Partially observable linear systems under dependent noises

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Bashirov, Agamirza E. (VerfasserIn)
Format: Buch
Sprache:English
Veröffentlicht: Basel [u.a.] Birkhäuser 2003
Schriftenreihe:Systems & Control
Schlagworte:
Online-Zugang:Inhaltsverzeichnis
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nam a2200000zc 4500
001 BV023791639
003 DE-604
005 20080825000000.0
007 t|
008 030522s2003 xx a||| |||| 00||| eng d
020 |a 376436999X  |9 3-7643-6999-X 
035 |a (OCoLC)845550953 
035 |a (DE-599)BVBBV023791639 
040 |a DE-604  |b ger 
041 0 |a eng 
049 |a DE-634 
082 0 |a 003.74 
100 1 |a Bashirov, Agamirza E.  |e Verfasser  |0 (DE-588)124392865  |4 aut 
245 1 0 |a Partially observable linear systems under dependent noises  |c Agamirza E. Bashirov 
264 1 |a Basel [u.a.]  |b Birkhäuser  |c 2003 
300 |a XXVI, 334 S.  |b Ill. 
336 |b txt  |2 rdacontent 
337 |b n  |2 rdamedia 
338 |b nc  |2 rdacarrier 
490 0 |a Systems & Control 
650 0 7 |a Schätztheorie  |0 (DE-588)4121608-8  |2 gnd  |9 rswk-swf 
650 0 7 |a Funktionalanalysis  |0 (DE-588)4018916-8  |2 gnd  |9 rswk-swf 
650 0 7 |a Unendlichdimensionales System  |0 (DE-588)4207956-1  |2 gnd  |9 rswk-swf 
650 0 7 |a Lineares System  |0 (DE-588)4125617-7  |2 gnd  |9 rswk-swf 
650 0 7 |a Stochastische optimale Kontrolle  |0 (DE-588)4207850-7  |2 gnd  |9 rswk-swf 
689 0 0 |a Lineares System  |0 (DE-588)4125617-7  |D s 
689 0 1 |a Unendlichdimensionales System  |0 (DE-588)4207956-1  |D s 
689 0 2 |a Funktionalanalysis  |0 (DE-588)4018916-8  |D s 
689 0 3 |a Stochastische optimale Kontrolle  |0 (DE-588)4207850-7  |D s 
689 0 4 |a Schätztheorie  |0 (DE-588)4121608-8  |D s 
689 0 |5 DE-604 
856 4 2 |m HEBIS Datenaustausch Darmstadt  |q application/pdf  |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=017433845&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA  |3 Inhaltsverzeichnis 
943 1 |a oai:aleph.bib-bvb.de:BVB01-017433845 

Datensatz im Suchindex

_version_ 1819709240200134656
adam_text AGAMIRZA E. BASHIROV PARTIALLY OBSERVABLE LINEAR SYSTEMS UNDER DEPENDENT NOISES BIRKHAUSER VERLAG BASEL * BOSTON * BERLIN CONTENTS PREFACE XV 1 BASIC ELEMENTS OF FUNCTIONAL ANALYSIS 1 1.1 SETS AND FUNCTIONS 1 1.1.1 SETS AND QUOTIENT SETS 1 1.1.2 SYSTEMS OF NUMBERS AND CARDINALITY 2 1.1.3 SYSTEMS OF SETS 3 1.1.4 FUNCTIONS AND SEQUENCES 4 1.2 ABSTRACT SPACES 5 1.2.1 LINEAR SPACES 5 1.2.2 METRIC SPACES 6 1.2.3 BANACH SPACES 8 1.2.4 HILBERT AND EUCLIDEAN SPACES 9 1.2.5 MEASURABLE AND BOREL SPACES 10 1.2.6 MEASURE AND PROBABILITY SPACES 11 1.2.7 PRODUCT OF SPACES 13 1.3 LINEAR OPERATORS 15 1.3.1 BOUNDED OPERATORS 15 1.3.2 INVERSE OPERATORS 17 1.3.3 CLOSED OPERATORS 19 1.3.4 ADJOINT OPERATORS 19 1.3.5 PROJECTION OPERATORS 20 1.3.6 SELF-ADJOINT, NONNEGATIVE AND COERCIVE OPERATORS 21 1.3.7 COMPACT, HILBERT-SCHMIDT AND NUCLEAR OPERATORS 22 1.4 WEAK CONVERGENCE 26 1.4.1 STRONG AND WEAK FORMS OF CONVERGENCE 26 1.4.2 WEAK CONVERGENCE AND CONVEXITY 27 1.4.3 CONVERGENCE OF OPERATORS 28 2 BASIC CONCEPTS OF ANALYSIS IN ABSTRACT SPACES 31 2.1 CONTINUITY 31 2.1.1 CONTINUITY OF VECTOR-VALUED FUNCTIONS 31 2.1.2 WEAK LOWER SEMICONTINUITY 32 CONTENTS 2.1.3 CONTINUITY OF OPERATOR-VALUED FUNCTIONS 33 2.2 DIFFERENTIABILITY 34 2.2.1 DIFFERENTIABILITY OF NONLINEAR OPERATORS 34 2.2.2 DIFFERENTIABILITY OF OPERATOR-VALUED FUNCTIONS 36 2.3 MEASURABILITY 37 2.3.1 MEASURABILITY OF VECTOR-VALUED FUNCTIONS 37 2.3.2 MEASURABILITY OF OPERATOR-VALUED FUNCTIONS 39 2.3.3 MEASURABILITY OF CJ- AND 2-VALUED FUNCTIONS 39 2.4 INTEGRABILITY 41 2.4.1 BOCHNER INTEGRAL 42 2.4.2 FUBINI S PROPERTY 45 2.4.3 CHANGE OF VARIABLE 47 2.4.4 STRONG BOCHNER INTEGRAL 49 2.4.5 BOCHNER INTEGRAL OF C - AND ^2-VALUED FUNCTIONS 52 2.5 INTEGRAL AND DIFFERENTIAL OPERATORS 52 2.5.1 INTEGRAL OPERATORS 52 2.5.2 INTEGRAL HUBERT-SCHMIDT OPERATORS 53 2.5.3 DIFFERENTIAL OPERATORS 55 2.5.4 GRONWALL S INEQUALITY AND CONTRACTION MAPPINGS 58 EVOLUTION OPERATORS 59 3.1 MAIN CLASSES OF EVOLUTION OPERATORS 59 3.1.1 STRONGLY CONTINUOUS SEMIGROUPS 59 3.1.2 EXAMPLES 60 3.1.3 MILD EVOLUTION OPERATORS 64 3.2 TRANSFORMATIONS OF EVOLUTION OPERATORS 66 3.2.1 BOUNDED PERTURBATIONS 66 3.2.2 SOME OTHER TRANSFORMATIONS 70 3.3 OPERATOR RICCATI EQUATIONS 71 3.3.1 EXISTENCE AND UNIQUENESS OF SOLUTION 71 3.3.2 DUAL RICCATI EQUATION 75 3.3.3 RICCATI EQUATIONS IN DIFFERENTIAL FORM 77 3.4 UNBOUNDED PERTURBATION 80 3.4.1 PRELIMINARIES 80 3.4.2 A*-PERTURBATION 82 3.4.3 A-PERTURBATION 85 3.4.4 EXAMPLES 87 PARTIALLY OBSERVABLE LINEAR SYSTEMS 93 4.1 RANDOM VARIABLES AND PROCESSES 93 4.1.1 RANDOM VARIABLES 93 4.1.2 CONDITIONAL EXPECTATION AND INDEPENDENCE 95 4.1.3 GAUSSIAN SYSTEMS 97 4.1.4 RANDOM PROCESSES 98 CONTENTS XI 4.2 STOCHASTIC MODELLING OF REAL PROCESSES 101 4.2.1 BROWNIAN MOTION 101 4.2.2 WIENER PROCESS MODEL OF BROWNIAN MOTION 104 4.2.3 DIFFUSION PROCESSES 105 4.3 STOCHASTIC INTEGRATION IN HILBERT SPACES 106 4.3.1 STOCHASTIC INTEGRAL 106 4.3.2 MARTINGALE PROPERTY 108 4.3.3 FUBINI S PROPERTY 109 4.3.4 STOCHASTIC INTEGRATION WITH RESPECT TO WIENER PROCESSES . . ILL 4.4 PARTIALLY OBSERVABLE LINEAR SYSTEMS 113 4.4.1 SOLUTION CONCEPTS 113 4.4.2 LINEAR STOCHASTIC EVOLUTION SYSTEMS 115 4.4.3 PARTIALLY OBSERVABLE LINEAR SYSTEMS 117 4.5 BASIC ESTIMATION IN HILBERT SPACES 117 4.5.1 ESTIMATION OF RANDOM VARIABLES 117 4.5.2 ESTIMATION OF RANDOM PROCESSES 120 4.6 IMPROVING THE BROWNIAN MOTION MODEL 122 4.6.1 WHITE, COLORED AND WIDE BAND NOISE PROCESSES 122 4.6.2 INTEGRAL REPRESENTATION OF WIDE BAND NOISES 125 5 SEPARATION PRINCIPLE 129 5.1 SETTING OF CONTROL PROBLEM 129 5.1.1 STATE-OBSERVATION SYSTEM 129 5.1.2 SET OF ADMISSIBLE CONTROLS 130 5.1.3 QUADRATIC COST FUNCTIONAL 131 5.2 SEPARATION PRINCIPLE 131 5.2.1 PROPERTIES OF ADMISSIBLE CONTROLS 132 5.2.2 EXTENDED SEPARATION PRINCIPLE 135 5.2.3 CLASSICAL SEPARATION PRINCIPLE 137 5.2.4 PROOF OF LEMMA 5.15 138 5.3 GENERALIZATION TO A GAME PROBLEM 139 5.3.1 SETTING OF GAME PROBLEM 139 5.3.2 CASE 1: THE FIRST PLAYER HAS WORSE OBSERVATIONS 141 5.3.3 CASE 2: THE PLAYERS HAVE THE SAME OBSERVATIONS 144 5.4 MINIMIZING SEQUENCE 145 5.4.1 PROPERTIES OF COST FUNCTIONAL 145 5.4.2 MINIMIZING SEQUENCE 147 5.5 LINEAR REGULATOR PROBLEM 148 5.5.1 SETTING OF LINEAR REGULATOR PROBLEM 148 5.5.2 OPTIMAL REGULATOR 149 5.6 EXISTENCE OF OPTIMAL CONTROL 150 5.6.1 CONTROLS IN LINEAR FEEDBACK FORM 150 5.6.2 EXISTENCE OF OPTIMAL CONTROL 151 5.6.3 APPLICATION TO EXISTENCE OF SADDLE POINTS 153 XII CONTENTS 5.7 CONCLUDING REMARKS 158 6 CONTROL AND ESTIMATION UNDER CORRELATED WHITE NOISES 159 6.1 ESTIMATION: PRELIMINARIES 159 6.1.1 SETTING OF ESTIMATION PROBLEMS 159 6.1.2 WIENER-HOPF EQUATION 160 6.2 FILTERING 162 6.2.1 DUAJ LINEAR REGULATOR PROBLEM 162 6.2.2 OPTIMAL LINEAR FEEDBACK FILTER 164 6.2.3 ERROR PROCESS 166 6.2.4 INNOVATION PROCESS 168 6.3 PREDICTION 171 6.3.1 DUAL LINEAR REGULATOR PROBLEM 171 6.3.2 OPTIMAL LINEAR FEEDBACK PREDICTOR 172 6.4 SMOOTHING 173 6.4.1 DUAL LINEAR REGULATOR PROBLEM 173 6.4.2 OPTIMAL LINEAR FEEDBACK SMOOTHER 174 6.5 STOCHASTIC REGULATOR PROBLEM 177 6.5.1 SETTING OF THE PROBLEM 177 6.5.2 OPTIMAL STOCHASTIC REGULATOR 178 7 CONTROL AND ESTIMATION UNDER COLORED NOISES 183 7.1 ESTIMATION 183 7.1.1 SETTING OF ESTIMATION PROBLEMS 183 7.1.2 REDUCTION 184 7.1.3 OPTIMAL LINEAR FEEDBACK ESTIMATORS 185 7.1.4 ABOUT THE RICCATI EQUATION (7.15) 186 7.1.5 EXAMPLE: OPTIMAL FILTER IN DIFFERENTIAL FORM 189 7.2 STOCHASTIC REGULATOR PROBLEM 191 7.2.1 SETTING OF THE PROBLEM 191 7.2.2 REDUCTION 191 7.2.3 OPTIMAL STOCHASTIC REGULATOR 192 7.2.4 ABOUT THE RICCATI EQUATION (7.48) 193 7.2.5 EXAMPLE: OPTIMAL STOCHASTIC REGULATOR IN DIFFERENTIAL FORM 196 8 CONTROL AND ESTIMATION UNDER WIDE BAND NOISES 197 8.1 ESTIMATION 197 8.1.1 SETTING OF ESTIMATION PROBLEMS 197 8.1.2 THE FIRST REDUCTION 198 8.1.3 THE SECOND REDUCTION 201 8.1.4 OPTIMAL LINEAR FEEDBACK ESTIMATORS 206 8.1.5 ABOUT THE RICCATI EQUATION (8.40) 207 8.1.6 EXAMPLE: OPTIMAL FILTER IN DIFFERENTIAL FORM 208 CONTENTS XIII 8.2 MORE ABOUT THE OPTIMAL FILTER 209 8.2.1 MORE ABOUT THE RICCATI EQUATION (8.40) 210 8.2.2 EQUATIONS FOR THE OPTIMAL FILTER 216 8.3 STOCHASTIC REGULATOR PROBLEM 218 8.3.1 SETTING OF THE PROBLEM 218 8.3.2 REDUCTION 219 8.3.3 OPTIMAL STOCHASTIC REGULATOR 220 8.3.4 ABOUT THE RICCATI EQUATION (8.81) 220 8.3.5 EXAMPLE: OPTIMAL STOCHASTIC REGULATOR IN DIFFERENTIAL FORM 224 8.4 CONCLUDING REMARKS 225 9 CONTROL AND ESTIMATION UNDER SHIFTED WHITE NOISES 227 9.1 PRELIMINARIES 227 9.2 STATE NOISE DELAYING OBSERVATION NOISE: FILTERING 230 9.2.1 SETTING OF THE PROBLEM 230 9.2.2 DUAL LINEAR REGULATOR PROBLEM 231 9.2.3 OPTIMAL LINEAR FEEDBACK FILTER 232 9.2.4 ABOUT THE RICCATI EQUATION (9.27) 235 9.2.5 ABOUT THE OPTIMAL FILTER 238 9.3 STATE NOISE DELAYING OBSERVATION NOISE: PREDICTION 243 9.4 STATE NOISE DELAYING OBSERVATION NOISE: SMOOTHING 247 9.5 STATE NOISE DELAYING OBSERVATION NOISE: STOCHASTIC REGULATOR PROB- LEM 253 9.6 CONCLUDING REMARKS 255 10 CONTROL AND ESTIMATION UNDER SHIFTED WHITE NOISES (REVISED) 257 10.1 PRELIMINARIES 257 10.2 SHIFTED WHITE NOISES AND BOUNDARY NOISES 259 10.3 CONVERGENCE OF WIDE BAND NOISE PROCESSES 260 10.3.1 APPROXIMATION OF WHITE NOISES 260 10.3.2 APPROXIMATION OF SHIFTED WHITE NOISES 262 10.4 STATE NOISE DELAYING OBSERVATION NOISE 264 10.4.1 SETTING OF THE PROBLEM 264 10.4.2 APPROXIMATING PROBLEMS 265 10.4.3 OPTIMAL CONTROL AND OPTIMAL FILTER 267 10.4.4 APPLICATION TO SPACE NAVIGATION AND GUIDANCE 271 10.5 STATE NOISE ANTICIPATING OBSERVATION NOISE 275 10.5.1 SETTING OF THE PROBLEM 275 10.5.2 APPROXIMATING PROBLEMS 275 10.5.3 OPTIMAL CONTROL AND OPTIMAL FILTER 276 XIV CONTENTS 11 DUALITY 279 11.1 CLASSICAL SEPARATION PRINCIPLE AND DUALITY 279 11.2 EXTENDED SEPARATION PRINCIPLE AND DUALITY 281 11.3 INNOVATION PROCESS FOR CONTROL ACTIONS 283 12 CONTROLLABILITY 285 12.1 PRELIMINARIES 285 12.1.1 DEFINITIONS 285 12.1.2 DESCRIPTION OF THE SYSTEM 289 12.2 CONTROLLABILITY: DETERMINISTIC SYSTEMS 290 12.2.1 CCC, ACC AND RANK CONDITION 290 12.2.2 RESOLVENT CONDITIONS 292 12.2.3 APPLICATIONS OF RESOLVENT CONDITIONS 295 12.3 CONTROLLABILITY: STOCHASTIC SYSTEMS 300 12.3.1 ^-CONTROLLABILITY 300 12.3.2 C T -CONTROLLABILITY 304 12.3.3 S T -CONTROLLABILITY 306 COMMENTS 311 BIBLIOGRAPHY 315 INDEX OF NOTATION 323 INDEX 329
any_adam_object 1
author Bashirov, Agamirza E.
author_GND (DE-588)124392865
author_facet Bashirov, Agamirza E.
author_role aut
author_sort Bashirov, Agamirza E.
author_variant a e b ae aeb
building Verbundindex
bvnumber BV023791639
ctrlnum (OCoLC)845550953
(DE-599)BVBBV023791639
dewey-full 003.74
dewey-hundreds 000 - Computer science, information, general works
dewey-ones 003 - Systems
dewey-raw 003.74
dewey-search 003.74
dewey-sort 13.74
dewey-tens 000 - Computer science, information, general works
discipline Informatik
format Book
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01751nam a2200421zc 4500</leader><controlfield tag="001">BV023791639</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20080825000000.0</controlfield><controlfield tag="007">t|</controlfield><controlfield tag="008">030522s2003 xx a||| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">376436999X</subfield><subfield code="9">3-7643-6999-X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)845550953</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV023791639</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">003.74</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Bashirov, Agamirza E.</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)124392865</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Partially observable linear systems under dependent noises</subfield><subfield code="c">Agamirza E. Bashirov</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Basel [u.a.]</subfield><subfield code="b">Birkhäuser</subfield><subfield code="c">2003</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XXVI, 334 S.</subfield><subfield code="b">Ill.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Systems &amp; Control</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Schätztheorie</subfield><subfield code="0">(DE-588)4121608-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Funktionalanalysis</subfield><subfield code="0">(DE-588)4018916-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Unendlichdimensionales System</subfield><subfield code="0">(DE-588)4207956-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Lineares System</subfield><subfield code="0">(DE-588)4125617-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Stochastische optimale Kontrolle</subfield><subfield code="0">(DE-588)4207850-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Lineares System</subfield><subfield code="0">(DE-588)4125617-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Unendlichdimensionales System</subfield><subfield code="0">(DE-588)4207956-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Funktionalanalysis</subfield><subfield code="0">(DE-588)4018916-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="3"><subfield code="a">Stochastische optimale Kontrolle</subfield><subfield code="0">(DE-588)4207850-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="4"><subfield code="a">Schätztheorie</subfield><subfield code="0">(DE-588)4121608-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HEBIS Datenaustausch Darmstadt</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&amp;doc_library=BVB01&amp;local_base=BVB01&amp;doc_number=017433845&amp;sequence=000001&amp;line_number=0001&amp;func_code=DB_RECORDS&amp;service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-017433845</subfield></datafield></record></collection>
id DE-604.BV023791639
illustrated Illustrated
indexdate 2024-12-23T21:37:11Z
institution BVB
isbn 376436999X
language English
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-017433845
oclc_num 845550953
open_access_boolean
owner DE-634
owner_facet DE-634
physical XXVI, 334 S. Ill.
publishDate 2003
publishDateSearch 2003
publishDateSort 2003
publisher Birkhäuser
record_format marc
series2 Systems & Control
spellingShingle Bashirov, Agamirza E.
Partially observable linear systems under dependent noises
Schätztheorie (DE-588)4121608-8 gnd
Funktionalanalysis (DE-588)4018916-8 gnd
Unendlichdimensionales System (DE-588)4207956-1 gnd
Lineares System (DE-588)4125617-7 gnd
Stochastische optimale Kontrolle (DE-588)4207850-7 gnd
subject_GND (DE-588)4121608-8
(DE-588)4018916-8
(DE-588)4207956-1
(DE-588)4125617-7
(DE-588)4207850-7
title Partially observable linear systems under dependent noises
title_auth Partially observable linear systems under dependent noises
title_exact_search Partially observable linear systems under dependent noises
title_full Partially observable linear systems under dependent noises Agamirza E. Bashirov
title_fullStr Partially observable linear systems under dependent noises Agamirza E. Bashirov
title_full_unstemmed Partially observable linear systems under dependent noises Agamirza E. Bashirov
title_short Partially observable linear systems under dependent noises
title_sort partially observable linear systems under dependent noises
topic Schätztheorie (DE-588)4121608-8 gnd
Funktionalanalysis (DE-588)4018916-8 gnd
Unendlichdimensionales System (DE-588)4207956-1 gnd
Lineares System (DE-588)4125617-7 gnd
Stochastische optimale Kontrolle (DE-588)4207850-7 gnd
topic_facet Schätztheorie
Funktionalanalysis
Unendlichdimensionales System
Lineares System
Stochastische optimale Kontrolle
url http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=017433845&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA
work_keys_str_mv AT bashirovagamirzae partiallyobservablelinearsystemsunderdependentnoises