Geometry, topology and quantum field theory

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Bandyopadhyay, Pratul (VerfasserIn)
Format: Buch
Sprache:English
Veröffentlicht: Dordrecht [u.a.] Kluwer Acad. Publ. 2003
Schriftenreihe:Fundamental theories of physics 130
Schlagworte:
Online-Zugang:Inhaltstext
Inhaltsverzeichnis
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nam a2200000 cb4500
001 BV025524305
003 DE-604
005 00000000000000.0
007 t
008 100417s2003 |||| 00||| eng d
016 7 |a 977619842  |2 DE-101 
020 |a 1402014147  |9 1-402-01414-7 
020 |a 9781402014147  |9 978-1-402-01414-7 
035 |a (OCoLC)249344522 
035 |a (DE-599)BVBBV025524305 
040 |a DE-604  |b ger  |e rakwb 
041 0 |a eng 
049 |a DE-11 
082 0 |a 530.143 
084 |a UO 4000  |0 (DE-625)146237:  |2 rvk 
100 1 |a Bandyopadhyay, Pratul  |e Verfasser  |4 aut 
245 1 0 |a Geometry, topology and quantum field theory  |c by Pratul Bandyopadhyay 
264 1 |a Dordrecht [u.a.]  |b Kluwer Acad. Publ.  |c 2003 
300 |a XI, 217 S. 
336 |b txt  |2 rdacontent 
337 |b n  |2 rdamedia 
338 |b nc  |2 rdacarrier 
490 1 |a Fundamental theories of physics  |v 130 
650 0 7 |a Topologische Quantenfeldtheorie  |0 (DE-588)4426450-1  |2 gnd  |9 rswk-swf 
650 0 7 |a Quantenfeldtheorie  |0 (DE-588)4047984-5  |2 gnd  |9 rswk-swf 
650 0 7 |a Topologie  |0 (DE-588)4060425-1  |2 gnd  |9 rswk-swf 
650 0 7 |a Geometrische Quantisierung  |0 (DE-588)4156720-1  |2 gnd  |9 rswk-swf 
689 0 0 |a Geometrische Quantisierung  |0 (DE-588)4156720-1  |D s 
689 0 1 |a Topologische Quantenfeldtheorie  |0 (DE-588)4426450-1  |D s 
689 0 |5 DE-604 
689 1 0 |a Quantenfeldtheorie  |0 (DE-588)4047984-5  |D s 
689 1 1 |a Topologie  |0 (DE-588)4060425-1  |D s 
689 1 |8 1\p  |5 DE-604 
830 0 |a Fundamental theories of physics  |v 130  |w (DE-604)BV000012461  |9 130 
856 4 2 |q text/html  |u http://deposit.dnb.de/cgi-bin/dokserv?id=2742382&prov=M&dok_var=1&dok_ext=htm  |3 Inhaltstext 
856 4 2 |m GBV Datenaustausch  |q application/pdf  |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=020132123&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA  |3 Inhaltsverzeichnis 
999 |a oai:aleph.bib-bvb.de:BVB01-020132123 
883 1 |8 1\p  |a cgwrk  |d 20201028  |q DE-101  |u https://d-nb.info/provenance/plan#cgwrk 

Datensatz im Suchindex

_version_ 1804142700763545600
adam_text GEOMETRY, TOPOLOGY AND QUANTUM FIELD THEORY BY PRATUL BANDYOPADHYAY INDIAN STATISTICAL INSTITUTE, KOLKATTA, INDIA KLUWER ACADEMIC PUBLISHERS DORDRECHT / BOSTON / LONDON CONTENTS PREFACE VU 1 THEORY OF SPINORS 1 1.1 SPINORS AND SPIN STRUCTURE 1 1.1.1 SPINOR SPACE AND SPINOR ALGEBRA 1 1.1.2 SPINORS AND TENSORS 5 1.1.3 UNIVERSAL COVERING SPACE 6 1.1.4 SPINOR STRUCTURE 7 1.2 SPINORS IN DIFFERENT DIMENSIONS 9 1.2.1 SIMPLE SPINOR GEOMETRY 9 1.2.2 CONFORMAL SPINORS 13 1.2.3 TWISTORS AND CARTAN SEMISPINORS 14 1.3 SUPERSYMMETRY AND SUPERSPACE . * . 16 1.3.1 SUPERSYMMETRY ALGEBRA 16 1.3.2 SUPERSPACE . . 19 1.3.3 SPINOR STRUCTURE AND SUPERSPACE 20 2 FERMIONS AND TOPOLOGY 25 2.1 FERMI FIELD AND NONLINEAR SIGMA MODEL 25 2.1.1 QUANTIZATION OF A FERMI FIELD AND SYMPLETIC STRUCTURE 25 2.1.2 GAUGE THEORETIC EXTENSION OF A FERMION AND NONLIN- EAR SIGMA MODEL 29 2.1.3 BOSON-FERMION TRANSFORMATION 31 2.1.4 VORTEX LINE, MAGNETIC FLUX AND FERMION QUANTIZATION 33 2.2 QUANTIZATION AND ANOMALY . . 36 2.2.1 QUANTUM MECHANICAL SYMMETRY BREAKING AND ANOMALY 36 2.2.2 PATH INTEGRAL FORMALISM AND CHIRAL ANOMALY 43 2.2.3 QUANTIZATION OF A FERMION AND CHIRAL ANOMALY .... 46 2.3 ANOMALY AND TOPOLOGY 50 2.3.1 TOPOLOGICAL ASPECTS OF ANOMALY 50 2.3.2 CHIRAL ANOMALY AND BERRY PHASE 58 2.3.3 BERRY PHASE AND FERMION NUMBER 68 3 ELECTROWEAK THEORY 71 3.1 WEINBERG - SALAM THEORY 71 3.1.1 SPONTANEOUS SYMMETRY BREAKING AND THE NATURE OF VACUUM 71 IX 3.1.2 WEINBERG-SALAM THEORY OF ELECTROWEAK INTERACTION . . 75 3.1.3 RENORMALIZATION OF YANG-MILLS THEORY WITH SPONTA- NEOUS SYMMETRY BREAKING 80 3.2 TOPOLOGICAL FEATURES IN FIELD THEORY 84 3.2.1 THE SINE-GORDON MODEL 84 3.2.2 VORTEX LINES 88 3.2.3 THE DIRAC MONOPOLE 90 3.2.4 THE T HOOFT POLYAKOV MONOPOLE 93 3.2.5 INSTANTONS 98 3.3 TOPOLOGICAL ORIGIN OF MASS 103 3.3.1 TOPOLOGICAL ASPECTS OF CHIRAL ANOMALY AND ORIGIN OF MASS 103 3.3.2 WEAK INTERACTION GAUGE BOSONS AND TOPOLOGICAL ORI- GIN OF MASS 107 3.3.3 TOPOLOGICAL FEATURES AND SOME ASPECTS OF WEAK IN- TERACTION PHENOMENOLOGY 112 SKYRME MODEL 119 4.1 NONLINEAR SIGMA MODEL 119 4.1.1 CHIRAL SYMMETRY BREAKING AND NONLINEAR SIGMA MODELLL9 4.1.2 NONLINEAR SIGMA MODEL IN DIFFERENT DIMENSIONS .... 122 4.1.3 TOPOLOGICAL TERM IN NONLINEAR SIGMA MODEL 123 4.2 SKYRME MODEL FOR NUCLEONS 126 4.2.1 SKYRME S APPROACH : MESONIC FLUID MODEL 126 4.2.2 NUCLEONS AS TOPOLOGICAL SKYRMIONS 127 4.2.3 STATIC PROPERTIES OF NUCLEONS 131 4.3 BARYONS AS THREE FLAVOR SOLITONS 136 4.3.1 EXTENSION OF NUCLENOIC MODEL TO SU(3) SYMMETRY . . 136 4.3.2 SKYRMIONS AND QUANTUM CHROMODYNAMICS 138 4.3.3 SKYRMION STATISTICS 140 GEOMETRICAL ASPECTS OF A SKYRMION 143 5.1 MICROLOCAL SPACE TIME AND FERMIONS 143 5.1.1 MICROLOCAL SPACE TIME AND MASSIVE FERMIONS AS SOLITONSL43 5.1.2 BOSONIC DEGREES OF FREEDOM AND FERMION 145 5.1.3 GEOMETRIC PHASE AND 0-TERM 147 5.2 INTERNAL SYMMETRY OF HADRONS 150 5.2.1 GEOMETRICAL ASPECTS OF CONFORMAL SPINORS 150 5.2.2 REFLECTION GROUP AND THE INTERNAL SYMMETRY OF HADRONS 152 XI 5.2.3 COMPOSITE STATE OF SKYRMIONS AND STATIC PROPERTIES OF BARYONS 156 5.3 SUPERSYMMETRY AND INTERNAL SYMMETRY . 158 5.3.1 CONFORMAL SPINORS AND SUPERSYMMETRY 158 5.3.2 REFLECTION GROUP, SUPERSYMMETRY AND INTERNAL SYM- METRY 161 5.3.3 CONFORMAL SPINORS AND SYMMETRY GROUP OF INTERACTIONS 162 6 NONCOMMUTATIVE GEOMETRY 165 6.1 QUANTUM SPACE TIME 165 6.1.1 NONCOMMUTATIVE GEOMETRY : PHYSICAL PERSPECTIVE . . 165 6.1.2 NONCOMMUTATIVE GEOMETRY AND QUANTUM PHASE SPACE 168 6.1.3 NONCOMMUTATIVE GEOMETRY AND QUANTUM GROUP ... 174 6.2 NONCOMMUTATIVE GEOMETRY AND PARTICLE PHYSICS 177 6.2.1 NONCOMMUTATIVE GEOMETRY AND ELECTROWEAK THEORY . 177 6.2.2 NONCOMMUTATIVE GEOMETRY AND STANDARD MODEL . . . 180 6.2.3 NONCOMMUTATIVE GENERALIZATION OF GAUGE THEORY . . 183 6.3 DISCRETE SPACE AS THE INTERNAL SPACE 186 6.3.1 NONCOMMUTATIVE GEOMETRY AND QUANTIZATION OF A FERMION 186 6.3.2 NONCOMMUTATIVE GEOMETRY, DISCONNECTED GAUGE GROUP AND CHIRAL ANOMALY 190 6.3.3 NONCOMMUTATIVE GEOMETRY, GEOMETRICAL ASPECTS OF A SKYRMION AND POLYAKOV STRING 193 REFERENCES 205 SUBJECT INDEX 217
any_adam_object 1
author Bandyopadhyay, Pratul
author_facet Bandyopadhyay, Pratul
author_role aut
author_sort Bandyopadhyay, Pratul
author_variant p b pb
building Verbundindex
bvnumber BV025524305
classification_rvk UO 4000
ctrlnum (OCoLC)249344522
(DE-599)BVBBV025524305
dewey-full 530.143
dewey-hundreds 500 - Natural sciences and mathematics
dewey-ones 530 - Physics
dewey-raw 530.143
dewey-search 530.143
dewey-sort 3530.143
dewey-tens 530 - Physics
discipline Physik
format Book
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02038nam a2200481 cb4500</leader><controlfield tag="001">BV025524305</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">100417s2003 |||| 00||| eng d</controlfield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">977619842</subfield><subfield code="2">DE-101</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1402014147</subfield><subfield code="9">1-402-01414-7</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781402014147</subfield><subfield code="9">978-1-402-01414-7</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)249344522</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV025524305</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-11</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">530.143</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UO 4000</subfield><subfield code="0">(DE-625)146237:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Bandyopadhyay, Pratul</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Geometry, topology and quantum field theory</subfield><subfield code="c">by Pratul Bandyopadhyay</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Dordrecht [u.a.]</subfield><subfield code="b">Kluwer Acad. Publ.</subfield><subfield code="c">2003</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XI, 217 S.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Fundamental theories of physics</subfield><subfield code="v">130</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Topologische Quantenfeldtheorie</subfield><subfield code="0">(DE-588)4426450-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Quantenfeldtheorie</subfield><subfield code="0">(DE-588)4047984-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Topologie</subfield><subfield code="0">(DE-588)4060425-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Geometrische Quantisierung</subfield><subfield code="0">(DE-588)4156720-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Geometrische Quantisierung</subfield><subfield code="0">(DE-588)4156720-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Topologische Quantenfeldtheorie</subfield><subfield code="0">(DE-588)4426450-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Quantenfeldtheorie</subfield><subfield code="0">(DE-588)4047984-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Topologie</subfield><subfield code="0">(DE-588)4060425-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Fundamental theories of physics</subfield><subfield code="v">130</subfield><subfield code="w">(DE-604)BV000012461</subfield><subfield code="9">130</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="q">text/html</subfield><subfield code="u">http://deposit.dnb.de/cgi-bin/dokserv?id=2742382&amp;prov=M&amp;dok_var=1&amp;dok_ext=htm</subfield><subfield code="3">Inhaltstext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">GBV Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&amp;doc_library=BVB01&amp;local_base=BVB01&amp;doc_number=020132123&amp;sequence=000001&amp;line_number=0001&amp;func_code=DB_RECORDS&amp;service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-020132123</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection>
id DE-604.BV025524305
illustrated Not Illustrated
indexdate 2024-07-09T22:35:56Z
institution BVB
isbn 1402014147
9781402014147
language English
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-020132123
oclc_num 249344522
open_access_boolean
owner DE-11
owner_facet DE-11
physical XI, 217 S.
publishDate 2003
publishDateSearch 2003
publishDateSort 2003
publisher Kluwer Acad. Publ.
record_format marc
series Fundamental theories of physics
series2 Fundamental theories of physics
spelling Bandyopadhyay, Pratul Verfasser aut
Geometry, topology and quantum field theory by Pratul Bandyopadhyay
Dordrecht [u.a.] Kluwer Acad. Publ. 2003
XI, 217 S.
txt rdacontent
n rdamedia
nc rdacarrier
Fundamental theories of physics 130
Topologische Quantenfeldtheorie (DE-588)4426450-1 gnd rswk-swf
Quantenfeldtheorie (DE-588)4047984-5 gnd rswk-swf
Topologie (DE-588)4060425-1 gnd rswk-swf
Geometrische Quantisierung (DE-588)4156720-1 gnd rswk-swf
Geometrische Quantisierung (DE-588)4156720-1 s
Topologische Quantenfeldtheorie (DE-588)4426450-1 s
DE-604
Quantenfeldtheorie (DE-588)4047984-5 s
Topologie (DE-588)4060425-1 s
1\p DE-604
Fundamental theories of physics 130 (DE-604)BV000012461 130
text/html http://deposit.dnb.de/cgi-bin/dokserv?id=2742382&prov=M&dok_var=1&dok_ext=htm Inhaltstext
GBV Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=020132123&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis
1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk
spellingShingle Bandyopadhyay, Pratul
Geometry, topology and quantum field theory
Fundamental theories of physics
Topologische Quantenfeldtheorie (DE-588)4426450-1 gnd
Quantenfeldtheorie (DE-588)4047984-5 gnd
Topologie (DE-588)4060425-1 gnd
Geometrische Quantisierung (DE-588)4156720-1 gnd
subject_GND (DE-588)4426450-1
(DE-588)4047984-5
(DE-588)4060425-1
(DE-588)4156720-1
title Geometry, topology and quantum field theory
title_auth Geometry, topology and quantum field theory
title_exact_search Geometry, topology and quantum field theory
title_full Geometry, topology and quantum field theory by Pratul Bandyopadhyay
title_fullStr Geometry, topology and quantum field theory by Pratul Bandyopadhyay
title_full_unstemmed Geometry, topology and quantum field theory by Pratul Bandyopadhyay
title_short Geometry, topology and quantum field theory
title_sort geometry topology and quantum field theory
topic Topologische Quantenfeldtheorie (DE-588)4426450-1 gnd
Quantenfeldtheorie (DE-588)4047984-5 gnd
Topologie (DE-588)4060425-1 gnd
Geometrische Quantisierung (DE-588)4156720-1 gnd
topic_facet Topologische Quantenfeldtheorie
Quantenfeldtheorie
Topologie
Geometrische Quantisierung
url http://deposit.dnb.de/cgi-bin/dokserv?id=2742382&prov=M&dok_var=1&dok_ext=htm
http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=020132123&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA
volume_link (DE-604)BV000012461
work_keys_str_mv AT bandyopadhyaypratul geometrytopologyandquantumfieldtheory