Electrochemical sensors, biosensors and their biomedical applications

Gespeichert in:
Bibliographische Detailangaben
Weitere Verfasser: Zhang, Xueji (HerausgeberIn)
Format: Buch
Sprache:English
Veröffentlicht: Amsterdam [u.a.] Elsevier, Acad. Press 2008
Ausgabe:1. ed.
Online-Zugang:Inhaltsverzeichnis
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nam a2200000 c 4500
001 BV025457565
003 DE-604
005 00000000000000.0
007 t|
008 100417s2008 xx d||| |||| 00||| eng d
020 |a 9780123737380  |9 978-0-12-373738-0 
035 |a (OCoLC)254738315 
035 |a (DE-599)BVBBV025457565 
040 |a DE-604  |b ger  |e rakwb 
041 0 |a eng 
049 |a DE-11 
082 0 |a 541.37 
084 |a WC 3420  |0 (DE-625)148084:  |2 rvk 
245 1 0 |a Electrochemical sensors, biosensors and their biomedical applications  |c ed. by Xueji Zhang ... 
250 |a 1. ed. 
264 1 |a Amsterdam [u.a.]  |b Elsevier, Acad. Press  |c 2008 
300 |a XXII, 593 S.  |b graph. Darst. 
336 |b txt  |2 rdacontent 
337 |b n  |2 rdamedia 
338 |b nc  |2 rdacarrier 
700 1 |a Zhang, Xueji  |4 edt 
856 4 2 |m HBZ Datenaustausch  |q application/pdf  |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=020073789&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA  |3 Inhaltsverzeichnis 
943 1 |a oai:aleph.bib-bvb.de:BVB01-020073789 

Datensatz im Suchindex

_version_ 1819694315962630144
adam_text CONTENTS List of Contributors xvii Preface xxi Chapter 1 Nitric oxide (NO) electrochemical sensors Xueji Zhang 1.1 Introduction 1 1.1.1 Significance of nitric oxide in life science 1 1.1.2 Methods of measurement of nitric oxide in physiology 2 1.1.3 Advantages of electrochemical sensors for determination of NO 2 1.2 Principles of determination of NO by electrochemical sensors 3 1.3 Fabrication of electrodes for NO determination 4 1.3.1 Clark type NO electrodes 4 1.3.2 Modified carbon fiber NO microelectrodes 5 1.3.3 Integrated NO microelectrodes 6 1.3.4 Other NO electrodes 1 1.4 Calibration of NO electrodes 8 1.4.1 Calibration using an NO standard solution 8 1.4.2 Calibration based on decomposition of SNAP 9 1.4.3 Calibration based on chemical generation of NO 9 1.5 Characterization of NO electrodes 10 1.5.1 Sensitivity and detection limit 11 1.5.2 Selectivity^ 12 1.5.3 Response time 12 1.5.4 Effect of temperature and pH on NO electrodes 13 1.6 Selected applications of NO electrodes 14 1.7 Concluding remarks and other directions 23 1.8 Acknowledgments 23 1.9 References 23 vi Contents Chapter 2 Biosensors for pesticides Huangxian Ju and Vivek Babu Kandimalla 2.1 Introduction 32 2.1.1 Need for pesticide biosensors 32 2.1.2 Developments in pesticide biosensors 32 2.1.3 Thrust areas for pesticide biosensors 33 2.2 Biocatalysts used in pesticide biosensors 33 2.2.1 Enzymes used in pesticide biosensors and their features 33 2.2.2 Immobilization methods used in pesticide biosensors design 34 2.3 Enzyme-based biosensors construction 35 2.3.1 Pesticides measuring principles 35 2.3.2 Inhibition-based biosensors 35 2.3.3 Catalysis-based biosensors 37 2.3.4 Flow injection biosensors 38 2.3.5 Enzyme reactivation 40 2.4 Pesticide immunosensors 40 2.4.1 Detection methods for pesticide immunosensors 42 2.4.2 Immunosensors for pesticides 42 2.4.2.1 Piezoelectric immunosensors 42 2.4.2.2 Optical immunosensors 42 2.4.2.3 Electrochemical immunosensors 45 2.4.3 Regeneration of pesticide immunosensors 46 2.5 Whole cell and tissue-based pesticide biosensors 48 2.6 Major interfering compounds and sample pretreatment 49 2.7 Conclusions 49 2.8 Acknowledgments 50 2.9 References 50 Chapter 3 Electrochemical glucose biosensors Joseph Wang 3.1 Introduction 57 3.2 Forty years of progress 58 3.3 First-generation glucose biosensors 59 3.3.1 Redox interferences 59 3.3.2 Oxygen dependence 61 3.4 Second-generation glucose biosensors 61 3.4.1 Electron transfer between GOx and electrode surfaces 61 3.4.2 Use of artificial mediators 62 3.4.3 Attachment of electron-transfer relays 62 3.5 In-vitro glucose testing 63 3.6 Continuous real-time in-vivo monitoring 65 Contents vii 3.6.1 Requirements 65 3.6.2 Subcutaneous monitoring 65 3.6.3 Towards non-invasive glucose monitoring 66 3.7 Conclusions and outlook 67 3.8 References 67 Chapter 4 New trends in ion-selective electrodes Sergey Makarychev-Mikhailov, Alexey Shvarev, and Eric Bakker 4.1 Introduction 71 4.1.1 State-of-the-art 71 4.1.2 Most important biomedical applications of ion-selective electrodes 73 4.2 Classical ion-selective electrodes 77 4.2.1 Understanding of the operational principles 77 4.2.2 Response characteristics: selectivity and detection limits 81 4.2.3 Reference electrodes 85 4.3 New transduction principles 86 4.3.1 Polyion-selective electrodes 86 4.3.2 Galvanostatically controlled sensors 90 4.3.3 Voltammetric ion-selective electrodes 95 4.3.4 Light-addressable potentiometric sensors 96 4.4 New sensor materials 98 4.4.1 Membrane components 98 4.4.2 Solid contact 102 4.4.3 Biocompatibility improvement 103 4.5 Miniaturization 104 4.5.1 Miniaturization 104 4.5.2 Sensor arrays 105 4.6 Future prospects and conclusions 108 4.7 Acknowledgments 109 4.8 References 109 Chapter 5 Recent developments in electrochemical immunoassays and immunosensors Jeremy M. Fowler, Danny K. Y. Wong, H. Brian Halsall, and William R. Heineman 5.1 Introduction 115 5.2 The antibody-antigen interaction 116 5.3 Immunoassays and immunosensors 118 5.3.1 Competitive immunoassay systems 118 5.3.2 Non-competitive immunoassay systems 120 5.4 Modes of antibody immobilization 122 viii Contents 5.4.1 Biotin-(strept)avidin interaction 122 5.4.2 Antibody-binding proteins 124 5.4.3 Conducting polymers 125 5.4.4 Self-assembled monolayers 126 5.4.5 Antibody fragments 129 5.5 Electrochemical detection techniques 130 5.5.1 Potentiometric immunosensors 131 5.5.2 Amperometric immunosensors 131 5.5.3 Voltammetric immunoassays 134 5.5.4 Impedimetric immunoassays and immunosensors 135 5.6 Microfluidic electrochemical immunoassay systems 138 5.7 Concluding remarks 139 5.8 References 140 Chapter 6 Superoxide electrochemical sensors and biosensors: principles, development and applications Lanqun Mao, Yang Tian, and Takeo Ohsaka 6.1 Chemistry and biochemistry of superoxide 145 6.2 C«2~ bioassay: an overview 146 6.3 O2 ~ electrochemistry and O2 ~ electrochemical sensors 147 6.4 Electrochemical sensors for O2*~ 148 6.4.1 Biosensors with enzymes other than SODs 148 6.4.2 Brief introduction to SODs 149 6.4.3 Electrochemistry of SODs 151 6.4.4 SOD-based electrochemical biosensors for O2~ 162 6.4.5 SOD-based micro-sized biosensors for O{~ 174 6.5 Concluding remarks and other directions 177 6.6 Acknowledgments 177 6.7 References 178 Chapter 7 Detection of charged macromolecules by means of field-effect devices (FEDs): possibilities and limitations Michael J. Schoning and Arshak Poghossian 7.1 Introductory part and status report 187 7.2 Capacitance-voltage characteristics of a bare and functionalized EIS structure 193 7.3 Direct electrostatic DNA detection by its intrinsic molecular charge 197 7.4 New method for label-free electrical DNA detection 201 7.5 Measurement results utilizing polyelectrolyte layers and synthetic DNA 205 Contents ix 7.6 Conclusions and future perspectives 208 7.7 Acknowledgments 209 7.8 References 209 Chapter 8 Electrochemical sensors for the determination of hydrogen sulfide production in biological samples David W. Kraus, Jeannette E. Doeller, and Xueji Zhang 8.1 Introduction 214 8.1.1 Significance of H2S in the life sciences 215 8.1.1.1 H2S chemistry 215 8.1.1.2 H2S biology 216 8.1.2 H2S measurement in biological samples 216 8.1.2.1 Stability of sulfur 216 8.1.2.2 Methods for H2S measurements 217 8.2 Advantages of electrochemical sensors for H2S determination 218 8.2.1 Electrochemistry 218 8.2.2 Multi-sensor respirometry 219 8.3 Fabrication of polarographic H2S sensors 220 8.3.1 Macro polarographic H2S sensors 220 8.3.2 Miniature polarographic H2S sensors 220 8.4 Calibration of polarographic H2S sensors 221 8.4.1 H2S stock solutions 221 8.4.2 Chemical sources of H2S 222 8.5 Characterization of polarographic H2S sensors 222 8.5.1 Selectivity 223 8.5.2 Sensitivity 224 8.5.3 Detection limit 226 8.5.4 Stability 226 8.5.5 Reproducibility, precision and accuracy 226 8.5.6 Linearity and dynamic response range 227 8.5.7 Response time 227 8.5.8 Reliability (maintenance-free working time) 227 8.5.9 Biocompatibility 227 8.6 Applications of polarographic H2S sensors in biological samples 228 8.6.1 Measurement of H2S production 228 8.6.1.1 Tissue homogenates 228 8.6.1.2 Cultured and isolated cells 228 8.6.1.3 Intact tissues and organs 229 8.6.2 Measurement of H2S consumption 229 8.6.2.1 Isolated mussel gill mitochondria 229 8.6.2.2 Cultured cells, intact tissues and organs 230 X Contents 8.6.3 Simultaneous measurement of H2S level and vessel tension 232 8.6.4 Measurement of steady-state H2S levels in blood and tissue 233 8.7 Concluding remarks and future directions 233 8.8 Acknowledgments 233 8.9 References 234 Chapter 9 Aspects of recent development of immunosensors Hua Wang, Guoli Shen, and Ruqin Yu 9.1 Introduction 237 9.1.1 General working principle of immunosensors 237 9.1.2 Main performance characteristics of immunosensors in clinical analysis 238 9.2 Immobilization of immunoactive elements 239 9.2.1 Non-covalent interaction-based immobilization procedures 239 9.2.2 Covalent interaction-based immobilization procedures 241 9.3 Major types of immunosensors 243 9.3.1 Electrochemical immunosensors 243 9.3.2 Optical immunosensors 246 9.3.3 Microgravimetric immunosensors 248 9.3.4 Other kinds of immunosensors 250 9.4 Conclusion and future trends 251 9.5 References 252 Chapter 10 Microelectrodes for in-vivo determination of pH David D. Zhou 10.1 Introduction 262 10.1.1 Significance ofpH measurement in vivo 262 10.1.2 Techniques of measurement ofpH in vivo 263 10.1.3 Advantages of microelectrodes for the determination of pH 264 10.2 Characterization of pH microelectrodes 264 10.2.1 pH and pH measurements 264 10.2.2 Calibration curve and linear response slope ofpH microelectrodes 266 10.2.3 Sensitivity 267 10.2.4 Response time 267 10.2.5 Reproducibility/accuracy 268 10.2.6 Selectivity 269 10.2.7 Stability and reliability 269 10.2.8 Biocompatibility 270 10.3 Fabrication of microelectrodes for pH determination 270 10.3.1 Glass-based pH microelectrodes 270 10.3.2 Polymer membrane-based pH microelectrodes 272 Contents xi 10.3.3 Silicon-based pH microelectrodes 273 10.3.4 Metal/metal oxide-based pH microelectrodes 276 10.3.5 Ag/AgCl reference microelectrodes 278 10.4 Advanced microelectrode systems for pH determination 281 10.4.1 All-solid-state pH microelectrodes 281 10.4.2 pH microelectrode for a lab-on-a-chip 282 10.4.3 Microelectrode arrays for pH mapping 284 10.4.4 Microelectrodes for continuous recording of pH in vivo 286 10.4.5 Implantable pH microelectrodes 286 10.4.6 Wireless pH measurement systems 287 10.5 In-vivo applications of pH microelectrodes 287 10.5.1 pH in the body 287 10.5.2 Measurement ofpH in blood 288 10.5.3 Measurement of pH in the brain 289 10.5.4 Measurement of pH in the heart 290 10.5.5 Measurement ofpH in the esophagus 292 10.5.6 Measurement of pH under skin 294 10.5.7 Measurement of pH in the eye 294 10.6 Conclusions and outlook 296 10.7 Acknowledgments 297 10.8 References 297 Chapter 11 Biochips - fundamentals and applications Chang Ming Li, Hua Dong, Qin Thou, and Kai H. Goh 11.1 Introduction 308 11.2 DNA arrays 310 11.2.1 Types of DNA arrays 311 11.2.2 Fabrication of DNA arrays 312 11.2.2.1 Fabrication by robotic microprinting (direct-deposition approach) 313 11.2.2.2 Fabrication by photolithography 314 11.2.2.3 Fabrication by inkjet/piezoelectric methods (indirect- deposition approach 316 11.2.3 Sequencing by hybridization 318 11.2.4 Labeling 319 11.2.4.1 Target amplification 320 11.2.4.2 Signal amplification 323 11.2.5 Detection and data analysis 324 11.2.5.1 Detection technologies 324 11.2.5.2 Data analysis 326 11.2.6 Applications 333 11.3 Protein chips 335 11.3.1 Protein array and proteome 335 xii Contents 11.3.2 Fabrication of protein chips 336 11.3.2.1 Types of protein chips 336 11.3.2.2 Surface functionalization for protein arrays 337 11.3.2.3 Fabrication of gel pad, EUSA, and SELDI protein biochips 341 11.3.3 Protein chip applications 344 11.3.3.1 Basic research 344 11.3.3.2 Clinical diagnostics 345 11.3.3.3 Drug discovery 346 11.4 Electronic and electrochemical microarray biochips 347 11.4.1 Theoretical consideration 347 11.4.2 Fabrication technologies 349 11.4.2.1 Overview 349 11.4.2.2 Fabrication technology for silicon-based substrates 351 11.4.2.3 Fabrication technology for ceramic or plastic substrate 354 11.4.2.4 Fabrication ofnanoarray biochips 355 11.4.3 Electrochemical detection 356 11.4.3.1 Amperometry 356 11.4.3.2 Potentiometry 358 11.4.3.3 lmpedimetry 359 11.5 Lab-on-chips 360 11.5.1 Theory of microfluidics 362 11.5.2 Components in lab-on-chip systems 364 77.5.3 Fabrication of BioMEMS 369 11.5.4 Applications 372 11.5.4.1 Cell sorting system 372 11.5.4.2 Combinatorial synthesis for drug screening and materials discovery 373 11.5.4.3 Chemical and biological analysis 11A 11.6 References 375 Chapter 12 Powering fuel cells through biocatalysis Donal Leech, Marie Pellissier, and Frederic Barriere 12.1 Introduction 385 12.2 Biocatalytic fuel cell design 387 12.3 Electron transfer reactions 388 12.4 Biocatalytic cathodes 389 12.4.1 Enzymes and substrates 389 72.4.2 Peroxidases 390 12.4.3 Oxygenases 391 12.5 Biocatalytic anodes 396 12.5.1 Enzymes and substrates 396 72.5.2 Glucose oxidase 396 12.5.3 Dehydrogenases 400 Contents xiii 12.6 Biocatalytic fuel cells 402 12.6.1 Physiological conditions 402 12.6.2 Assembled glucose—oxygen biocatalytic fuel cells 403 12.7 Conclusions 407 12.8 References 407 Chapter 13 Chemical and biological sensors based on electroactive inorganic polycrystals Arkady Karyakin 13.1 Introduction 411 13.2 Properties of transition metal hexacyanoferrates 412 13.2.1 Structure of transition metal hexacyanoferrates 412 13.2.2 Electrochemistry of transition metal hexacyanoferrates 413 13.3 Amperometric sensors for redox-inactive cations and electroactive compounds 416 13.3.1 Sensors for redox-inactive cations 416 13.3.2 Amperometric sensors for electroactive compounds 417 13.4 Advanced sensor for hydrogen peroxide 418 13.4.1 H2O2 as important analytefor medicine, biology, environmental control, and industry 418 13.4.2 Advanced electrocatalyst for hydrogen peroxide reduction 419 13.4.3 An advanced sensor for hydrogen peroxide based on Prussian blue 421 13.4.4 Non-conductive polymers on the surface of Prussian blue modified electrodes 421 13.4.5 Nano-electrode arrays: towards the sensor with the record analytical performances 422 13.5 Biosensors based on transition metal hexacyanoferrates 425 13.5.1 Transducing principles for oxidase-based biosensors 425 13.5.2 Biosensors based on transition metal hexacyanoferrates 426 13.5.3 Immobilization of the enzymes using non-conventional media All 13.5.3.1 Tolerance of the enzymes to organic solvents 427 13.5.3.2 Enzyme-containing perfluorosulfonated membranes 428 13.5.4 Towards the biosensors with the best analytical performance characteristics 429 13.6 Conclusions 430 13.7 Acknowledgments 431 13.8 References 431 Chapter 14 Nanoparticles-based biosensors and bioassays Guodong Liu, Jun Wang, Yuehe Lin, and Joseph Wang 14.1 Introduction 441 14.2 Why nanoparticles? 442 xiv Contents 14.3 Nanoparticle-based optical biosensors and bioassay 443 14.4 Nanoparticle-based electrochemical biosensors and bioassay 446 14.4.1 Nanoparticle-based electrochemical DNA biosensors and bioassays 446 14.4.2 Nanoparticle-based electrochemical immunosensors and immunoassays 449 14.5 Conclusion and outlook 454 14.6 Acknowledgments 455 14.7 References 455 Chapter 15 Electrochemical sensors based on carbon nanotubes Manliang Feng, Heyou Han, Jingdong Zhang, and Hiroyasu Tachikawa 15.1 Introduction 460 15.2 The structure and properties of CNTs 460 15.2.1 The structure of CNTs 460 15.2.2 Properties of CNTs 462 15.2.2.1 Mechanical properties 462 15.2.2.2 Electronic properties 462 15.2.2.3 Chemical properties 462 15.2.3 Preparation of CNTs 463 15.2.4 Purification of carbon nanotubes 464 15.2.5 Advantages of electrochemical sensors based on CNTs 465 15.3 Fabrication and application of electrochemical sensors based on carbon nanotubes 465 15.3.1 Preparation of carbon nanotube electrodes and their electrochemical characteristics 466 15.3.1.1 CNT-composite electrodes 466 15.3.1.2 Vertically aligned CNT-modified electrode 466 15.3.1.3 Layer-by-layerfabricaion ofCNTelectrode All 15.3.1.4 CNT-coated electrodes 471 15.3.2 Improving the electroanalytical sensitivity and selectivity for small biological andpharmic molecules with carbon nanotubes 476 15.3.3 Direct electron transfer of proteins and enzymes on carbon nanotube 478 electrodes 15.3.4 Electrochemical biosensors based on carbon nanotubes 479 15.4 Spectroscopic characterization of carbon nanotube sensors 481 15.4.1 Raman spectroscopy of carbon nanotubes 481 15.4.1.1 General features of Raman spectra from carbon nanotubes 481 15.4.1.2 AnisotropyofSWNT 484 15.4.1.3 Single nanotube characterization 484 15.4.1.4 Raman spectroscopy of modified CNTs 484 15.4.1.5 Raman spectroscopy of self-assembled carbon nanotubes 487 15.4.1.6 Raman spectroscopy of CNT composites 487 15.4.2 FTIR of CNT-based sensors 489 Contents XV 15.5 Conclusions 493 15.6 References 494 Chapter 16 Biosensors based on immobilization of biomolecules in sol-gel matrices Vivek Babu Kandimalla, Vijay Shyam Tripathi, and Huangxian Ju 16.1 Introduction 504 16.2 Sol-gel 504 16.2.1 Sol-gel chemistry and matrix characteristics 504 16.2.2 Progress in sol-gel process 506 16.2.3 Advantages and disadvantages 507 16.2.4 Porosity and dynamics of proteins in sol-gel 508 16.2.5 Interactions and stability of biomolecules in sol-gel 509 16.2.6 Improvement of biocompatibility and conductivity of sol-gels 510 16.3 Applications of sol-gel entrapped bioactive molecules 510 16.3.1 Enzyme-based biosensors 510 16.3.1.1 Biosensor applications of enzymes 511 16.3.1.2 Carbon-ceramic composite electrodes (CCEs) 511 16.3.1.3 Electrode surface coatings 512 16.3.1.4 Optical biosensors 512 16.3.1.5 Electrochemical biosensors 513 16.3.2 Photoactive proteins-based biosensors 518 16.3.3 Immunosensors 518 16.3.4 Immunoaffinity columns 521 16.4 Whole-cell encapsulation in sol-gels and their applications 522 16.4.1 Microbial cells 522 16.4.2 Plant and animal cells 522 16.5 Conclusions 522 16.6 Acknowledgments 523 16.7 References 523 Chapter 17 Biosensors based on direct electron transfer of protein Shengshui Hu, Qing Lu, and Yanxia Xu 17.1 Introduction 532 17.1.1 Introduction of biosensors on direct electron transfer of protein 532 17.1.2 Advantage of biosensors on direct electron transfer of protein 532 17.2 Direct electron transfer of protein 532 17.2.1 Methods of protein immobilization 532 17.2.1.1 Adsorption of protein 533 17.2.1.2 Covalent bonding of protein 533 xvi Contents 17.2.1.3 Sol-gel/polymer embedment of protein 534 17.2.1.4 Surfactant embedment of protein 534 17.2.1.5 Nanoparticles embedment of protein 535 17.2.1.6 Other methods of protein immobilization 536 17.2.2 Direct electron transfer of proteins 537 17.2.2.1 Direct electron transfer of cytochrome c 537 17.2.2.2 Direct electron transfer of myoglobin 539 17.2.2.3 Direct electron transfer of hemoglobin 541 17.2.3 Direct electron transfer of enzymes 543 17.2.3.1 Direct electron transfer of HRP 543 17.2.3.2 Direct electron transfer of catalase 545 17.2.3.3 Direct electron transfer of GOD 547 17.2.3.4 Direct electron transfer of other active enzymes 548 17.3 Application of biosensors based on direct electron transfer of protein 549 17.3.1 Biosensors based on direct electron transfer of proteins 549 17.3.1.1 Biosensors based on direct electron transfer of proteins cytochrome c 551 17.3.1.2 Biosensors based on direct elecron transfer of proteins cytochrome p450 [218] 554 17.3.1.3 Biosensors based on direct electron transfer of myoglobin 556 17.3.1.4 Biosensors based on direct electron transfer of hemoglobin 559 17.3.2 Biosensors based on direct electron transfer of enzymes 563 17.3.2.1 Biosensors based on direct electron transfer of horseradish peroxidase 563 17.3.2.2 Biosensors based on direct electron transfer of catalase 5 64 17.3.2.3 Biosensors based on direct electron transfer of GOD 565 17.3.2.4 Biosensors based on direct electron transfer of other active enzymes 567 17.4 Conclusions 569 17.5 Acknowledgments 569 17.6 References 569 Index 583
any_adam_object 1
author2 Zhang, Xueji
author2_role edt
author2_variant x z xz
author_facet Zhang, Xueji
building Verbundindex
bvnumber BV025457565
classification_rvk WC 3420
ctrlnum (OCoLC)254738315
(DE-599)BVBBV025457565
dewey-full 541.37
dewey-hundreds 500 - Natural sciences and mathematics
dewey-ones 541 - Physical chemistry
dewey-raw 541.37
dewey-search 541.37
dewey-sort 3541.37
dewey-tens 540 - Chemistry and allied sciences
discipline Chemie / Pharmazie
Biologie
edition 1. ed.
format Book
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01095nam a2200301 c 4500</leader><controlfield tag="001">BV025457565</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">t|</controlfield><controlfield tag="008">100417s2008 xx d||| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780123737380</subfield><subfield code="9">978-0-12-373738-0</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)254738315</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV025457565</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-11</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">541.37</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">WC 3420</subfield><subfield code="0">(DE-625)148084:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Electrochemical sensors, biosensors and their biomedical applications</subfield><subfield code="c">ed. by Xueji Zhang ...</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">1. ed.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Amsterdam [u.a.]</subfield><subfield code="b">Elsevier, Acad. Press</subfield><subfield code="c">2008</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XXII, 593 S.</subfield><subfield code="b">graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhang, Xueji</subfield><subfield code="4">edt</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HBZ Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&amp;doc_library=BVB01&amp;local_base=BVB01&amp;doc_number=020073789&amp;sequence=000002&amp;line_number=0001&amp;func_code=DB_RECORDS&amp;service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-020073789</subfield></datafield></record></collection>
id DE-604.BV025457565
illustrated Illustrated
indexdate 2024-12-23T23:51:03Z
institution BVB
isbn 9780123737380
language English
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-020073789
oclc_num 254738315
open_access_boolean
owner DE-11
owner_facet DE-11
physical XXII, 593 S. graph. Darst.
publishDate 2008
publishDateSearch 2008
publishDateSort 2008
publisher Elsevier, Acad. Press
record_format marc
spellingShingle Electrochemical sensors, biosensors and their biomedical applications
title Electrochemical sensors, biosensors and their biomedical applications
title_auth Electrochemical sensors, biosensors and their biomedical applications
title_exact_search Electrochemical sensors, biosensors and their biomedical applications
title_full Electrochemical sensors, biosensors and their biomedical applications ed. by Xueji Zhang ...
title_fullStr Electrochemical sensors, biosensors and their biomedical applications ed. by Xueji Zhang ...
title_full_unstemmed Electrochemical sensors, biosensors and their biomedical applications ed. by Xueji Zhang ...
title_short Electrochemical sensors, biosensors and their biomedical applications
title_sort electrochemical sensors biosensors and their biomedical applications
url http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=020073789&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA
work_keys_str_mv AT zhangxueji electrochemicalsensorsbiosensorsandtheirbiomedicalapplications