd rswk-swf Quantenfeldtheorie (DE-588)4047984-5 gnd rswk-swf Topologie (DE-588)4060425-1 gnd rswk-swf Geometrische Quantisierung (DE-588)4156720-1 gnd rswk-swf Geometrische Quantisierung (DE-588)4156720-1 s Topologische Quantenfeldtheorie (DE-588)4426450-1 s DE-604 Quantenfeldtheorie (DE-588)4047984-5 s Topologie (DE-588)4060425-1 s 1\p DE-604 Fundamental theories of physics 130 (DE-604)BV000012461 130 text/html http://deposit.dnb.de/cgi-bin/dokserv?id=2742382&prov=M&dok_var=1&dok_ext=htm Inhaltstext GBV Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=020132123&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Bandyopadhyay, Pratul Geometry, topology and quantum field theory Fundamental theories of physics Topologische Quantenfeldtheorie (DE-588)4426450-1 gnd Quantenfeldtheorie (DE-588)4047984-5 gnd Topologie (DE-588)4060425-1 gnd Geometrische Quantisierung (DE-588)4156720-1 gnd |
subject_GND | (DE-588)4426450-1 (DE-588)4047984-5 (DE-588)4060425-1 (DE-588)4156720-1 |
title | Geometry, topology and quantum field theory |
title_auth | Geometry, topology and quantum field theory |
title_exact_search | Geometry, topology and quantum field theory |
title_full | Geometry, topology and quantum field theory by Pratul Bandyopadhyay |
title_fullStr | Geometry, topology and quantum field theory by Pratul Bandyopadhyay |
title_full_unstemmed | Geometry, topology and quantum field theory by Pratul Bandyopadhyay |
title_short | Geometry, topology and quantum field theory |
title_sort | geometry topology and quantum field theory |
topic | Topologische Quantenfeldtheorie (DE-588)4426450-1 gnd Quantenfeldtheorie (DE-588)4047984-5 gnd Topologie (DE-588)4060425-1 gnd Geometrische Quantisierung (DE-588)4156720-1 gnd |
topic_facet | Topologische Quantenfeldtheorie Quantenfeldtheorie Topologie Geometrische Quantisierung |
url | http://deposit.dnb.de/cgi-bin/dokserv?id=2742382&prov=M&dok_var=1&dok_ext=htm http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=020132123&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
volume_link | (DE-604)BV000012461 |
work_keys_str_mv | AT bandyopadhyaypratul geometrytopologyandquantumfieldtheory |