Nonlocal asymptotic behavior of curves and leaves of laminations on universal coverings

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Anosov, Dmitrij V. 1936-2014 (VerfasserIn), Žužoma, Evgenij V. 1951- (VerfasserIn)
Format: Buch
Sprache:English
Veröffentlicht: Moscow ; Birmingham Pleiades Publishing 2005
Schriftenreihe:Proceedings of the Steklov Institute of Mathematics Volume 249
Online-Zugang:Inhaltsverzeichnis
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nam a2200000 cb4500
001 BV024606152
003 DE-604
005 20221103
007 t|
008 090924s2005 xx a||| |||| 00||| eng d
035 |a (OCoLC)255234544 
035 |a (DE-599)BVBBV024606152 
040 |a DE-604  |b ger  |e rda 
041 0 |a eng 
049 |a DE-83  |a DE-188 
084 |a 37D10  |2 msc 
100 1 |a Anosov, Dmitrij V.  |d 1936-2014  |0 (DE-588)131836153  |4 aut 
245 1 0 |a Nonlocal asymptotic behavior of curves and leaves of laminations on universal coverings  |c D. V. Anosov and E. V. Zhuzhoma 
264 1 |a Moscow ; Birmingham  |b Pleiades Publishing  |c 2005 
300 |a 221 Seiten  |b Illustrationen 
336 |b txt  |2 rdacontent 
337 |b n  |2 rdamedia 
338 |b nc  |2 rdacarrier 
490 1 |a Proceedings of the Steklov Institute of Mathematics  |v Volume 249 
546 |a Aus dem Russischen übersetzt 
700 1 |a Žužoma, Evgenij V.  |d 1951-  |0 (DE-588)121053547  |4 aut 
830 0 |a Proceedings of the Steklov Institute of Mathematics  |v Volume 249  |w (DE-604)BV000009943  |9 249 
856 4 2 |m HBZ Datenaustausch  |q application/pdf  |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=018579115&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA  |3 Inhaltsverzeichnis 
943 1 |a oai:aleph.bib-bvb.de:BVB01-018579115 

Datensatz im Suchindex

_version_ 1819609542465421312
adam_text Titel: Nonlocal asymptotic behavior of curves and leaves of laminations on universal coverings Autor: Anosov, Dmitrij V Jahr: 2005 Volume 249, 2005 CONTENTS Introduction...................................................................................... 1 Chapter 1. Basic Definitions and Preliminary Results.................................. 6 1.1. Introductory concepts and notations.............................................. 6 1.1.1. Semi-infinite continuous curves (7). 1.1.2. Universal covering and the absolute (9). 1.1.3. The Frechet distance and the F-equivalence (11). 1.1.4. The limit set of a curve on a manifold and at infinity (13). 1.1.5. Asymptotic directions and accessible points (15). 1.1.6. Coasymptotic geodesic (16). 1.2. Special families of curves............................................................ 18 1.2.1. Local laminations (18). 1.2.2. Separatrices and generalized leaves (20). 1.2.3. Min- imal and quasiminimal sets (22). 1.2.4. Closed transversals of local laminations (23). 1.2.5. Geodesic laminations (25). 1.2.6. Flows on surfaces (27). 1.3. Description of points of the absolute.............................................. 28 1.4. Main questions and problems......................................................... 31 Chapter 2. The Anosov and Weil Theorems................................................ 37 2.1. The theorem and conjecture of Weil.............................................. 38 2.1.1. Proof of the Weil theorem (39). 2.1.2. Proof of the Weil conjecture (43). 2.1.3. On infinite curves on the torus and the Klein bottle (44). 2.2. Anosov theorems on the existence of asymptotic directions.................... 44 2.2.1. Topological flows with a finite number of fixed points (45). 2.2.2. Flows with a con- tractible set of fixed points (49). 2.2.3. Analytic flows (50). 2.3. Anosov theorems on the approximation of curves by semitrajectories......... 53 2.3.1. Smoothing of compact arcs (54). 2.3.2. Approximation by a smoothly embedded curve (58). 2.3.3. Proofs of the main theorems (61). 2.4. Example of a curve that cannot be approximated by a leaf of a foliation— 74 Chapter 3. Nonlocal Asymptotic Behavior of Special Curves........................ 89 3.1. Widely disposed curves................................................................ 90 3.2. Semitrajectories of flows............................................................ 93 3.2.1. Nontrivial recurrent semitrajectories (94). 3.2.2. Semitrajectories of analytic and topological flows with a finite number of fixed points (96). 3.2.3. A generalization of the Poincare-Bendixson theorem (98). 3.3. Leaves and semileaves of foliations................................................. 99 3.4. Widely disposed local laminations.................................................. 101 3.4.1. Nontrivial recurrent leaves and semileaves (102). 3.4.2. Transversal local lamina- tions (104). 3.4.3. Invariant manifolds of the points of basic sets (105). 3.5. Geodesic frameworks of local laminations........................................ 106 3.5.1. Geodesic frameworks of quasiminimal sets (107). 3.5.2. Geodesic frameworks of special foliations (111). 3 6 The image of a geodesic under a covering homeomorphism.......................114 3.7. Curves with constraints imposed on the geodesic curvature.................... 115 Chapter 4. Limit Sets of Curves at Infinity................................................117 4.1. Anosov s wild curve................................................................... 117 4.2. Limit sets of the lifts of curves on the torus.....................................118 Chapter 5. Deviations of Curves from Coasymptotic Geodesics...................... 120 5.1. Unbounded deviation from a geodesic with irrational direction................121 5.1.1. Example of a curve on the torus (121). 5.1.2. The Aranson-Grilles example of a curve on a hyperbolic surface (124). 5.2. Unbounded deviation from a geodesic with rational direction..................128 5.2.1. The Anosov example (128). 5.2.2. Remote limit points (146). 5.2.3. The Markley- Vanderschoot example (146). 5.3. Boundedness of deviation of special curves........................................148 5.3.1. Semitrajectories of topological flows on the torus (148). 5.3.2. Semitrajectories of flows on hyperbolic surfaces (149). 5.3.3. Semitrajectories of analytic flows (154). 5.3.4. Semileaves of foliations (155). 5.3.5. Invariant manifolds of points of basic sets (155). 5.4. Uniformity of deviations of curves from geodesics............................... 156 Chapter 6. Interplay between the Asymptotic Behavior of Leaves and Their Properties............................................................................ 158 6.1. The absolute and the dynamical properties of flows............................ 158 6.2. The absolute and the smoothness of flows........................................ 160 6.3. Points of the absolute that are accessible by semitrajectories of flows..... 164 6.4. Oscillation of leaves about coasymptotic geodesics and equidistant curves.. 165 Chapter 7. Applications to Dynamical Systems and Foliations....................... 169 7.1. Classification of irrational flows and foliations................................. 170 7.2. Classification of irrational 2-webs................................................. 181 7.3. Classification of nontrivial minimal sets.......................................... 183 7.4. Classification of homeomorphisms of surfaces with invariant foliations.......185 7.5. Classification of one-dimensional basic sets....................................... 186 7.6. Classification of Cherry flows...................................................... 187 Appendix A. Elements of the Theory of Foliations and Laminations on Surfaces 190 A.l. Examples of foliations and basic definitions......................................... 190 A.l.l. Smoothing topological foliations (191). A.1.2. Index of a singularity and of a curve (191). A.1.3. Transitive foliations on the disk and sphere (192). A.1.4. Operations of blowing up a leaf and semileaf (195). A.1.5. Black holes and Rosenberg labyrinths (197). A.1.6. Denjoy and Cherry foliations (198). A.2. Poincare-Bendixson theory for local laminations on surfaces................. 199 ^ o i ^al?gUeSr7the Cherl7 and Maier theorems (200). A.2.2. Bendixson extension (200). A.2.3. The list of limit sets of a nonclosed semileaf (203). A.3. Hyperbolic and Riemannian surfaces .... 203 A.4. Geodesic laminations........................................................................... 206 Appendix B. Certain Facts from Piecewise Linear Topology.. 208 References............................................................................nin List of conjectures, corollaries, definitions, lemmas, and theorems Index............................................. 217 219
any_adam_object 1
author Anosov, Dmitrij V. 1936-2014
Žužoma, Evgenij V. 1951-
author_GND (DE-588)131836153
(DE-588)121053547
author_facet Anosov, Dmitrij V. 1936-2014
Žužoma, Evgenij V. 1951-
author_role aut
aut
author_sort Anosov, Dmitrij V. 1936-2014
author_variant d v a dv dva
e v ž ev evž
building Verbundindex
bvnumber BV024606152
ctrlnum (OCoLC)255234544
(DE-599)BVBBV024606152
format Book
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01350nam a2200313 cb4500</leader><controlfield tag="001">BV024606152</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20221103 </controlfield><controlfield tag="007">t|</controlfield><controlfield tag="008">090924s2005 xx a||| |||| 00||| eng d</controlfield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)255234544</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV024606152</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-83</subfield><subfield code="a">DE-188</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">37D10</subfield><subfield code="2">msc</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Anosov, Dmitrij V.</subfield><subfield code="d">1936-2014</subfield><subfield code="0">(DE-588)131836153</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Nonlocal asymptotic behavior of curves and leaves of laminations on universal coverings</subfield><subfield code="c">D. V. Anosov and E. V. Zhuzhoma</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Moscow ; Birmingham</subfield><subfield code="b">Pleiades Publishing</subfield><subfield code="c">2005</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">221 Seiten</subfield><subfield code="b">Illustrationen</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Proceedings of the Steklov Institute of Mathematics</subfield><subfield code="v">Volume 249</subfield></datafield><datafield tag="546" ind1=" " ind2=" "><subfield code="a">Aus dem Russischen übersetzt</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Žužoma, Evgenij V.</subfield><subfield code="d">1951-</subfield><subfield code="0">(DE-588)121053547</subfield><subfield code="4">aut</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Proceedings of the Steklov Institute of Mathematics</subfield><subfield code="v">Volume 249</subfield><subfield code="w">(DE-604)BV000009943</subfield><subfield code="9">249</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HBZ Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&amp;doc_library=BVB01&amp;local_base=BVB01&amp;doc_number=018579115&amp;sequence=000001&amp;line_number=0001&amp;func_code=DB_RECORDS&amp;service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-018579115</subfield></datafield></record></collection>
id DE-604.BV024606152
illustrated Illustrated
indexdate 2024-12-23T22:40:35Z
institution BVB
language English
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-018579115
oclc_num 255234544
open_access_boolean
owner DE-83
DE-188
owner_facet DE-83
DE-188
physical 221 Seiten Illustrationen
publishDate 2005
publishDateSearch 2005
publishDateSort 2005
publisher Pleiades Publishing
record_format marc
series Proceedings of the Steklov Institute of Mathematics
series2 Proceedings of the Steklov Institute of Mathematics
spellingShingle Anosov, Dmitrij V. 1936-2014
Žužoma, Evgenij V. 1951-
Nonlocal asymptotic behavior of curves and leaves of laminations on universal coverings
Proceedings of the Steklov Institute of Mathematics
title Nonlocal asymptotic behavior of curves and leaves of laminations on universal coverings
title_auth Nonlocal asymptotic behavior of curves and leaves of laminations on universal coverings
title_exact_search Nonlocal asymptotic behavior of curves and leaves of laminations on universal coverings
title_full Nonlocal asymptotic behavior of curves and leaves of laminations on universal coverings D. V. Anosov and E. V. Zhuzhoma
title_fullStr Nonlocal asymptotic behavior of curves and leaves of laminations on universal coverings D. V. Anosov and E. V. Zhuzhoma
title_full_unstemmed Nonlocal asymptotic behavior of curves and leaves of laminations on universal coverings D. V. Anosov and E. V. Zhuzhoma
title_short Nonlocal asymptotic behavior of curves and leaves of laminations on universal coverings
title_sort nonlocal asymptotic behavior of curves and leaves of laminations on universal coverings
url http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=018579115&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA
volume_link (DE-604)BV000009943
work_keys_str_mv AT anosovdmitrijv nonlocalasymptoticbehaviorofcurvesandleavesoflaminationsonuniversalcoverings
AT zuzomaevgenijv nonlocalasymptoticbehaviorofcurvesandleavesoflaminationsonuniversalcoverings