Plant physiological ecology

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Lambers, Hans (VerfasserIn), Pons, Thijs Leendert 1948- (VerfasserIn), Chapin, F. Stuart III 1944- (VerfasserIn)
Format: Buch
Sprache:English
Veröffentlicht: New York, NY Springer 2008
Ausgabe:2. ed.
Schlagworte:
Online-Zugang:Inhaltsverzeichnis
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nam a2200000 c 4500
001 BV023349532
003 DE-604
005 20111107
007 t
008 080617s2008 abd| |||| 00||| eng d
015 |a 08,N06,0828  |2 dnb 
016 7 |a 987258710  |2 DE-101 
020 |a 9780387783406  |c Gb. : ca. sfr 101.00 (freier Pr.)  |9 978-0-387-78340-6 
020 |a 0387783407  |c Gb. : ca. sfr 101.00 (freier Pr.)  |9 0-387-78340-7 
020 |a 9780387783413  |9 978-0-387-78341-3 
024 3 |a 9780387783406 
028 5 2 |a 12041398 
035 |a (OCoLC)213855663 
035 |a (DE-599)DNB987258710 
040 |a DE-604  |b ger  |e rakddb 
041 0 |a eng 
049 |a DE-703  |a DE-M49  |a DE-20  |a DE-29T  |a DE-11  |a DE-634  |a DE-19 
050 0 |a QK717 
082 0 |a 571.2  |2 22 
084 |a WI 1802  |0 (DE-625)148758:13426  |2 rvk 
084 |a WI 2010  |0 (DE-625)148760:  |2 rvk 
084 |a WN 1950  |0 (DE-625)150988:  |2 rvk 
084 |a 580  |2 sdnb 
084 |a BIO 422f  |2 stub 
100 1 |a Lambers, Hans  |e Verfasser  |4 aut 
245 1 0 |a Plant physiological ecology  |c Hans Lambers ; F. Stuart Chapin ; Thijs L. Pons 
250 |a 2. ed. 
264 1 |a New York, NY  |b Springer  |c 2008 
300 |a XXIX, 604 S.  |b Ill., graph. Darst., Kt.  |c 254 mm x 178 mm 
336 |b txt  |2 rdacontent 
337 |b n  |2 rdamedia 
338 |b nc  |2 rdacarrier 
650 4 |a Plant ecophysiology 
650 0 7 |a Pflanzenphysiologie  |0 (DE-588)4045580-4  |2 gnd  |9 rswk-swf 
650 0 7 |a Pflanzen  |0 (DE-588)4045539-7  |2 gnd  |9 rswk-swf 
650 0 7 |a Autökologie  |0 (DE-588)4143684-2  |2 gnd  |9 rswk-swf 
650 0 7 |a Pflanzenökologie  |0 (DE-588)4045575-0  |2 gnd  |9 rswk-swf 
655 7 |0 (DE-588)4143413-4  |a Aufsatzsammlung  |2 gnd-content 
689 0 0 |a Autökologie  |0 (DE-588)4143684-2  |D s 
689 0 1 |a Pflanzen  |0 (DE-588)4045539-7  |D s 
689 0 |5 DE-604 
689 1 0 |a Pflanzenphysiologie  |0 (DE-588)4045580-4  |D s 
689 1 1 |a Pflanzenökologie  |0 (DE-588)4045575-0  |D s 
689 1 |8 1\p  |5 DE-604 
700 1 |a Pons, Thijs Leendert  |d 1948-  |e Verfasser  |0 (DE-588)12058669X  |4 aut 
700 1 |a Chapin, F. Stuart  |c III  |d 1944-  |e Verfasser  |0 (DE-588)120681935  |4 aut 
856 4 2 |m Digitalisierung UB Bayreuth  |q application/pdf  |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016533164&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA  |3 Inhaltsverzeichnis 
999 |a oai:aleph.bib-bvb.de:BVB01-016533164 
883 1 |8 1\p  |a cgwrk  |d 20201028  |q DE-101  |u https://d-nb.info/provenance/plan#cgwrk 

Datensatz im Suchindex

DE-BY-TUM_call_number 1003/BIO 422f 2008 L 1399(2)+2
1004/BIO 422f 2008 B 2861(2)
1003/BIO 422f 2008 L 1399(2)
1003/BIO 422f 2008 L 1399(2)+7
1003/BIO 422f 2008 L 1399(2)+4
1003/BIO 422f 2008 L 1399(2)+5
1003/BIO 422f 2008 L 1399(2)+8
1003/BIO 422f 2008 L 1399(2)+11
1003/BIO 422f 2008 L 1399(2)+10
1003/BIO 422f 2008 L 1399(2)+9
1003/BIO 422f 2008 L 1399(2)+6
1003/BIO 422f 2008 L 1399(2)+3
DE-BY-TUM_katkey 1655275
DE-BY-TUM_media_number 040050758235
040050758304
040050758224
040050758246
040050758279
040050758268
040050758257
040050758280
040050758213
040050717758
040050758291
040050758315
_version_ 1816712857350307840
adam_text Contents Foreword to Second Edition (by David T. Clarkson) v About the Authors vii Foreword to First Edition (by David T. Clarkson) ix Acknowledgments xi Abbreviations xiii 1. Assumptions and Approaches 1 Introduction — History, Assumptions, and Approaches 1 1 What b Ecophysiology? 1 2 The Roots of Ecophysiology 1 3 Physiological Ecology and the Distribution of Organisms 2 4 Time Scale of Plant Response to Environment 4 5 Conceptual and Experimental Approaches 6 6 New Directions in Ecophysiology 7 7 The Structure of the Book 7 References 8 2. Photosynthesis, Respiration, and Long-Distance Transport 11 2A. Photosynthesis 11 1 Introduction 11 2 General Characteristics of the Photosynthetic Apparatus 11 2.1 The Light and Dark Reactions of Photosynthesis 11 2.1.1 Absorption of Photons 12 2.1.2 Fate of the Excited Chlorophyll 13 2.1.3 Membrane-Bound Photosynthetic Electron Transport and Bioenergetics 14 2.1.4 Photosynthetic Carbon Reduction 14 2.1.5 Oxygénation and Photorespiration 15 XVII Contents 2.2 Supply and Demand of CO2 in the Photosynthetic Process 16 2.2.1 Demand for CO2 - the CO2 - Response Curve 16 2.2.2 Supply of CO2— Stomatal and Boundary Layer Conductances 21 2.2.3 The Mesophyll Conductance 22 Response of Photosynthesis to Light 26 3.1 The Light Climate Under a Leaf Canopy 26 3.2 Physiological, Biochemical, and Anatomical Differences Between Sun and Shade Leaves 27 3.2.1 The Light-Response Curve of Sun and Shade Leaves 27 3.2.2 Anatomy and Ultrastructure of Sun and Shade Leaves 29 3.2.3 Biochemical Differences Between Shade and Sun Leaves 32 3.2.4 The Light-Response Curve of Sun and Shade Leaves Revisited 33 3.2.5 The Regulation of Acclimation 35 3.3 Effects of Excess Irradiance 36 3.3.1 Photoinhibition — Protection by Carotenoids of the Xanthophyll Cycle 36 3.3.2 Chloroplast Movement in Response to Changes in Irradiance 41 3.4 Responses to Variable Irradiance 42 3.4.1 Photosynthetic Induction 43 3.4.2 Light Activation of Rubisco 43 3.4.3 Post-illumination CO2 Assimilation and Sunfleck- Utilization Efficiency 45 3.4.4 Metabolite Pools in Sun and Shade Leaves 45 3.4.5 Net Effect of Sunflecks on Carbon Gain and Growth 47 Partitioning of the Products of Photosynthesis and Regulation by Feedback 47 4.1 Partitioning Within the Cell 47 4.2 Short-Term Regulation of Photosynthetic Rate by Feedback 48 4.3 Sugar-Induced Repression of Genes Encoding Calvin-Cycle Enzymes 51 4.4 Ecological Impacts Mediated by Source-Sink Interactions 51 Responses to Availability of Water 51 5.1 Regulation of Stomatal Opening 53 5.2 The A—Cc Curve as Affected by Water Stress 54 5.3 Carbon-Isotope Fractionation in Relation to Water-Use Efficiency 56 5.4 Other Sources of Variation in Carbon-Isotope Ratios in C3 Plants 57 Effects of Soil Nutrient Supply on Photosynthesis 58 6.1 The Photosynthesis — Nitrogen Relationship 58 6.2 Interactions of Nitrogen, Light, and Water 59 6.3 Photosynthesis, Nitrogen, and Leaf Life Span 59 Photosynthesis and Leaf Temperature: Effects and Adaptations 60 7.1 Effects of High Temperatures on Photosynthesis 60 7.2 Effects of Low Temperatures on Photosynthesis 61 Effects of Air Pollutants on Photosynthesis 63 Q Plants 64 9.1 Introduction 64 9.2 Biochemical and Anatomical Aspects 64 Contents xix 9.3 Intercellular and Intracellular Transport of Metabolites of the C4 Pathway 67 9.4 Photosynthetic Efficiency and Performance at High and Low Temperatures 68 9.5 Сз— Q Intermediates 71 9.6 Evolution and Distribution of C4 Species 73 9.7 Carbon-Isotope Composition of C4 Species 75 10 CAM Plants 75 10.1 Introduction 75 10.2 Physiological, Biochemical, and Anatomical Aspects 76 10.3 Water-Use Efficiency 79 10.4 Incomplete and Facultative CAM Plants 79 10.5 Distribution and Habitat of CAM Species 80 10.6 Carbon-Isotope Composition of CAM Species 81 11 Specialized Mechanisms Associated with Photosynthetic Carbon Acquisition in Aquatic Plants 82 11.1 Introduction 82 11.2 The CO2 Supply in Water 82 11.3 The Use of Bicarbonate by Aquatic Macrophytes 83 11.4 The Use of CO2 from the Sediment 84 11.5 Crassulacean Acid Metabolism (CAM) in Aquatic Plants 85 11.6 Carbon-Isotope Composition of Aquatic Plants 85 11.7 The Role of Aquatic Macrophytes in Carbonate Sedimentation 85 12 Effects of the Rising CO2 Concentration in the Atmosphere 87 12.1 Acclimation of Photosynthesis to Elevated CO2 Concentrations 89 12.2 Effects of Elevated CO2 on Transpiration — Differential Effects on C3, Q, and CAM Plants 90 13 Summary: What Can We Gain from Basic Principles and Rates of Single-Leaf Photosynthesis? 90 References 91 2B. Respiration 101 1 Introduction 101 2 General Characteristics of the Respiratory System 101 2.1 The Respiratory Quotient 101 2.2 Glycolysis, the Pentose Phosphate Pathway, and the Tricarboxylic (TCA) Cycle 103 2.3 Mitochondrial Metabolism 103 2.3.1 The Complexes of the Electron-Transport Chain 104 2.3.2 A Cyanide-Resistant Terminal Oxidase 105 2.3.3 Substrates, Inhibitors, and Uncouplers 105 2.3.4 Respiratory Control 106 2.4 A Summary of the Major Points of Control of Plant Respiration 107 2.5 ATP Production in Isolated Mitochondria and In Vivo 107 2.5.1 Oxidative Phosphorylation: The Chemiosmotic Model 107 2.5.2 ATP Production In Vivo 107 2.6 Regulation of Electron Transport via the Cytochrome and the Alternative Paths 109 2.6.1 Competition or Overflow? 109 2.6.2 The Intricate Regulation of the Alternative Oxidase 110 xx Contents 2.6.3 Mitochondrial NAD(P)H Dehydrogenases That Are Not Linked to Proton Extrasion 112 3 The Ecophysiological Function of the Alternative Path 112 3.1 Heat Production 112 3.2 Can We Really Measure the Activity of the Alternative Path? U3 3.3 The Alternative Path as an Energy Overflow 114 3.4 NADH Oxidation in the Presence of a High Energy Charge 117 3.5 NADH Oxidation to Oxidize Excess Redox Equivalents from the Chloroplast 117 3.6 Continuation of Respiration When the Activity of the Cytochrome Path Is Restricted 118 3.7 A Summary of the Various Ecophysiological Roles of the Alternative Oxidase 118 4 Environmental Effects on Respiratory Processes 119 4.1 Flooded, Hypoxie, and Anoxic Soils 119 4.1.1 Inhibition of Aerobic Root Respiration 119 4.1.2 Fermentation 119 4.1.3 Cytosolic Acidosis 120 4.1.4 Avoiding Hypoxia: Aerenchyma Formation 121 4.2 Salinity and Water Stress 122 4.3 Nutrient Supply 123 4.4 Irradiance 123 4.5 Temperature 127 4.6 Low pH and High Aluminum Concentrations 129 4.7 Partial Pressures of CO2 130 4.8 Effects of Plant Pathogens 131 4.9 Leaf Dark Respiration as Affected by Photosynthesis 132 5 The Role of Respiration in Plant Carbon Balance 132 5.1 Carbon Balance 132 5.1.1 Root Respiration 132 5.1.2 Respiration of Other Plant Parts 133 5.2 Respiration Associated with Growth, Maintenance, and Ion Uptake 134 5.2.1 Maintenance Respiration 134 5.2.2 Growth Respiration 136 5.2.3 Respiration Associated with Ion Transport 140 5.2.4 Experimental Evidence 140 6 Plant Respiration: Why Should It Concern Us from an Ecological Point of View? 143 References 144 2C. Long-Distance Transport of Assimilates 151 1 Introduction 151 2 Major Transport Compounds in the Phloem: Why Not Glucose? 151 3 Phloem Structure and Function 153 3.1 Symplastic and Apoplastic Transport 154 3.2 Minor Vein Anatomy 154 3.3 Sugar Transport against a Concentration Gradient 155 4 Evolution and Ecology of Phloem Loading Mechanisms 157 5 Phloem Unloading 157 6 The Transport Problems of Climbing Plants 160 7 Phloem Transport: Where to Move from Here? 161 References Contents xx¡ 3. Plant Water Relations 163 1 Introduction 163 1.1 The Role of Water in Plant Functioning 163 1.2 Transpiration as an Inevitable Consequence of Photosynthesis 164 2 Water Potential 165 3 Water Availability in Soil 165 3.1 The Field Capacity of Different Soils 169 3.2 Water Movement Toward the Roots 170 3.3 Rooting Profiles as Dependent on Soil Moisture Content 171 3.4 Roots Sense Moisture Gradients and Grow Toward Moist Patches 173 4 Water Relations of Cells 174 4.1 Osmotic Adjustment 175 4.2 Cell-Wall Elasticity 175 4.3 Osmotic and Elastic Adjustment as Alternative Strategies 177 4.4 Evolutionary Aspects 178 5 Water Movement Through Plants 178 5.1 The Soil—Plant—Air Continuum 178 5.2 Water in Roots 179 5.3 Water in Stems 183 5.3.1 Can We Measure Negative Xylem Pressures? 185 5.3.2 The Flow of Water in the Xylem 186 5.3.3 Cavitation or Embolism: The Breakage of the Xylem Water Column 188 5.3.4 Can Embolized Conduits Resume Their Function? 191 5.3.5 Trade-off Between Conductance and Safety 192 5.3.6 Transport Capacity of the Xylem and Leaf Area 194 5.3.7 Storage of Water in Stems 195 5.4 Water in Leaves and Water Loss from Leaves 196 5.4.1 Effects of Soil Drying on Leaf Conductance 196 5.4.2 The Control of Stomatal Movements and Stomatal Conductance 199 5.4.3 Effects of Vapor Pressure Difference or Transpiration Rate on Stomatal Conductance 201 5.4.4 Effects of Irradiance and CO2 on Stomatal Conductance 203 5.4.5 The Cuticular Conductance and the Boundary Layer Conductance 203 5.4.6 Stomatal Control: A Compromise Between Carbon Gain and Water Loss 204 6 Water-Use Efficiency 206 6.1 Water-Use Efficiency and Carbon-Isotope Discrimination 206 6.2 Leaf Traits That Affect Leaf Temperature and Leaf Water Loss 207 6.3 Water Storage in Leaves 209 7 Water Availability and Growth 210 8 Adaptations to Drought 211 8.1 Desiccation Avoidance: Annuals and Drought-Deciduous Species 211 8.2 Dessication Tolerance: Evergreen Shrubs 212 8.3 Resurrection Plants 212 9 Winter Water Relations and Freezing Tolerance 214 10 Salt Tolerance 216 11 Final Remarks: The Message That Transpires 216 References 217 xxii Contents 4. Leaf Energy Budgets: Effects of Radiation and Temperature 225 4A. The Plant s Energy Balance 1 Introduction 225 2 Energy Inputs and Outputs 225 2.1 Short Overview of a Leaf s Energy Balance 225 2.2 Short-Wave Solar Radiation 226 2.3 Long-Wave Terrestrial Radiation 229 2.4 Convective Heat Transfer 230 2.5 Evaporative Energy Exchange 232 2.6 Metabolic Heat Generation 234 3 Modeling the Effect of Components of the Energy Balance on Leaf Temperature 234 4 A Summary of Hot and Cool Topics 235 References 235 4B. Effects of Radiation and Temperature 1 Introduction 237 2 Radiation 237 2.1 Effects of Excess Irradiance 237 2.2 Effects of Ultraviolet Radiation 237 2.2.1 Damage by UV 238 2.2.2 Protection Against UV: Repair or Prevention 238 3 Effects of Extreme Temperatures 239 3.1 How Do Plants Avoid Damage by Free Radicals at Low Temperature? 239 3.2 Heat-Shock Proteins 241 3.3 Are Isoprene and Monoterpene Emissions an Adaptation to High Temperatures? 241 3.4 Chilling Injury and Chilling Tolerance 242 3.5 Carbohydrates and Proteins Conferring Frost Tolerance 243 4 Global Change and Future Crops 244 References 244 5. Scaling-Up Gas Exchange and Energy Balance from the Leaf to the Canopy Level 247 1 Introduction 247 2 Canopy Water Use 247 3 Canopy CO2 Fluxes 251 4 Canopy Water-Use Efficiency 252 5 Canopy Effects on Microclimate: A Case Study 253 6 Aiming for a Higher Level 253 References 253 6. Mineral Nutrition 255 1 Introduction 255 2 Acquisition of Nutrients 255 2.1 Nutrients in the Soil 255 2.1.1 Nutrient Availability as Dependent on Soil Age 255 Contents xx¡¡¡ 2.1.2 Nutrient Supply Rate 257 2.1.3 Nutrient Movement to the Root Surface 259 2.2 Root Traits That Determine Nutrient Acquisition 262 2.2.1 Increasing the Roots Absorptive Surface 262 2.2.2 Transport Proteins: Ion Channels and Carriers 263 2.2.3 Acclimation and Adaptation of Uptake Kinetics 265 2.2.4 Acquisition of Nitrogen 269 2.2.5 Acquisition of Phosphorus 270 2.2.6 Changing the Chemistry in the Rhizosphere 275 2.2.7 Rhizosphere Mineralization 279 2.2.8 Root Proliferation in Nutrient-Rich Patches: Is It Adaptive? 280 2.3 Sensitivity Analysis of Parameters Involved in Phosphate Acquisition 282 3 Nutrient Acquisition from Toxic or Extreme Soils 284 3.1 Acid Soils 284 3.1.1 Aluminum Toxicity 284 3.1.2 Alleviation of the Toxicity Symptoms by Soil Amendment 287 3.1.3 Aluminum Resistance 287 3.2 Calcareous Soils 288 3.3 Soils with High Levels of Heavy Metals 289 3.3.1 Why Are the Concentrations of Heavy Metals in Soil High? 289 3.3.2 Using Plants to Clean or Extract Polluted Water and Soil: Phytoremediation and Phytomining 290 3.3.3 Why Are Heavy Metals So Toxic to Plants? 291 3.3.4 Heavy-Metal-Resistant Plants 291 3.3.5 Biomass Production of Sensitive and Resistant Plants 296 3.4 Saline Soils: An Ever-Increasing Problem in Agriculture 296 3.4.1 Glycophytes and Halophytes 297 3.4.2 Energy-Dependent Salt Exclusion from Roots 297 3.4.3 Energy-Dependent Salt Exclusion from the Xylem 298 3.4.4 Transport of Na+ from the Leaves to the Roots and Excretion via Salt Glands 298 3.4.5 Compartmentation of Salt Within the Cell and Accumulation of Compatible Solutes 301 3.5 Hooded Soils 301 4 Plant Nutrient-Use Efficiency 302 4.1 Variation in Nutrient Concentration 302 4.1.1 Tissue Nutrient Concentration 302 4.1.2 Tissue Nutrient Requirement 303 4.2 Nutrient Productivity and Mean Residence Time 304 4.2.1 Nutrient Productivity 304 4.2.2 The Mean Residence Time of Nutrients in the Plant 304 4.3 Nutrient Loss from Plants 306 4.3.1 Leaching Loss 306 4.3.2 Nutrient Loss by Senescence 307 4.4 Ecosystem Nutrient-Use Efficiency 308 5 Mineral Nutrition: A Vast Array of Adaptationsand Acclimations 310 References 310 xxiv Contents 7. Growth and Allocation 321 1 Introduction: What Is Growth? 321 2 Growth of Whole Plants and Individual Organs 321 2.1 Growth of Whole Plants 322 2.1.1 A High Leaf Area Ratio Enables Plants to Grow Fast 322 2.1.2 Plants with High Nutrient Concentrations Can Grow Faster 322 2.2 Growth of Cells 323 2.2.1 Cell Division and Cell Expansion: The Lockhart Equation 323 2.2.2 Cell-Wall Acidification and Removal of Calcium Reduce Cell-Wall Rigidity 324 2.2.3 Cell Expansion in Meristems Is Controlled by Cell-Wall Extensibility and Not by Turgor 327 2.2.4 The Physical and Biochemical Basis of Yield Threshold and Cell-Wall Yield Coefficient 328 2.2.5 The Importance of Meristem Size 328 3 The Physiological Basis of Variation in RGR — Plants Grown with Free Access to Nutrients 328 3.1 SLA Is a Major Factor Associated with Variation in RGR 330 3.2 Leaf Thickness and Leaf Mass Density 332 3.3 Anatomical and Chemical Differences Associated with Leaf Mass Density 332 3.4 Net Assimilation Rate, Photosynthesis, and Respiration 333 3.5 RGR and the Rate of Leaf Elongation and Leaf Appearance 333 3.6 RGR and Activities per Unit Mass 334 3.7 RGR and Suites of Plant Traits 334 4 Allocation to Storage 335 4.1 The Concept of Storage 336 4.2 Chemical Forms of Stores 337 4.3 Storage and Remobilization in Annuals 337 4.4 The Storage Strategy of Biennials 338 4.5 Storage in Perennials 338 4.6 Costs of Growth and Storage: Optimization 340 5 Environmental Influences 340 5.1 Growth as Affected by Irradiance 341 5.1.1 Growth in Shade 341 5.1.2 Effects of the Photoperiod 345 5.2 Growth as Affected by Temperature 346 5.2.1 Effects of Low Temperature on Root Functioning 346 5.2.2 Changes in the Allocation Pattern 346 5.3 Growth as Affected by Soil Water Potential and Salinity 347 5.3.1 Do Roots Sense Dry Soil and Then Send Signals to the Leaves? 348 5.3.2 ABA and Leaf Cell-Wall Stiffening 348 5.3.3 Effects on Root Elongation 348 5.3.4 A Hypothetical Model That Accounts for Effects of Water Stress on Biomass Allocation 349 5.4 Growth at a Limiting Nutrient Supply 349 5.4.1 Cycling of Nitrogen Between Roots and Leaves 349 5.4.2 Hormonal Signals That Travel via the Xylem to the Leaves 350 5.4.3 Signals That Travel from the Leaves to the Roots 351 5.4.4 Integrating Signals from the Leaves and the Roots 351 Contents xxv 5.4.5 Effects of Nitrogen Supply on Leaf Anatomy and Chemistry 352 5.4.6 Nitrogen Allocation to Different Leaves, as Dependent on Incident Irradiance 352 5.5 Plant Growth as Affected by Soil Compaction 354 5.5.1 Effects on Biomass Allocation: Is ABA Involved? 354 5.5.2 Changes in Root Length and Diameter: A Modification of the Lockhart Equation 354 5.6 Growth as Affected by Soil Flooding 355 5.6.1 The Pivotal Role of Ethylene 356 5.6.2 Effects on Water Uptake and Leaf Growth 357 5.6.3 Effects on Adventitious Root Formation 358 5.6.4 Effects on Radial Oxygen Loss 358 5.7 Growth as Affected by Submergence 358 5.7.1 Gas Exchange 359 5.7.2 Perception of Submergence and Regulation of Shoot Elongation 359 5.8 Growth as Affected by Touch and Wind 360 5.9 Growth as Affected by Elevated Concentrations of CO2 in the Atmosphere 361 6 Adaptations Associated with Inherent Variation in Growth Rate 362 6.1 Fast- and Slow-Growing Species 362 6.2 Growth of Inherently Fast- and Slow-Growing Species Under Resource-Limited Conditions 363 6.2.1 Growth at a Limiting Nutrient Supply 364 6.2.2 Growth in the Shade 364 6.3 Are There Ecological Advantages Associated with a High or Low RGR? 364 6.3.1 Various Hypotheses 364 6.3.2 Selection on RGRmax Itself, or on Traits That Are Associated with RGR^? 365 6.3.3 An Appraisal of Plant Distribution Requires Information on Ecophysiology 366 7 Growth and Allocation: The Messages About Plant Messages 367 References 367 8. Life Cycles: Environmental Influences and Adaptations 375 1 2 Introduction 375 Seed Dormancy and Germination 375 2.1 Hard Seed Coats 376 2.2 Germination Inhibitors in the Seed 377 2.3 Effects of Nitrate 378 2.4 Other External Chemical Signals 378 2.5 Effects of Light 380 2.6 Effects of Temperature 382 2.7 Physiological Aspects oí Dormancy 384 2.8 Summary of Ecological Aspects of Seed Germination and Dormancy 385 Developmental Phases 385 3.1 Seedling Phase 385 3.2 Juvenile Phase 386 3.2.1 Delayed Flowering in Biennials 387 3.2.2 Juvenile and Adult Traits 388 XXVI Contents 3.2.3 Vegetative Reproduction 388 3.2.4 Delayed Greening During Leaf Development in Tropical Trees 390 3.3 Reproductive Phase 391 3.3.1 Timing by Sensing Daylength: Long-Day and Short-Day Plants 391 3.3.2 Do Plants Sense the Difference Between a Certain Daylength in Spring and Autumn? 393 3.3.3 Timing by Sensing Temperature: Vernalization 393 3.3.4 Effects of Temperature on Plant Development 394 3.3.5 Attracting Pollinators 394 3.3.6 The Cost of Flowering 395 3.4 Fruiting 396 3.5 Senescence 397 4 Seed Dispersal 397 4.1 Dispersal Mechanisms 397 4.2 Life-History Correlates 398 5 The Message to Disperse: Perception, Transduction, and Response 398 References 398 9. Biotte Influences 403 9A. Symbiotic Associations 403 1 Introduction 403 2 Mycorrhizas 403 2.1 Mycorrhizal Structures: Are They Beneficial for Plant Growth? 404 2.1.1 The Infection Process 408 2.1.2 Mycorrhizal Responsiveness 410 2.2 Nonmycorrhizal Species and Their Interactions with Mycorrhizal Species 412 2.3 Phosphate Relations 413 2.3.1 Mechanisms That Account for Enhanced Phosphate Absorption by Mycorrhizal Plants 413 2.3.2 Suppression of Colonization at High Phosphate Availability 415 2.4 Effects on Nitrogen Nutrition 416 2.5 Effects on the Acquisition of Water 417 2.6 Carbon Costs of the Mycorrhizal Symbiosis 418 2.7 Agricultural and Ecological Perspectives 419 3 Associations with Nitrogen-Fixing Organisms 421 3.1 Symbiotic ^Fixation Is Restricted to a Fairly Limited Number of Plant Species 422 3.2 Host — Guest Specificity in the Legume — Rhizobium Symbiosis 424 3.3 The Infection Process in the Legume—Rhizobium Association 424 3.3.1 The Role of Flavonoids 425 3.3.2 Rhizobial nod Genes 425 3.3.3 Entry of the Bacteria 427 3.3.4 Final Stages of the Establishment of the Symbiosis 428 3.4 Nitrogenase Activity and Synthesis of Organic Nitrogen 429 Contents 3.5 Carbon and Energy Metabolism of the Nodules 431 3.6 Quantification of N2 Fixation In Situ 432 3.7 Ecological Aspects of the Nonsymbiotic Association with N2-Fixing Microorganisms 433 3.8 Carbon Costs of the Legume — Rhizobium Symbiosis 434 3.9 Suppression of the Legume — Rhizobium Symbiosis at Low pH and in the Presence of a Large Supply of Combined Nitrogen 435 4 Endosymbionts 436 5 Plant Life Among Microsymbionts 437 References 437 9B. Ecological Biochemistry: Allelopathy and Defence against Herbivores 445 1 Introduction 445 2 Allelopathy (Interference Competition) 445 3 Chemical Defense Mechanisms 448 3.1 Defense Against Herbivores 448 3.2 Qualitative and Quantitative Defense Compounds 451 3.3 The Arms Race of Plants and Herbivores 451 3.4 How Do Plants Avoid Being Killed by Their Own Poisons? 455 3.5 Secondary Metabolites for Medicines and Crop Protection 457 4 Environmental Effects on the Production of Secondary Plant Metabolites 460 4.1 Abiotic Factors 460 4.2 Induced Defense and Communication Between Neighboring Plants 462 4.3 Communication Between Plants and Their Bodyguards 464 5 The Costs of Chemical Defense 466 5.1 Diversion of Resources from Primary Growth 466 5.2 Strategies of Predators 468 5.3 Mutualistic Associations with Ants and Mites 469 6 Detoxification of Xenobiotics by Plants: Phytoremediation 469 7 Secondary Chemicals and Messages That Emerge from This Chapter 472 References 473 9C. Effects of Microbial Pathogens 479 1 Introduction 479 2 Constitutive Antimicrobial Defense Compounds 479 3 The Plant s Response to Attack by Microorganisms 481 4 Cross-Talk Between Induced Systemic Resistance and Defense Against Herbivores 485 5 Messages from One Organism to Another 488 References 488 9D. Parasitic Associations 491 1 Introduction 491 2 Growth and Development 492 2.1 Seed Germination 492 2.2 Haustoria Formation 493 2.3 Effects of the Parasite on Host Development 496 3 Water Relations and Mineral Nutrition 498 4 Carbon Relations 500 XXVIII 9F. Contents 5 What Can We Extract from This Chapter? 501 References 501 Interactions Among Plants 505 1 Introduction 505 2 Theories of Competitive Mechanisms 509 3 How Do Plants Perceive the Presence of Neighbors? 509 4 Relationship of Plant Traits to Competitive Ability 512 4.1 Growth Rate and Tissue Turnover 512 4.2 Allocation Pattern, Growth Form, and Tissue Mass Density 513 4.3 Plasticity 514 5 Traits Associated with Competition for Specific Resources 516 5.1 Nutrients 516 5.2 Water 517 5.3 Light 518 5.4 Carbon Dioxide 518 6 Positive Interactions Among Plants 521 6.1 Physical Benefits 521 6.2 Nutritional Benefits 521 6.3 Allelochemical Benefits 521 7 Plant—Microbial Symbiosis 522 8 Succession 524 9 What Do We Gain from This Chapter? 526 References 527 Carnivory 533 1 Introduction 533 2 Structures Associated with the Catching of the Prey and Subsequent Withdrawal of Nutrients from the Prey 533 3 Some Case Studies 536 3.1 Dionaea Muscipula 537 3.2 The Suction Traps of Utricularia 539 3.3 The Tentacles of Drosera 541 3.4 Pitchers of Sarracenia 542 3.5 Passive Traps of Genlisea 542 4 The Message to Catch 543 References 543 10. Role in Ecosystem and Global Processes 545 10A. Decomposition 545 1 Introduction 545 2 Litter Quality and Decomposition Rate 546 2.1 Species Effects on Litter Quality: Links with Ecological Strategy 546 2.2 Environmental Effects on Decomposition 547 3 The Link Between Decomposition Rate and Nutrient Supply 548 3.1 The Process of Nutrient Release 548 3.2 Effects of Litter Quality on Mineralization 549 3.3 Root Exudation and Rhizosphere Effects 550 4 The End Product of Decomposition 552 References 552 Contents xxix 10В. Ecosystem and Global Processes: Ecophysiological Controls 555 1 Introduction 555 2 Ecosystem Biomass and Production 555 2.1 Scaling from Plants to Ecosystems 555 2.2 Physiological Basis of Productivity 556 2.3 Disturbance and Succession 558 2.4 Photosynthesis and Absorbed Radiation 559 2.5 Net Carbon Balance of Ecosystems 561 2.6 The Global Carbon Cycle 561 3 Nutrient Cycling 563 3.1 Vegetation Controls over Nutrient Uptake and Loss 563 3.2 Vegetation Controls over Mineralization 565 4 Ecosystem Energy Exchange and the Hydrologie Cycle 565 4.1 Vegetation Effects on Energy Exchange 565 4.1.1 Albedo 565 4.1.2 Surface Roughness and Energy Partitioning 566 4.2 Vegetation Effects on the Hydrologie Cycle 567 4.2.1 Evapotranspiration and Runoff 567 4.2.2 Feedbacks to Climate 568 5 Moving to a Higher Level: Scaling from Physiology to the Globe 568 References 569 Glossary 573 Index 591
adam_txt Contents Foreword to Second Edition (by David T. Clarkson) v About the Authors vii Foreword to First Edition (by David T. Clarkson) ix Acknowledgments xi Abbreviations xiii 1. Assumptions and Approaches 1 Introduction — History, Assumptions, and Approaches 1 1 What b Ecophysiology? 1 2 The Roots of Ecophysiology 1 3 Physiological Ecology and the Distribution of Organisms 2 4 Time Scale of Plant Response to Environment 4 5 Conceptual and Experimental Approaches 6 6 New Directions in Ecophysiology 7 7 The Structure of the Book 7 References 8 2. Photosynthesis, Respiration, and Long-Distance Transport 11 2A. Photosynthesis 11 1 Introduction 11 2 General Characteristics of the Photosynthetic Apparatus 11 2.1 The "Light" and "Dark" Reactions of Photosynthesis 11 2.1.1 Absorption of Photons 12 2.1.2 Fate of the Excited Chlorophyll 13 2.1.3 Membrane-Bound Photosynthetic Electron Transport and Bioenergetics 14 2.1.4 Photosynthetic Carbon Reduction 14 2.1.5 Oxygénation and Photorespiration 15 XVII Contents 2.2 Supply and Demand of CO2 in the Photosynthetic Process 16 2.2.1 Demand for CO2 - the CO2 - Response Curve 16 2.2.2 Supply of CO2— Stomatal and Boundary Layer Conductances 21 2.2.3 The Mesophyll Conductance 22 Response of Photosynthesis to Light 26 3.1 The Light Climate Under a Leaf Canopy 26 3.2 Physiological, Biochemical, and Anatomical Differences Between Sun and Shade Leaves 27 3.2.1 The Light-Response Curve of Sun and Shade Leaves 27 3.2.2 Anatomy and Ultrastructure of Sun and Shade Leaves 29 3.2.3 Biochemical Differences Between Shade and Sun Leaves 32 3.2.4 The Light-Response Curve of Sun and Shade Leaves Revisited 33 3.2.5 The Regulation of Acclimation 35 3.3 Effects of Excess Irradiance 36 3.3.1 Photoinhibition — Protection by Carotenoids of the Xanthophyll Cycle 36 3.3.2 Chloroplast Movement in Response to Changes in Irradiance 41 3.4 Responses to Variable Irradiance 42 3.4.1 Photosynthetic Induction 43 3.4.2 Light Activation of Rubisco 43 3.4.3 Post-illumination CO2 Assimilation and Sunfleck- Utilization Efficiency 45 3.4.4 Metabolite Pools in Sun and Shade Leaves 45 3.4.5 Net Effect of Sunflecks on Carbon Gain and Growth 47 Partitioning of the Products of Photosynthesis and Regulation by "Feedback" 47 4.1 Partitioning Within the Cell 47 4.2 Short-Term Regulation of Photosynthetic Rate by Feedback 48 4.3 Sugar-Induced Repression of Genes Encoding Calvin-Cycle Enzymes 51 4.4 Ecological Impacts Mediated by Source-Sink Interactions 51 Responses to Availability of Water 51 5.1 Regulation of Stomatal Opening 53 5.2 The A—Cc Curve as Affected by Water Stress 54 5.3 Carbon-Isotope Fractionation in Relation to Water-Use Efficiency 56 5.4 Other Sources of Variation in Carbon-Isotope Ratios in C3 Plants 57 Effects of Soil Nutrient Supply on Photosynthesis 58 6.1 The Photosynthesis — Nitrogen Relationship 58 6.2 Interactions of Nitrogen, Light, and Water 59 6.3 Photosynthesis, Nitrogen, and Leaf Life Span 59 Photosynthesis and Leaf Temperature: Effects and Adaptations 60 7.1 Effects of High Temperatures on Photosynthesis 60 7.2 Effects of Low Temperatures on Photosynthesis 61 Effects of Air Pollutants on Photosynthesis 63 Q Plants 64 9.1 Introduction 64 9.2 Biochemical and Anatomical Aspects 64 Contents xix 9.3 Intercellular and Intracellular Transport of Metabolites of the C4 Pathway 67 9.4 Photosynthetic Efficiency and Performance at High and Low Temperatures 68 9.5 Сз— Q Intermediates 71 9.6 Evolution and Distribution of C4 Species 73 9.7 Carbon-Isotope Composition of C4 Species 75 10 CAM Plants 75 10.1 Introduction 75 10.2 Physiological, Biochemical, and Anatomical Aspects 76 10.3 Water-Use Efficiency 79 10.4 Incomplete and Facultative CAM Plants 79 10.5 Distribution and Habitat of CAM Species 80 10.6 Carbon-Isotope Composition of CAM Species 81 11 Specialized Mechanisms Associated with Photosynthetic Carbon Acquisition in Aquatic Plants 82 11.1 Introduction 82 11.2 The CO2 Supply in Water 82 11.3 The Use of Bicarbonate by Aquatic Macrophytes 83 11.4 The Use of CO2 from the Sediment 84 11.5 Crassulacean Acid Metabolism (CAM) in Aquatic Plants 85 11.6 Carbon-Isotope Composition of Aquatic Plants 85 11.7 The Role of Aquatic Macrophytes in Carbonate Sedimentation 85 12 Effects of the Rising CO2 Concentration in the Atmosphere 87 12.1 Acclimation of Photosynthesis to Elevated CO2 Concentrations 89 12.2 Effects of Elevated CO2 on Transpiration — Differential Effects on C3, Q, and CAM Plants 90 13 Summary: What Can We Gain from Basic Principles and Rates of Single-Leaf Photosynthesis? 90 References 91 2B. Respiration 101 1 Introduction 101 2 General Characteristics of the Respiratory System 101 2.1 The Respiratory Quotient 101 2.2 Glycolysis, the Pentose Phosphate Pathway, and the Tricarboxylic (TCA) Cycle 103 2.3 Mitochondrial Metabolism 103 2.3.1 The Complexes of the Electron-Transport Chain 104 2.3.2 A Cyanide-Resistant Terminal Oxidase 105 2.3.3 Substrates, Inhibitors, and Uncouplers 105 2.3.4 Respiratory Control 106 2.4 A Summary of the Major Points of Control of Plant Respiration 107 2.5 ATP Production in Isolated Mitochondria and In Vivo 107 2.5.1 Oxidative Phosphorylation: The Chemiosmotic Model 107 2.5.2 ATP Production In Vivo 107 2.6 Regulation of Electron Transport via the Cytochrome and the Alternative Paths 109 2.6.1 Competition or Overflow? 109 2.6.2 The Intricate Regulation of the Alternative Oxidase 110 xx Contents 2.6.3 Mitochondrial NAD(P)H Dehydrogenases That Are Not Linked to Proton Extrasion 112 3 The Ecophysiological Function of the Alternative Path 112 3.1 Heat Production 112 3.2 Can We Really Measure the Activity of the Alternative Path? U3 3.3 The Alternative Path as an Energy Overflow 114 3.4 NADH Oxidation in the Presence of a High Energy Charge 117 3.5 NADH Oxidation to Oxidize Excess Redox Equivalents from the Chloroplast 117 3.6 Continuation of Respiration When the Activity of the Cytochrome Path Is Restricted 118 3.7 A Summary of the Various Ecophysiological Roles of the Alternative Oxidase 118 4 Environmental Effects on Respiratory Processes 119 4.1 Flooded, Hypoxie, and Anoxic Soils 119 4.1.1 Inhibition of Aerobic Root Respiration 119 4.1.2 Fermentation 119 4.1.3 Cytosolic Acidosis 120 4.1.4 Avoiding Hypoxia: Aerenchyma Formation 121 4.2 Salinity and Water Stress 122 4.3 Nutrient Supply 123 4.4 Irradiance 123 4.5 Temperature 127 4.6 Low pH and High Aluminum Concentrations 129 4.7 Partial Pressures of CO2 130 4.8 Effects of Plant Pathogens 131 4.9 Leaf Dark Respiration as Affected by Photosynthesis 132 5 The Role of Respiration in Plant Carbon Balance 132 5.1 Carbon Balance 132 5.1.1 Root Respiration 132 5.1.2 Respiration of Other Plant Parts 133 5.2 Respiration Associated with Growth, Maintenance, and Ion Uptake 134 5.2.1 Maintenance Respiration 134 5.2.2 Growth Respiration 136 5.2.3 Respiration Associated with Ion Transport 140 5.2.4 Experimental Evidence 140 6 Plant Respiration: Why Should It Concern Us from an Ecological Point of View? 143 References 144 2C. Long-Distance Transport of Assimilates 151 1 Introduction 151 2 Major Transport Compounds in the Phloem: Why Not Glucose? 151 3 Phloem Structure and Function 153 3.1 Symplastic and Apoplastic Transport 154 3.2 Minor Vein Anatomy 154 3.3 Sugar Transport against a Concentration Gradient 155 4 Evolution and Ecology of Phloem Loading Mechanisms 157 5 Phloem Unloading 157 6 The Transport Problems of Climbing Plants 160 7 Phloem Transport: Where to Move from Here? 161 References Contents xx¡ 3. Plant Water Relations 163 1 Introduction 163 1.1 The Role of Water in Plant Functioning 163 1.2 Transpiration as an Inevitable Consequence of Photosynthesis 164 2 Water Potential 165 3 Water Availability in Soil 165 3.1 The Field Capacity of Different Soils 169 3.2 Water Movement Toward the Roots 170 3.3 Rooting Profiles as Dependent on Soil Moisture Content 171 3.4 Roots Sense Moisture Gradients and Grow Toward Moist Patches 173 4 Water Relations of Cells 174 4.1 Osmotic Adjustment 175 4.2 Cell-Wall Elasticity 175 4.3 Osmotic and Elastic Adjustment as Alternative Strategies 177 4.4 Evolutionary Aspects 178 5 Water Movement Through Plants 178 5.1 The Soil—Plant—Air Continuum 178 5.2 Water in Roots 179 5.3 Water in Stems 183 5.3.1 Can We Measure Negative Xylem Pressures? 185 5.3.2 The Flow of Water in the Xylem 186 5.3.3 Cavitation or Embolism: The Breakage of the Xylem Water Column 188 5.3.4 Can Embolized Conduits Resume Their Function? 191 5.3.5 Trade-off Between Conductance and Safety 192 5.3.6 Transport Capacity of the Xylem and Leaf Area 194 5.3.7 Storage of Water in Stems 195 5.4 Water in Leaves and Water Loss from Leaves 196 5.4.1 Effects of Soil Drying on Leaf Conductance 196 5.4.2 The Control of Stomatal Movements and Stomatal Conductance 199 5.4.3 Effects of Vapor Pressure Difference or Transpiration Rate on Stomatal Conductance 201 5.4.4 Effects of Irradiance and CO2 on Stomatal Conductance 203 5.4.5 The Cuticular Conductance and the Boundary Layer Conductance 203 5.4.6 Stomatal Control: A Compromise Between Carbon Gain and Water Loss 204 6 Water-Use Efficiency 206 6.1 Water-Use Efficiency and Carbon-Isotope Discrimination 206 6.2 Leaf Traits That Affect Leaf Temperature and Leaf Water Loss 207 6.3 Water Storage in Leaves 209 7 Water Availability and Growth 210 8 Adaptations to Drought 211 8.1 Desiccation Avoidance: Annuals and Drought-Deciduous Species 211 8.2 Dessication Tolerance: Evergreen Shrubs 212 8.3 Resurrection Plants 212 9 Winter Water Relations and Freezing Tolerance 214 10 Salt Tolerance 216 11 Final Remarks: The Message That Transpires 216 References 217 xxii Contents 4. Leaf Energy Budgets: Effects of Radiation and Temperature 225 4A. The Plant's Energy Balance 1 Introduction 225 2 Energy Inputs and Outputs 225 2.1 Short Overview of a Leaf's Energy Balance 225 2.2 Short-Wave Solar Radiation 226 2.3 Long-Wave Terrestrial Radiation 229 2.4 Convective Heat Transfer 230 2.5 Evaporative Energy Exchange 232 2.6 Metabolic Heat Generation 234 3 Modeling the Effect of Components of the Energy Balance on Leaf Temperature 234 4 A Summary of Hot and Cool Topics 235 References 235 4B. Effects of Radiation and Temperature 1 Introduction 237 2 Radiation 237 2.1 Effects of Excess Irradiance 237 2.2 Effects of Ultraviolet Radiation 237 2.2.1 Damage by UV 238 2.2.2 Protection Against UV: Repair or Prevention 238 3 Effects of Extreme Temperatures 239 3.1 How Do Plants Avoid Damage by Free Radicals at Low Temperature? 239 3.2 Heat-Shock Proteins 241 3.3 Are Isoprene and Monoterpene Emissions an Adaptation to High Temperatures? 241 3.4 Chilling Injury and Chilling Tolerance 242 3.5 Carbohydrates and Proteins Conferring Frost Tolerance 243 4 Global Change and Future Crops 244 References 244 5. Scaling-Up Gas Exchange and Energy Balance from the Leaf to the Canopy Level 247 1 Introduction 247 2 Canopy Water Use 247 3 Canopy CO2 Fluxes 251 4 Canopy Water-Use Efficiency 252 5 Canopy Effects on Microclimate: A Case Study 253 6 Aiming for a Higher Level 253 References 253 6. Mineral Nutrition 255 1 Introduction 255 2 Acquisition of Nutrients 255 2.1 Nutrients in the Soil 255 2.1.1 Nutrient Availability as Dependent on Soil Age 255 Contents xx¡¡¡ 2.1.2 Nutrient Supply Rate 257 2.1.3 Nutrient Movement to the Root Surface 259 2.2 Root Traits That Determine Nutrient Acquisition 262 2.2.1 Increasing the Roots' Absorptive Surface 262 2.2.2 Transport Proteins: Ion Channels and Carriers 263 2.2.3 Acclimation and Adaptation of Uptake Kinetics 265 2.2.4 Acquisition of Nitrogen 269 2.2.5 Acquisition of Phosphorus 270 2.2.6 Changing the Chemistry in the Rhizosphere 275 2.2.7 Rhizosphere Mineralization 279 2.2.8 Root Proliferation in Nutrient-Rich Patches: Is It Adaptive? 280 2.3 Sensitivity Analysis of Parameters Involved in Phosphate Acquisition 282 3 Nutrient Acquisition from "Toxic" or "Extreme" Soils 284 3.1 Acid Soils 284 3.1.1 Aluminum Toxicity 284 3.1.2 Alleviation of the Toxicity Symptoms by Soil Amendment 287 3.1.3 Aluminum Resistance 287 3.2 Calcareous Soils 288 3.3 Soils with High Levels of Heavy Metals 289 3.3.1 Why Are the Concentrations of Heavy Metals in Soil High? 289 3.3.2 Using Plants to Clean or Extract Polluted Water and Soil: Phytoremediation and Phytomining 290 3.3.3 Why Are Heavy Metals So Toxic to Plants? 291 3.3.4 Heavy-Metal-Resistant Plants 291 3.3.5 Biomass Production of Sensitive and Resistant Plants 296 3.4 Saline Soils: An Ever-Increasing Problem in Agriculture 296 3.4.1 Glycophytes and Halophytes 297 3.4.2 Energy-Dependent Salt Exclusion from Roots 297 3.4.3 Energy-Dependent Salt Exclusion from the Xylem 298 3.4.4 Transport of Na+ from the Leaves to the Roots and Excretion via Salt Glands 298 3.4.5 Compartmentation of Salt Within the Cell and Accumulation of Compatible Solutes 301 3.5 Hooded Soils 301 4 Plant Nutrient-Use Efficiency 302 4.1 Variation in Nutrient Concentration 302 4.1.1 Tissue Nutrient Concentration 302 4.1.2 Tissue Nutrient Requirement 303 4.2 Nutrient Productivity and Mean Residence Time 304 4.2.1 Nutrient Productivity 304 4.2.2 The Mean Residence Time of Nutrients in the Plant 304 4.3 Nutrient Loss from Plants 306 4.3.1 Leaching Loss 306 4.3.2 Nutrient Loss by Senescence 307 4.4 Ecosystem Nutrient-Use Efficiency 308 5 Mineral Nutrition: A Vast Array of Adaptationsand Acclimations 310 References 310 xxiv Contents 7. Growth and Allocation 321 1 Introduction: What Is Growth? 321 2 Growth of Whole Plants and Individual Organs 321 2.1 Growth of Whole Plants 322 2.1.1 A High Leaf Area Ratio Enables Plants to Grow Fast 322 2.1.2 Plants with High Nutrient Concentrations Can Grow Faster 322 2.2 Growth of Cells 323 2.2.1 Cell Division and Cell Expansion: The Lockhart Equation 323 2.2.2 Cell-Wall Acidification and Removal of Calcium Reduce Cell-Wall Rigidity 324 2.2.3 Cell Expansion in Meristems Is Controlled by Cell-Wall Extensibility and Not by Turgor 327 2.2.4 The Physical and Biochemical Basis of Yield Threshold and Cell-Wall Yield Coefficient 328 2.2.5 The Importance of Meristem Size 328 3 The Physiological Basis of Variation in RGR — Plants Grown with Free Access to Nutrients 328 3.1 SLA Is a Major Factor Associated with Variation in RGR 330 3.2 Leaf Thickness and Leaf Mass Density 332 3.3 Anatomical and Chemical Differences Associated with Leaf Mass Density 332 3.4 Net Assimilation Rate, Photosynthesis, and Respiration 333 3.5 RGR and the Rate of Leaf Elongation and Leaf Appearance 333 3.6 RGR and Activities per Unit Mass 334 3.7 RGR and Suites of Plant Traits 334 4 Allocation to Storage 335 4.1 The Concept of Storage 336 4.2 Chemical Forms of Stores 337 4.3 Storage and Remobilization in Annuals 337 4.4 The Storage Strategy of Biennials 338 4.5 Storage in Perennials 338 4.6 Costs of Growth and Storage: Optimization 340 5 Environmental Influences 340 5.1 Growth as Affected by Irradiance 341 5.1.1 Growth in Shade 341 5.1.2 Effects of the Photoperiod 345 5.2 Growth as Affected by Temperature 346 5.2.1 Effects of Low Temperature on Root Functioning 346 5.2.2 Changes in the Allocation Pattern 346 5.3 Growth as Affected by Soil Water Potential and Salinity 347 5.3.1 Do Roots Sense Dry Soil and Then Send Signals to the Leaves? 348 5.3.2 ABA and Leaf Cell-Wall Stiffening 348 5.3.3 Effects on Root Elongation 348 5.3.4 A Hypothetical Model That Accounts for Effects of Water Stress on Biomass Allocation 349 5.4 Growth at a Limiting Nutrient Supply 349 5.4.1 Cycling of Nitrogen Between Roots and Leaves 349 5.4.2 Hormonal Signals That Travel via the Xylem to the Leaves 350 5.4.3 Signals That Travel from the Leaves to the Roots 351 5.4.4 Integrating Signals from the Leaves and the Roots 351 Contents xxv 5.4.5 Effects of Nitrogen Supply on Leaf Anatomy and Chemistry 352 5.4.6 Nitrogen Allocation to Different Leaves, as Dependent on Incident Irradiance 352 5.5 Plant Growth as Affected by Soil Compaction 354 5.5.1 Effects on Biomass Allocation: Is ABA Involved? 354 5.5.2 Changes in Root Length and Diameter: A Modification of the Lockhart Equation 354 5.6 Growth as Affected by Soil Flooding 355 5.6.1 The Pivotal Role of Ethylene 356 5.6.2 Effects on Water Uptake and Leaf Growth 357 5.6.3 Effects on Adventitious Root Formation 358 5.6.4 Effects on Radial Oxygen Loss 358 5.7 Growth as Affected by Submergence 358 5.7.1 Gas Exchange 359 5.7.2 Perception of Submergence and Regulation of Shoot Elongation 359 5.8 Growth as Affected by Touch and Wind 360 5.9 Growth as Affected by Elevated Concentrations of CO2 in the Atmosphere 361 6 Adaptations Associated with Inherent Variation in Growth Rate 362 6.1 Fast- and Slow-Growing Species 362 6.2 Growth of Inherently Fast- and Slow-Growing Species Under Resource-Limited Conditions 363 6.2.1 Growth at a Limiting Nutrient Supply 364 6.2.2 Growth in the Shade 364 6.3 Are There Ecological Advantages Associated with a High or Low RGR? 364 6.3.1 Various Hypotheses 364 6.3.2 Selection on RGRmax Itself, or on Traits That Are Associated with RGR^? 365 6.3.3 An Appraisal of Plant Distribution Requires Information on Ecophysiology 366 7 Growth and Allocation: The Messages About Plant Messages 367 References 367 8. Life Cycles: Environmental Influences and Adaptations 375 1 2 Introduction 375 Seed Dormancy and Germination 375 2.1 Hard Seed Coats 376 2.2 Germination Inhibitors in the Seed 377 2.3 Effects of Nitrate 378 2.4 Other External Chemical Signals 378 2.5 Effects of Light 380 2.6 Effects of Temperature 382 2.7 Physiological Aspects oí Dormancy 384 2.8 Summary of Ecological Aspects of Seed Germination and Dormancy 385 Developmental Phases 385 3.1 Seedling Phase 385 3.2 Juvenile Phase 386 3.2.1 Delayed Flowering in Biennials 387 3.2.2 Juvenile and Adult Traits 388 XXVI Contents 3.2.3 Vegetative Reproduction 388 3.2.4 Delayed Greening During Leaf Development in Tropical Trees 390 3.3 Reproductive Phase 391 3.3.1 Timing by Sensing Daylength: Long-Day and Short-Day Plants 391 3.3.2 Do Plants Sense the Difference Between a Certain Daylength in Spring and Autumn? 393 3.3.3 Timing by Sensing Temperature: Vernalization 393 3.3.4 Effects of Temperature on Plant Development 394 3.3.5 Attracting Pollinators 394 3.3.6 The Cost of Flowering 395 3.4 Fruiting 396 3.5 Senescence 397 4 Seed Dispersal 397 4.1 Dispersal Mechanisms 397 4.2 Life-History Correlates 398 5 The Message to Disperse: Perception, Transduction, and Response 398 References 398 9. Biotte Influences 403 9A. Symbiotic Associations 403 1 Introduction 403 2 Mycorrhizas 403 2.1 Mycorrhizal Structures: Are They Beneficial for Plant Growth? 404 2.1.1 The Infection Process 408 2.1.2 Mycorrhizal Responsiveness 410 2.2 Nonmycorrhizal Species and Their Interactions with Mycorrhizal Species 412 2.3 Phosphate Relations 413 2.3.1 Mechanisms That Account for Enhanced Phosphate Absorption by Mycorrhizal Plants 413 2.3.2 Suppression of Colonization at High Phosphate Availability 415 2.4 Effects on Nitrogen Nutrition 416 2.5 Effects on the Acquisition of Water 417 2.6 Carbon Costs of the Mycorrhizal Symbiosis 418 2.7 Agricultural and Ecological Perspectives 419 3 Associations with Nitrogen-Fixing Organisms 421 3.1 Symbiotic ^Fixation Is Restricted to a Fairly Limited Number of Plant Species 422 3.2 Host — Guest Specificity in the Legume — Rhizobium Symbiosis 424 3.3 The Infection Process in the Legume—Rhizobium Association 424 3.3.1 The Role of Flavonoids 425 3.3.2 Rhizobial nod Genes 425 3.3.3 Entry of the Bacteria 427 3.3.4 Final Stages of the Establishment of the Symbiosis 428 3.4 Nitrogenase Activity and Synthesis of Organic Nitrogen 429 Contents 3.5 Carbon and Energy Metabolism of the Nodules 431 3.6 Quantification of N2 Fixation In Situ 432 3.7 Ecological Aspects of the Nonsymbiotic Association with N2-Fixing Microorganisms 433 3.8 Carbon Costs of the Legume — Rhizobium Symbiosis 434 3.9 Suppression of the Legume — Rhizobium Symbiosis at Low pH and in the Presence of a Large Supply of Combined Nitrogen 435 4 Endosymbionts 436 5 Plant Life Among Microsymbionts 437 References 437 9B. Ecological Biochemistry: Allelopathy and Defence against Herbivores 445 1 Introduction 445 2 Allelopathy (Interference Competition) 445 3 Chemical Defense Mechanisms 448 3.1 Defense Against Herbivores 448 3.2 Qualitative and Quantitative Defense Compounds 451 3.3 The Arms Race of Plants and Herbivores 451 3.4 How Do Plants Avoid Being Killed by Their Own Poisons? 455 3.5 Secondary Metabolites for Medicines and Crop Protection 457 4 Environmental Effects on the Production of Secondary Plant Metabolites 460 4.1 Abiotic Factors 460 4.2 Induced Defense and Communication Between Neighboring Plants 462 4.3 Communication Between Plants and Their Bodyguards 464 5 The Costs of Chemical Defense 466 5.1 Diversion of Resources from Primary Growth 466 5.2 Strategies of Predators 468 5.3 Mutualistic Associations with Ants and Mites 469 6 Detoxification of Xenobiotics by Plants: Phytoremediation 469 7 Secondary Chemicals and Messages That Emerge from This Chapter 472 References 473 9C. Effects of Microbial Pathogens 479 1 Introduction 479 2 Constitutive Antimicrobial Defense Compounds 479 3 The Plant's Response to Attack by Microorganisms 481 4 Cross-Talk Between Induced Systemic Resistance and Defense Against Herbivores 485 5 Messages from One Organism to Another 488 References 488 9D. Parasitic Associations 491 1 Introduction 491 2 Growth and Development 492 2.1 Seed Germination 492 2.2 Haustoria Formation 493 2.3 Effects of the Parasite on Host Development 496 3 Water Relations and Mineral Nutrition 498 4 Carbon Relations 500 XXVIII 9F. Contents 5 What Can We Extract from This Chapter? 501 References 501 Interactions Among Plants 505 1 Introduction 505 2 Theories of Competitive Mechanisms 509 3 How Do Plants Perceive the Presence of Neighbors? 509 4 Relationship of Plant Traits to Competitive Ability 512 4.1 Growth Rate and Tissue Turnover 512 4.2 Allocation Pattern, Growth Form, and Tissue Mass Density 513 4.3 Plasticity 514 5 Traits Associated with Competition for Specific Resources 516 5.1 Nutrients 516 5.2 Water 517 5.3 Light 518 5.4 Carbon Dioxide 518 6 Positive Interactions Among Plants 521 6.1 Physical Benefits 521 6.2 Nutritional Benefits 521 6.3 Allelochemical Benefits 521 7 Plant—Microbial Symbiosis 522 8 Succession 524 9 What Do We Gain from This Chapter? 526 References 527 Carnivory 533 1 Introduction 533 2 Structures Associated with the Catching of the Prey and Subsequent Withdrawal of Nutrients from the Prey 533 3 Some Case Studies 536 3.1 Dionaea Muscipula 537 3.2 The Suction Traps of Utricularia 539 3.3 The Tentacles of Drosera 541 3.4 Pitchers of Sarracenia 542 3.5 Passive Traps of Genlisea 542 4 The Message to Catch 543 References 543 10. Role in Ecosystem and Global Processes 545 10A. Decomposition 545 1 Introduction 545 2 Litter Quality and Decomposition Rate 546 2.1 Species Effects on Litter Quality: Links with Ecological Strategy 546 2.2 Environmental Effects on Decomposition 547 3 The Link Between Decomposition Rate and Nutrient Supply 548 3.1 The Process of Nutrient Release 548 3.2 Effects of Litter Quality on Mineralization 549 3.3 Root Exudation and Rhizosphere Effects 550 4 The End Product of Decomposition 552 References 552 Contents xxix 10В. Ecosystem and Global Processes: Ecophysiological Controls 555 1 Introduction 555 2 Ecosystem Biomass and Production 555 2.1 Scaling from Plants to Ecosystems 555 2.2 Physiological Basis of Productivity 556 2.3 Disturbance and Succession 558 2.4 Photosynthesis and Absorbed Radiation 559 2.5 Net Carbon Balance of Ecosystems 561 2.6 The Global Carbon Cycle 561 3 Nutrient Cycling 563 3.1 Vegetation Controls over Nutrient Uptake and Loss 563 3.2 Vegetation Controls over Mineralization 565 4 Ecosystem Energy Exchange and the Hydrologie Cycle 565 4.1 Vegetation Effects on Energy Exchange 565 4.1.1 Albedo 565 4.1.2 Surface Roughness and Energy Partitioning 566 4.2 Vegetation Effects on the Hydrologie Cycle 567 4.2.1 Evapotranspiration and Runoff 567 4.2.2 Feedbacks to Climate 568 5 Moving to a Higher Level: Scaling from Physiology to the Globe 568 References 569 Glossary 573 Index 591
any_adam_object 1
any_adam_object_boolean 1
author Lambers, Hans
Pons, Thijs Leendert 1948-
Chapin, F. Stuart III 1944-
author_GND (DE-588)12058669X
(DE-588)120681935
author_facet Lambers, Hans
Pons, Thijs Leendert 1948-
Chapin, F. Stuart III 1944-
author_role aut
aut
aut
author_sort Lambers, Hans
author_variant h l hl
t l p tl tlp
f s c fs fsc
building Verbundindex
bvnumber BV023349532
callnumber-first Q - Science
callnumber-label QK717
callnumber-raw QK717
callnumber-search QK717
callnumber-sort QK 3717
callnumber-subject QK - Botany
classification_rvk WI 1802
WI 2010
WN 1950
classification_tum BIO 422f
ctrlnum (OCoLC)213855663
(DE-599)DNB987258710
dewey-full 571.2
dewey-hundreds 500 - Natural sciences and mathematics
dewey-ones 571 - Physiology & related subjects
dewey-raw 571.2
dewey-search 571.2
dewey-sort 3571.2
dewey-tens 570 - Biology
discipline Biologie
discipline_str_mv Biologie
edition 2. ed.
format Book
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02485nam a2200613 c 4500</leader><controlfield tag="001">BV023349532</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20111107 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">080617s2008 abd| |||| 00||| eng d</controlfield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">08,N06,0828</subfield><subfield code="2">dnb</subfield></datafield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">987258710</subfield><subfield code="2">DE-101</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780387783406</subfield><subfield code="c">Gb. : ca. sfr 101.00 (freier Pr.)</subfield><subfield code="9">978-0-387-78340-6</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0387783407</subfield><subfield code="c">Gb. : ca. sfr 101.00 (freier Pr.)</subfield><subfield code="9">0-387-78340-7</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780387783413</subfield><subfield code="9">978-0-387-78341-3</subfield></datafield><datafield tag="024" ind1="3" ind2=" "><subfield code="a">9780387783406</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">12041398</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)213855663</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DNB987258710</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-703</subfield><subfield code="a">DE-M49</subfield><subfield code="a">DE-20</subfield><subfield code="a">DE-29T</subfield><subfield code="a">DE-11</subfield><subfield code="a">DE-634</subfield><subfield code="a">DE-19</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QK717</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">571.2</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">WI 1802</subfield><subfield code="0">(DE-625)148758:13426</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">WI 2010</subfield><subfield code="0">(DE-625)148760:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">WN 1950</subfield><subfield code="0">(DE-625)150988:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">580</subfield><subfield code="2">sdnb</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">BIO 422f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Lambers, Hans</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Plant physiological ecology</subfield><subfield code="c">Hans Lambers ; F. Stuart Chapin ; Thijs L. Pons</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">2. ed.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New York, NY</subfield><subfield code="b">Springer</subfield><subfield code="c">2008</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XXIX, 604 S.</subfield><subfield code="b">Ill., graph. Darst., Kt.</subfield><subfield code="c">254 mm x 178 mm</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Plant ecophysiology</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Pflanzenphysiologie</subfield><subfield code="0">(DE-588)4045580-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Pflanzen</subfield><subfield code="0">(DE-588)4045539-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Autökologie</subfield><subfield code="0">(DE-588)4143684-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Pflanzenökologie</subfield><subfield code="0">(DE-588)4045575-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="0">(DE-588)4143413-4</subfield><subfield code="a">Aufsatzsammlung</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Autökologie</subfield><subfield code="0">(DE-588)4143684-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Pflanzen</subfield><subfield code="0">(DE-588)4045539-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Pflanzenphysiologie</subfield><subfield code="0">(DE-588)4045580-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Pflanzenökologie</subfield><subfield code="0">(DE-588)4045575-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Pons, Thijs Leendert</subfield><subfield code="d">1948-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)12058669X</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Chapin, F. Stuart</subfield><subfield code="c">III</subfield><subfield code="d">1944-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)120681935</subfield><subfield code="4">aut</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Bayreuth</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&amp;doc_library=BVB01&amp;local_base=BVB01&amp;doc_number=016533164&amp;sequence=000002&amp;line_number=0001&amp;func_code=DB_RECORDS&amp;service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-016533164</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection>
genre (DE-588)4143413-4 Aufsatzsammlung gnd-content
genre_facet Aufsatzsammlung
id DE-604.BV023349532
illustrated Illustrated
index_date 2024-07-02T21:04:38Z
indexdate 2024-11-25T17:26:05Z
institution BVB
isbn 9780387783406
0387783407
9780387783413
language English
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-016533164
oclc_num 213855663
open_access_boolean
owner DE-703
DE-M49
DE-BY-TUM
DE-20
DE-29T
DE-11
DE-634
DE-19
DE-BY-UBM
owner_facet DE-703
DE-M49
DE-BY-TUM
DE-20
DE-29T
DE-11
DE-634
DE-19
DE-BY-UBM
physical XXIX, 604 S. Ill., graph. Darst., Kt. 254 mm x 178 mm
publishDate 2008
publishDateSearch 2008
publishDateSort 2008
publisher Springer
record_format marc
spellingShingle Lambers, Hans
Pons, Thijs Leendert 1948-
Chapin, F. Stuart III 1944-
Plant physiological ecology
Plant ecophysiology
Pflanzenphysiologie (DE-588)4045580-4 gnd
Pflanzen (DE-588)4045539-7 gnd
Autökologie (DE-588)4143684-2 gnd
Pflanzenökologie (DE-588)4045575-0 gnd
subject_GND (DE-588)4045580-4
(DE-588)4045539-7
(DE-588)4143684-2
(DE-588)4045575-0
(DE-588)4143413-4
title Plant physiological ecology
title_auth Plant physiological ecology
title_exact_search Plant physiological ecology
title_exact_search_txtP Plant physiological ecology
title_full Plant physiological ecology Hans Lambers ; F. Stuart Chapin ; Thijs L. Pons
title_fullStr Plant physiological ecology Hans Lambers ; F. Stuart Chapin ; Thijs L. Pons
title_full_unstemmed Plant physiological ecology Hans Lambers ; F. Stuart Chapin ; Thijs L. Pons
title_short Plant physiological ecology
title_sort plant physiological ecology
topic Plant ecophysiology
Pflanzenphysiologie (DE-588)4045580-4 gnd
Pflanzen (DE-588)4045539-7 gnd
Autökologie (DE-588)4143684-2 gnd
Pflanzenökologie (DE-588)4045575-0 gnd
topic_facet Plant ecophysiology
Pflanzenphysiologie
Pflanzen
Autökologie
Pflanzenökologie
Aufsatzsammlung
url http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016533164&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA
work_keys_str_mv AT lambershans plantphysiologicalecology
AT ponsthijsleendert plantphysiologicalecology
AT chapinfstuart plantphysiologicalecology