Electrochemical sensors, biosensors and their biomedical applications
Gespeichert in:
Weitere Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Amsterdam [u.a.]
Elsevier, Acad. Press
2008
|
Ausgabe: | 1. ed. |
Online-Zugang: | Inhaltsverzeichnis |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV025457565 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | t| | ||
008 | 100417s2008 xx d||| |||| 00||| eng d | ||
020 | |a 9780123737380 |9 978-0-12-373738-0 | ||
035 | |a (OCoLC)254738315 | ||
035 | |a (DE-599)BVBBV025457565 | ||
040 | |a DE-604 |b ger |e rakwb | ||
041 | 0 | |a eng | |
049 | |a DE-11 | ||
082 | 0 | |a 541.37 | |
084 | |a WC 3420 |0 (DE-625)148084: |2 rvk | ||
245 | 1 | 0 | |a Electrochemical sensors, biosensors and their biomedical applications |c ed. by Xueji Zhang ... |
250 | |a 1. ed. | ||
264 | 1 | |a Amsterdam [u.a.] |b Elsevier, Acad. Press |c 2008 | |
300 | |a XXII, 593 S. |b graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
700 | 1 | |a Zhang, Xueji |4 edt | |
856 | 4 | 2 | |m HBZ Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=020073789&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-020073789 |
Datensatz im Suchindex
_version_ | 1819694315962630144 |
---|---|
adam_text | CONTENTS
List of Contributors xvii
Preface xxi
Chapter 1 Nitric oxide (NO) electrochemical sensors
Xueji Zhang
1.1 Introduction 1
1.1.1 Significance of nitric oxide in life science 1
1.1.2 Methods of measurement of nitric oxide in physiology 2
1.1.3 Advantages of electrochemical sensors for determination of NO 2
1.2 Principles of determination of NO by electrochemical sensors 3
1.3 Fabrication of electrodes for NO determination 4
1.3.1 Clark type NO electrodes 4
1.3.2 Modified carbon fiber NO microelectrodes 5
1.3.3 Integrated NO microelectrodes 6
1.3.4 Other NO electrodes 1
1.4 Calibration of NO electrodes 8
1.4.1 Calibration using an NO standard solution 8
1.4.2 Calibration based on decomposition of SNAP 9
1.4.3 Calibration based on chemical generation of NO 9
1.5 Characterization of NO electrodes 10
1.5.1 Sensitivity and detection limit 11
1.5.2 Selectivity^ 12
1.5.3 Response time 12
1.5.4 Effect of temperature and pH on NO electrodes 13
1.6 Selected applications of NO electrodes 14
1.7 Concluding remarks and other directions 23
1.8 Acknowledgments 23
1.9 References 23
vi Contents
Chapter 2 Biosensors for pesticides
Huangxian Ju and Vivek Babu Kandimalla
2.1 Introduction 32
2.1.1 Need for pesticide biosensors 32
2.1.2 Developments in pesticide biosensors 32
2.1.3 Thrust areas for pesticide biosensors 33
2.2 Biocatalysts used in pesticide biosensors 33
2.2.1 Enzymes used in pesticide biosensors and their features 33
2.2.2 Immobilization methods used in pesticide biosensors design 34
2.3 Enzyme-based biosensors construction 35
2.3.1 Pesticides measuring principles 35
2.3.2 Inhibition-based biosensors 35
2.3.3 Catalysis-based biosensors 37
2.3.4 Flow injection biosensors 38
2.3.5 Enzyme reactivation 40
2.4 Pesticide immunosensors 40
2.4.1 Detection methods for pesticide immunosensors 42
2.4.2 Immunosensors for pesticides 42
2.4.2.1 Piezoelectric immunosensors 42
2.4.2.2 Optical immunosensors 42
2.4.2.3 Electrochemical immunosensors 45
2.4.3 Regeneration of pesticide immunosensors 46
2.5 Whole cell and tissue-based pesticide biosensors 48
2.6 Major interfering compounds and sample pretreatment 49
2.7 Conclusions 49
2.8 Acknowledgments 50
2.9 References 50
Chapter 3 Electrochemical glucose biosensors
Joseph Wang
3.1 Introduction 57
3.2 Forty years of progress 58
3.3 First-generation glucose biosensors 59
3.3.1 Redox interferences 59
3.3.2 Oxygen dependence 61
3.4 Second-generation glucose biosensors 61
3.4.1 Electron transfer between GOx and electrode surfaces 61
3.4.2 Use of artificial mediators 62
3.4.3 Attachment of electron-transfer relays 62
3.5 In-vitro glucose testing 63
3.6 Continuous real-time in-vivo monitoring 65
Contents vii
3.6.1 Requirements 65
3.6.2 Subcutaneous monitoring 65
3.6.3 Towards non-invasive glucose monitoring 66
3.7 Conclusions and outlook 67
3.8 References 67
Chapter 4 New trends in ion-selective electrodes
Sergey Makarychev-Mikhailov, Alexey Shvarev, and Eric Bakker
4.1 Introduction 71
4.1.1 State-of-the-art 71
4.1.2 Most important biomedical applications of ion-selective electrodes 73
4.2 Classical ion-selective electrodes 77
4.2.1 Understanding of the operational principles 77
4.2.2 Response characteristics: selectivity and detection limits 81
4.2.3 Reference electrodes 85
4.3 New transduction principles 86
4.3.1 Polyion-selective electrodes 86
4.3.2 Galvanostatically controlled sensors 90
4.3.3 Voltammetric ion-selective electrodes 95
4.3.4 Light-addressable potentiometric sensors 96
4.4 New sensor materials 98
4.4.1 Membrane components 98
4.4.2 Solid contact 102
4.4.3 Biocompatibility improvement 103
4.5 Miniaturization 104
4.5.1 Miniaturization 104
4.5.2 Sensor arrays 105
4.6 Future prospects and conclusions 108
4.7 Acknowledgments 109
4.8 References 109
Chapter 5 Recent developments in electrochemical immunoassays and
immunosensors
Jeremy M. Fowler, Danny K. Y. Wong, H. Brian Halsall, and William R. Heineman
5.1 Introduction 115
5.2 The antibody-antigen interaction 116
5.3 Immunoassays and immunosensors 118
5.3.1 Competitive immunoassay systems 118
5.3.2 Non-competitive immunoassay systems 120
5.4 Modes of antibody immobilization 122
viii Contents
5.4.1 Biotin-(strept)avidin interaction 122
5.4.2 Antibody-binding proteins 124
5.4.3 Conducting polymers 125
5.4.4 Self-assembled monolayers 126
5.4.5 Antibody fragments 129
5.5 Electrochemical detection techniques 130
5.5.1 Potentiometric immunosensors 131
5.5.2 Amperometric immunosensors 131
5.5.3 Voltammetric immunoassays 134
5.5.4 Impedimetric immunoassays and immunosensors 135
5.6 Microfluidic electrochemical immunoassay systems 138
5.7 Concluding remarks 139
5.8 References 140
Chapter 6 Superoxide electrochemical sensors and biosensors:
principles, development and applications
Lanqun Mao, Yang Tian, and Takeo Ohsaka
6.1 Chemistry and biochemistry of superoxide 145
6.2 C«2~ bioassay: an overview 146
6.3 O2 ~ electrochemistry and O2 ~ electrochemical sensors 147
6.4 Electrochemical sensors for O2*~ 148
6.4.1 Biosensors with enzymes other than SODs 148
6.4.2 Brief introduction to SODs 149
6.4.3 Electrochemistry of SODs 151
6.4.4 SOD-based electrochemical biosensors for O2~ 162
6.4.5 SOD-based micro-sized biosensors for O{~ 174
6.5 Concluding remarks and other directions 177
6.6 Acknowledgments 177
6.7 References 178
Chapter 7 Detection of charged macromolecules by means of field-effect
devices (FEDs): possibilities and limitations
Michael J. Schoning and Arshak Poghossian
7.1 Introductory part and status report 187
7.2 Capacitance-voltage characteristics of a bare and functionalized EIS
structure 193
7.3 Direct electrostatic DNA detection by its intrinsic molecular charge 197
7.4 New method for label-free electrical DNA detection 201
7.5 Measurement results utilizing polyelectrolyte layers and synthetic DNA 205
Contents ix
7.6 Conclusions and future perspectives 208
7.7 Acknowledgments 209
7.8 References 209
Chapter 8 Electrochemical sensors for the determination of
hydrogen sulfide production in biological samples
David W. Kraus, Jeannette E. Doeller, and Xueji Zhang
8.1 Introduction 214
8.1.1 Significance of H2S in the life sciences 215
8.1.1.1 H2S chemistry 215
8.1.1.2 H2S biology 216
8.1.2 H2S measurement in biological samples 216
8.1.2.1 Stability of sulfur 216
8.1.2.2 Methods for H2S measurements 217
8.2 Advantages of electrochemical sensors for H2S determination 218
8.2.1 Electrochemistry 218
8.2.2 Multi-sensor respirometry 219
8.3 Fabrication of polarographic H2S sensors 220
8.3.1 Macro polarographic H2S sensors 220
8.3.2 Miniature polarographic H2S sensors 220
8.4 Calibration of polarographic H2S sensors 221
8.4.1 H2S stock solutions 221
8.4.2 Chemical sources of H2S 222
8.5 Characterization of polarographic H2S sensors 222
8.5.1 Selectivity 223
8.5.2 Sensitivity 224
8.5.3 Detection limit 226
8.5.4 Stability 226
8.5.5 Reproducibility, precision and accuracy 226
8.5.6 Linearity and dynamic response range 227
8.5.7 Response time 227
8.5.8 Reliability (maintenance-free working time) 227
8.5.9 Biocompatibility 227
8.6 Applications of polarographic H2S sensors in biological samples 228
8.6.1 Measurement of H2S production 228
8.6.1.1 Tissue homogenates 228
8.6.1.2 Cultured and isolated cells 228
8.6.1.3 Intact tissues and organs 229
8.6.2 Measurement of H2S consumption 229
8.6.2.1 Isolated mussel gill mitochondria 229
8.6.2.2 Cultured cells, intact tissues and organs 230
X Contents
8.6.3 Simultaneous measurement of H2S level and vessel tension 232
8.6.4 Measurement of steady-state H2S levels in blood and tissue 233
8.7 Concluding remarks and future directions 233
8.8 Acknowledgments 233
8.9 References 234
Chapter 9 Aspects of recent development of immunosensors
Hua Wang, Guoli Shen, and Ruqin Yu
9.1 Introduction 237
9.1.1 General working principle of immunosensors 237
9.1.2 Main performance characteristics of immunosensors in clinical analysis 238
9.2 Immobilization of immunoactive elements 239
9.2.1 Non-covalent interaction-based immobilization procedures 239
9.2.2 Covalent interaction-based immobilization procedures 241
9.3 Major types of immunosensors 243
9.3.1 Electrochemical immunosensors 243
9.3.2 Optical immunosensors 246
9.3.3 Microgravimetric immunosensors 248
9.3.4 Other kinds of immunosensors 250
9.4 Conclusion and future trends 251
9.5 References 252
Chapter 10 Microelectrodes for in-vivo determination of pH
David D. Zhou
10.1 Introduction 262
10.1.1 Significance ofpH measurement in vivo 262
10.1.2 Techniques of measurement ofpH in vivo 263
10.1.3 Advantages of microelectrodes for the determination of pH 264
10.2 Characterization of pH microelectrodes 264
10.2.1 pH and pH measurements 264
10.2.2 Calibration curve and linear response slope ofpH microelectrodes 266
10.2.3 Sensitivity 267
10.2.4 Response time 267
10.2.5 Reproducibility/accuracy 268
10.2.6 Selectivity 269
10.2.7 Stability and reliability 269
10.2.8 Biocompatibility 270
10.3 Fabrication of microelectrodes for pH determination 270
10.3.1 Glass-based pH microelectrodes 270
10.3.2 Polymer membrane-based pH microelectrodes 272
Contents xi
10.3.3 Silicon-based pH microelectrodes 273
10.3.4 Metal/metal oxide-based pH microelectrodes 276
10.3.5 Ag/AgCl reference microelectrodes 278
10.4 Advanced microelectrode systems for pH determination 281
10.4.1 All-solid-state pH microelectrodes 281
10.4.2 pH microelectrode for a lab-on-a-chip 282
10.4.3 Microelectrode arrays for pH mapping 284
10.4.4 Microelectrodes for continuous recording of pH in vivo 286
10.4.5 Implantable pH microelectrodes 286
10.4.6 Wireless pH measurement systems 287
10.5 In-vivo applications of pH microelectrodes 287
10.5.1 pH in the body 287
10.5.2 Measurement ofpH in blood 288
10.5.3 Measurement of pH in the brain 289
10.5.4 Measurement of pH in the heart 290
10.5.5 Measurement ofpH in the esophagus 292
10.5.6 Measurement of pH under skin 294
10.5.7 Measurement of pH in the eye 294
10.6 Conclusions and outlook 296
10.7 Acknowledgments 297
10.8 References 297
Chapter 11 Biochips - fundamentals and applications
Chang Ming Li, Hua Dong, Qin Thou, and Kai H. Goh
11.1 Introduction 308
11.2 DNA arrays 310
11.2.1 Types of DNA arrays 311
11.2.2 Fabrication of DNA arrays 312
11.2.2.1 Fabrication by robotic microprinting (direct-deposition approach) 313
11.2.2.2 Fabrication by photolithography 314
11.2.2.3 Fabrication by inkjet/piezoelectric methods (indirect-
deposition approach 316
11.2.3 Sequencing by hybridization 318
11.2.4 Labeling 319
11.2.4.1 Target amplification 320
11.2.4.2 Signal amplification 323
11.2.5 Detection and data analysis 324
11.2.5.1 Detection technologies 324
11.2.5.2 Data analysis 326
11.2.6 Applications 333
11.3 Protein chips 335
11.3.1 Protein array and proteome 335
xii Contents
11.3.2 Fabrication of protein chips 336
11.3.2.1 Types of protein chips 336
11.3.2.2 Surface functionalization for protein arrays 337
11.3.2.3 Fabrication of gel pad, EUSA, and SELDI protein biochips 341
11.3.3 Protein chip applications 344
11.3.3.1 Basic research 344
11.3.3.2 Clinical diagnostics 345
11.3.3.3 Drug discovery 346
11.4 Electronic and electrochemical microarray biochips 347
11.4.1 Theoretical consideration 347
11.4.2 Fabrication technologies 349
11.4.2.1 Overview 349
11.4.2.2 Fabrication technology for silicon-based substrates 351
11.4.2.3 Fabrication technology for ceramic or plastic substrate 354
11.4.2.4 Fabrication ofnanoarray biochips 355
11.4.3 Electrochemical detection 356
11.4.3.1 Amperometry 356
11.4.3.2 Potentiometry 358
11.4.3.3 lmpedimetry 359
11.5 Lab-on-chips 360
11.5.1 Theory of microfluidics 362
11.5.2 Components in lab-on-chip systems 364
77.5.3 Fabrication of BioMEMS 369
11.5.4 Applications 372
11.5.4.1 Cell sorting system 372
11.5.4.2 Combinatorial synthesis for drug screening and
materials discovery 373
11.5.4.3 Chemical and biological analysis 11A
11.6 References 375
Chapter 12 Powering fuel cells through biocatalysis
Donal Leech, Marie Pellissier, and Frederic Barriere
12.1 Introduction 385
12.2 Biocatalytic fuel cell design 387
12.3 Electron transfer reactions 388
12.4 Biocatalytic cathodes 389
12.4.1 Enzymes and substrates 389
72.4.2 Peroxidases 390
12.4.3 Oxygenases 391
12.5 Biocatalytic anodes 396
12.5.1 Enzymes and substrates 396
72.5.2 Glucose oxidase 396
12.5.3 Dehydrogenases 400
Contents xiii
12.6 Biocatalytic fuel cells 402
12.6.1 Physiological conditions 402
12.6.2 Assembled glucose—oxygen biocatalytic fuel cells 403
12.7 Conclusions 407
12.8 References 407
Chapter 13 Chemical and biological sensors based on electroactive
inorganic polycrystals
Arkady Karyakin
13.1 Introduction 411
13.2 Properties of transition metal hexacyanoferrates 412
13.2.1 Structure of transition metal hexacyanoferrates 412
13.2.2 Electrochemistry of transition metal hexacyanoferrates 413
13.3 Amperometric sensors for redox-inactive cations and electroactive compounds 416
13.3.1 Sensors for redox-inactive cations 416
13.3.2 Amperometric sensors for electroactive compounds 417
13.4 Advanced sensor for hydrogen peroxide 418
13.4.1 H2O2 as important analytefor medicine, biology, environmental control,
and industry 418
13.4.2 Advanced electrocatalyst for hydrogen peroxide reduction 419
13.4.3 An advanced sensor for hydrogen peroxide based on Prussian blue 421
13.4.4 Non-conductive polymers on the surface of Prussian blue modified
electrodes 421
13.4.5 Nano-electrode arrays: towards the sensor with the record analytical
performances 422
13.5 Biosensors based on transition metal hexacyanoferrates 425
13.5.1 Transducing principles for oxidase-based biosensors 425
13.5.2 Biosensors based on transition metal hexacyanoferrates 426
13.5.3 Immobilization of the enzymes using non-conventional media All
13.5.3.1 Tolerance of the enzymes to organic solvents 427
13.5.3.2 Enzyme-containing perfluorosulfonated membranes 428
13.5.4 Towards the biosensors with the best analytical performance
characteristics 429
13.6 Conclusions 430
13.7 Acknowledgments 431
13.8 References 431
Chapter 14 Nanoparticles-based biosensors and bioassays
Guodong Liu, Jun Wang, Yuehe Lin, and Joseph Wang
14.1 Introduction 441
14.2 Why nanoparticles? 442
xiv Contents
14.3 Nanoparticle-based optical biosensors and bioassay 443
14.4 Nanoparticle-based electrochemical biosensors and bioassay 446
14.4.1 Nanoparticle-based electrochemical DNA biosensors and bioassays 446
14.4.2 Nanoparticle-based electrochemical immunosensors and
immunoassays 449
14.5 Conclusion and outlook 454
14.6 Acknowledgments 455
14.7 References 455
Chapter 15 Electrochemical sensors based on carbon nanotubes
Manliang Feng, Heyou Han, Jingdong Zhang, and Hiroyasu Tachikawa
15.1 Introduction 460
15.2 The structure and properties of CNTs 460
15.2.1 The structure of CNTs 460
15.2.2 Properties of CNTs 462
15.2.2.1 Mechanical properties 462
15.2.2.2 Electronic properties 462
15.2.2.3 Chemical properties 462
15.2.3 Preparation of CNTs 463
15.2.4 Purification of carbon nanotubes 464
15.2.5 Advantages of electrochemical sensors based on CNTs 465
15.3 Fabrication and application of electrochemical sensors based on
carbon nanotubes 465
15.3.1 Preparation of carbon nanotube electrodes and their electrochemical
characteristics 466
15.3.1.1 CNT-composite electrodes 466
15.3.1.2 Vertically aligned CNT-modified electrode 466
15.3.1.3 Layer-by-layerfabricaion ofCNTelectrode All
15.3.1.4 CNT-coated electrodes 471
15.3.2 Improving the electroanalytical sensitivity and selectivity for small
biological andpharmic molecules with carbon nanotubes 476
15.3.3 Direct electron transfer of proteins and enzymes on carbon nanotube 478
electrodes
15.3.4 Electrochemical biosensors based on carbon nanotubes 479
15.4 Spectroscopic characterization of carbon nanotube sensors 481
15.4.1 Raman spectroscopy of carbon nanotubes 481
15.4.1.1 General features of Raman spectra from carbon nanotubes 481
15.4.1.2 AnisotropyofSWNT 484
15.4.1.3 Single nanotube characterization 484
15.4.1.4 Raman spectroscopy of modified CNTs 484
15.4.1.5 Raman spectroscopy of self-assembled carbon nanotubes 487
15.4.1.6 Raman spectroscopy of CNT composites 487
15.4.2 FTIR of CNT-based sensors 489
Contents XV
15.5 Conclusions 493
15.6 References 494
Chapter 16 Biosensors based on immobilization of biomolecules in
sol-gel matrices
Vivek Babu Kandimalla, Vijay Shyam Tripathi, and Huangxian Ju
16.1 Introduction 504
16.2 Sol-gel 504
16.2.1 Sol-gel chemistry and matrix characteristics 504
16.2.2 Progress in sol-gel process 506
16.2.3 Advantages and disadvantages 507
16.2.4 Porosity and dynamics of proteins in sol-gel 508
16.2.5 Interactions and stability of biomolecules in sol-gel 509
16.2.6 Improvement of biocompatibility and conductivity of sol-gels 510
16.3 Applications of sol-gel entrapped bioactive molecules 510
16.3.1 Enzyme-based biosensors 510
16.3.1.1 Biosensor applications of enzymes 511
16.3.1.2 Carbon-ceramic composite electrodes (CCEs) 511
16.3.1.3 Electrode surface coatings 512
16.3.1.4 Optical biosensors 512
16.3.1.5 Electrochemical biosensors 513
16.3.2 Photoactive proteins-based biosensors 518
16.3.3 Immunosensors 518
16.3.4 Immunoaffinity columns 521
16.4 Whole-cell encapsulation in sol-gels and their applications 522
16.4.1 Microbial cells 522
16.4.2 Plant and animal cells 522
16.5 Conclusions 522
16.6 Acknowledgments 523
16.7 References 523
Chapter 17 Biosensors based on direct electron transfer of protein
Shengshui Hu, Qing Lu, and Yanxia Xu
17.1 Introduction 532
17.1.1 Introduction of biosensors on direct electron transfer of protein 532
17.1.2 Advantage of biosensors on direct electron transfer of protein 532
17.2 Direct electron transfer of protein 532
17.2.1 Methods of protein immobilization 532
17.2.1.1 Adsorption of protein 533
17.2.1.2 Covalent bonding of protein 533
xvi Contents
17.2.1.3 Sol-gel/polymer embedment of protein 534
17.2.1.4 Surfactant embedment of protein 534
17.2.1.5 Nanoparticles embedment of protein 535
17.2.1.6 Other methods of protein immobilization 536
17.2.2 Direct electron transfer of proteins 537
17.2.2.1 Direct electron transfer of cytochrome c 537
17.2.2.2 Direct electron transfer of myoglobin 539
17.2.2.3 Direct electron transfer of hemoglobin 541
17.2.3 Direct electron transfer of enzymes 543
17.2.3.1 Direct electron transfer of HRP 543
17.2.3.2 Direct electron transfer of catalase 545
17.2.3.3 Direct electron transfer of GOD 547
17.2.3.4 Direct electron transfer of other active enzymes 548
17.3 Application of biosensors based on direct electron transfer of protein 549
17.3.1 Biosensors based on direct electron transfer of proteins 549
17.3.1.1 Biosensors based on direct electron transfer of proteins
cytochrome c 551
17.3.1.2 Biosensors based on direct elecron transfer of proteins
cytochrome p450 [218] 554
17.3.1.3 Biosensors based on direct electron transfer of myoglobin 556
17.3.1.4 Biosensors based on direct electron transfer of hemoglobin 559
17.3.2 Biosensors based on direct electron transfer of enzymes 563
17.3.2.1 Biosensors based on direct electron transfer of horseradish
peroxidase 563
17.3.2.2 Biosensors based on direct electron transfer of catalase 5 64
17.3.2.3 Biosensors based on direct electron transfer of GOD 565
17.3.2.4 Biosensors based on direct electron transfer of other active
enzymes 567
17.4 Conclusions 569
17.5 Acknowledgments 569
17.6 References 569
Index 583
|
any_adam_object | 1 |
author2 | Zhang, Xueji |
author2_role | edt |
author2_variant | x z xz |
author_facet | Zhang, Xueji |
building | Verbundindex |
bvnumber | BV025457565 |
classification_rvk | WC 3420 |
ctrlnum | (OCoLC)254738315 (DE-599)BVBBV025457565 |
dewey-full | 541.37 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 541 - Physical chemistry |
dewey-raw | 541.37 |
dewey-search | 541.37 |
dewey-sort | 3541.37 |
dewey-tens | 540 - Chemistry and allied sciences |
discipline | Chemie / Pharmazie Biologie |
edition | 1. ed. |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01095nam a2200301 c 4500</leader><controlfield tag="001">BV025457565</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">t|</controlfield><controlfield tag="008">100417s2008 xx d||| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780123737380</subfield><subfield code="9">978-0-12-373738-0</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)254738315</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV025457565</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-11</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">541.37</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">WC 3420</subfield><subfield code="0">(DE-625)148084:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Electrochemical sensors, biosensors and their biomedical applications</subfield><subfield code="c">ed. by Xueji Zhang ...</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">1. ed.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Amsterdam [u.a.]</subfield><subfield code="b">Elsevier, Acad. Press</subfield><subfield code="c">2008</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XXII, 593 S.</subfield><subfield code="b">graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhang, Xueji</subfield><subfield code="4">edt</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HBZ Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=020073789&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-020073789</subfield></datafield></record></collection> |
id | DE-604.BV025457565 |
illustrated | Illustrated |
indexdate | 2024-12-23T23:51:03Z |
institution | BVB |
isbn | 9780123737380 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-020073789 |
oclc_num | 254738315 |
open_access_boolean | |
owner | DE-11 |
owner_facet | DE-11 |
physical | XXII, 593 S. graph. Darst. |
publishDate | 2008 |
publishDateSearch | 2008 |
publishDateSort | 2008 |
publisher | Elsevier, Acad. Press |
record_format | marc |
spellingShingle | Electrochemical sensors, biosensors and their biomedical applications |
title | Electrochemical sensors, biosensors and their biomedical applications |
title_auth | Electrochemical sensors, biosensors and their biomedical applications |
title_exact_search | Electrochemical sensors, biosensors and their biomedical applications |
title_full | Electrochemical sensors, biosensors and their biomedical applications ed. by Xueji Zhang ... |
title_fullStr | Electrochemical sensors, biosensors and their biomedical applications ed. by Xueji Zhang ... |
title_full_unstemmed | Electrochemical sensors, biosensors and their biomedical applications ed. by Xueji Zhang ... |
title_short | Electrochemical sensors, biosensors and their biomedical applications |
title_sort | electrochemical sensors biosensors and their biomedical applications |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=020073789&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT zhangxueji electrochemicalsensorsbiosensorsandtheirbiomedicalapplications |