Mathematical techniques an introduction for the engineering, physical, and mathematical sciences

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Jordan, Dominic W. (VerfasserIn), Smith, Peter 1935- (VerfasserIn)
Format: Buch
Sprache:English
Veröffentlicht: Oxford [u.a.] Oxford Univ. Press 2008
Ausgabe:Fourth edition
Schlagworte:
Online-Zugang:Inhaltsverzeichnis
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nam a2200000 c 4500
001 BV023342161
003 DE-604
005 20170427
007 t|
008 080612s2008 xx a||| |||| 00||| eng d
020 |a 9780199282012  |9 978-0-19-928201-2 
035 |a (OCoLC)191732532 
035 |a (DE-599)BVBBV023342161 
040 |a DE-604  |b ger  |e rda 
041 0 |a eng 
049 |a DE-29T  |a DE-634  |a DE-11  |a DE-573 
050 0 |a QA300 
082 0 |a 510  |2 22 
082 0 |a 515  |2 22 
084 |a SK 110  |0 (DE-625)143215:  |2 rvk 
084 |a SK 950  |0 (DE-625)143273:  |2 rvk 
100 1 |a Jordan, Dominic W.  |e Verfasser  |0 (DE-588)115172602  |4 aut 
245 1 0 |a Mathematical techniques  |b an introduction for the engineering, physical, and mathematical sciences  |c D. W. Jordan and P. Smith 
250 |a Fourth edition 
264 1 |a Oxford [u.a.]  |b Oxford Univ. Press  |c 2008 
300 |a XX, 976 Seiten  |b Illustrationen, Diagramme 
336 |b txt  |2 rdacontent 
337 |b n  |2 rdamedia 
338 |b nc  |2 rdacarrier 
500 |a Hier auch später erschienene, unveränderte Nachdrucke 
650 4 |a Analyse mathématique 
650 4 |a Mathematical analysis 
650 0 7 |a Mathematica  |g Programm  |0 (DE-588)4268208-3  |2 gnd  |9 rswk-swf 
650 0 7 |a Mathematik  |0 (DE-588)4037944-9  |2 gnd  |9 rswk-swf 
650 0 7 |a Mathematische Physik  |0 (DE-588)4037952-8  |2 gnd  |9 rswk-swf 
650 0 7 |a Ingenieurwissenschaften  |0 (DE-588)4137304-2  |2 gnd  |9 rswk-swf 
655 7 |8 1\p  |0 (DE-588)4143389-0  |a Aufgabensammlung  |2 gnd-content 
689 0 0 |a Mathematik  |0 (DE-588)4037944-9  |D s 
689 0 1 |a Ingenieurwissenschaften  |0 (DE-588)4137304-2  |D s 
689 0 |5 DE-604 
689 1 0 |a Mathematik  |0 (DE-588)4037944-9  |D s 
689 1 1 |a Mathematische Physik  |0 (DE-588)4037952-8  |D s 
689 1 |8 2\p  |5 DE-604 
689 2 0 |a Mathematica  |g Programm  |0 (DE-588)4268208-3  |D s 
689 2 |8 3\p  |5 DE-604 
700 1 |a Smith, Peter  |d 1935-  |e Verfasser  |0 (DE-588)141762349  |4 aut 
856 4 2 |m HBZ Datenaustausch  |q application/pdf  |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016525909&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA  |3 Inhaltsverzeichnis 
883 1 |8 1\p  |a cgwrk  |d 20201028  |q DE-101  |u https://d-nb.info/provenance/plan#cgwrk 
883 1 |8 2\p  |a cgwrk  |d 20201028  |q DE-101  |u https://d-nb.info/provenance/plan#cgwrk 
883 1 |8 3\p  |a cgwrk  |d 20201028  |q DE-101  |u https://d-nb.info/provenance/plan#cgwrk 
943 1 |a oai:aleph.bib-bvb.de:BVB01-016525909 

Datensatz im Suchindex

_version_ 1819611234375303168
adam_text Titel: Mathematical techniques Autor: Jordan, Dominic W. Jahr: 2008 Detailed Contents Elementary methods, differentiation, complex numbers ndard functions and techniques 3 3 6 7 12 16 17 23 25 28 30 33 35 36 39 43 45 46 51 55 61 2.1 The slope of a graph 62 2.2 The derivative: notation and definition 65 2.3 Rates of change 67 2.4 Derivative of x (n = 0,1,2,3,...) 69 2.5 Derivatives of sums: multiplication by constants 70 2.6 Three important limits 72 2.7 Derivatives of e*, sin x, cos x, In x 74 2.8 A basic table of derivatives 76 2.9 Higher-order derivatives 77 2.10 An interpretation of the second derivative 79 Problems 80 irther techniques for differentiation 82 3.1 The product rule 83 3.2 Quotients and reciprocals 85 3.3 The chain rule 86 3.4 Derivative of x for any value of n 89 3.5 Functions of ax + b 90 3.6 An extension of the chain rule 91 3.7 Logarithmic differentiation 92 1.1 Real numbers, powers, inequalities 1.2 Coordinates in the plane 1.3 Graphs 1.4 Functions 1.5 Radian measure of angles 1.6 Trigonometric functions; properties 1.7 Inverse functions 1.8 Inverse trigonometric functions 1.9 Polar coordinates 1.10 Exponential functions; the number e 1.11 The logarithmic function 1.12 Exponential growth and decay 1.13 Hyperbolic functions 1.14 Partial fractions 1.15 Summation sign: geometric series 1.16 Infinite geometric series 1.17 Permutations and combinations 1.18 The binomial theorem Problems MM differentiation 3.8 Implicit differentiation W 3.9 Derivatives of inverse functions 3.10 Derivative as a function of a parameter 93 94 W Problems 98 Z O ^QpApplications of differentiation 10° 100 102 106 108 114 116 120 121 124 125 125 128 130 132 134 134 5.8 Indeterminate values; I Hopital s rule 136 4.1 Function notation for derivatives 4.2 Maxima and minima 4.3 Exceptional cases of maxima and minima 4.4 Sketching graphs of functions 4.5 Estimating small changes 4.6 Numerical solution of equations: Newton s method 4.7 The binomial theorem: an alternative proof Problems aylor series and approximations 5.1 The index notation for derivatives of any order 5.2 Taylor polynomials 5.3 A note on infinite series 5.4 Infinite Taylor expansions 5.5 Manipulation of Taylor series 5.6 Approximations for large values of x 5.7 Taylor series about other points Problems 138 omplex numbers 1 ° 6.1 Definitions and rules 6.2 The Argand diagram, modulus, conjugate 6.3 Complex numbers in polar coordinates 6.4 Complex numbers in exponential form 14° 6.5 The general exponential form 6.6 Hyperbolic functions 153 6.7 Miscellaneous applications 54 Problems 156 Matrix and vector algebra Matrix algebra 161 7.1 Matrix definition and notation 7.2 Rules of matrix algebra 168 7.3 Special matrices 7.4 The inverse matrix Problems 177 i 179 ^Determinants 179 8.1 The determinant of a square matrix 182 8.2 Properties of determinants 8.3 The adjoint and inverse matrices Problems Elementary operations with vectors 9.1 Displacement along an axis 9.2 Displacement vectors in two dimensions 195 9.3 Axes in three dimensions 198 9.4 Vectors in two and three dimensions 198 9.5 Relative velocity 204 9.6 Position vectors and vector equations 206 9.7 Unit vectors and basis vectors 210 9.8 Tangent vector, velocity, and acceleration 212 9.9 Motion in polar coordinates 214 Problems 216 ?Ji The scalar product 219 10.1 The scalar product of two vectors 219 10.2 The angle between two vectors 220 10.3 Perpendicular vectors 222 10.4 Rotation of axes in two dimensions 223 10.5 Direction cosines 225 10.6 Rotation of axes in three dimensions 226 10.7 Direction ratios and coordinate geometry 229 10.8 Properties of a plane 230 10.9 General equation of a straight line 234 10.10 Forces acting at a point 235 10.11 Tangent vector and curvature in two dimensions 238 Problems 240 Vector product 244 11.1 Vector product 244 11.2 Nature of the vectorp=ax6 246 11.3 The scalar triple product 249 11.4 Moment of a force 251 11.5 Vector triple product 255 Problems 256 Linear algebraic equations 259 12.1 Cramer s rule 260 12.2 Elementary row operations 262 12.3 The inverse matrix by Gaussian elimination 265 12.4 Compatible and incompatible sets of equations 267 12.5 Homogeneous sets of equations 271 12.6 Gauss-Seidel iterative method of solution 273 Problems 275 Eigenvalues and eigenvectors 279 13.1 Eigenvalues of a matrix 279 13.2 Eigenvectors 281 189 190 O O z 193 m z 193 H C/3 13.3 Linear dependence CO 13.4 Diagonalization of a matrix Z 13.5 Powers of matrices UJ 1? 13.6 Quadratic forms z o o 13.7 Positive-definite matrices 13.8 An application to a vibrating system Problems Integration and differential equations 285 286 289 292 295 298 301 (differentiation and area 307 14.1 Reversing differentiation 307 14.2 Constructing a table of antiderivatives 311 14.3 Signed area generated by a graph 314 14.4 Case where the antiderivative is composite 317 Problems 318 definite and indefinite integral 320 15.1 Signed area as the sum of strips 320 15.2 Numerical illustration of the sum formula 321 15.3 The definite integral and area 323 15.4 The indefinite-integral notation 324 15.5 Integrals unrelated to area 326 15.6 Improper integrals 328 15.7 Integration of complex functions: a new type of integral 331 15.8 The area analogy for a definite integral 333 15.9 Symmetric integrals 333 15.10 Definite integrals having variable limits 336 Problems 338 lications involving the integral as a sum 341 16.1 Examples of integrals arising from a sum 341 16.2 Geometrical area in polar coordinates 344 16.3 The trapezium rule 346 16.4 Centre of mass, moment of inertia 348 Problems 353 ematic techniques for integration 356 17.1 Substitution method for j^ax + o)dx 356 17.2 Substitution method for J flax2 + b)x dx 359 17.3 Substitution method for f cc^ax sin ax dx (m or n odd) 360 17.4 Definite integrals and change of variable 362 17.5 Occasional substitutions 364 17.6 Partial fractions for integration 366 17.7 Integration by parts 368 17.8 Integration by parts: definite integrals 371 17.9 Differentiating with respect to a parameter 373 Problems 375 Jnforced linear differential equations with constant coefficients 379 o 18.1 Differential equations and their solutions 380 ^ 18.2 Solving first-order linear unforced equations 382 -H 18.3 Solving second-order linear unforced equations 384 z 18.4 Complex solutions of the characteristic equation 388 jjj 18.5 Initial conditions for second-order equations 391 Problems 393 breed linear differential equations 395 19.1 Particular solutions for standard forcing terms 395 19.2 Harmonic forcing term, by using complex solutions 399 19.3 Particular solutions: exceptional cases 403 19.4 The general solution of forced equations 404 19.5 First-order linear equations with a variable coefficient 407 Problems 411 larmonic functions and the harmonic oscillator 413 20.1 Harmonic oscillations 413 20.2 Phase difference: lead and lag 415 20.3 Physical models of a differential equation 417 20.4 Free oscillations of a linear oscillator 419 20.5 Forced oscillations and transients 420 20.6 Resonance 423 20.7 Nearly linear systems 425 20.8 Stationary and travelling waves 427 20.9 Compound oscillations; beats 431 20.10 Travelling waves; beats 434 20.11 Dispersion; group velocity 436 20.12 The Doppler effect 437 Problems 439 ady forced oscillations: phasors, impedance, transfer functions 442 21.1 Phasors 442 21.2 Algebra of phasors 444 21.3 Phasor diagrams 445 21.4 Phasors and complex impedance 446 21.5 Transfer functions in the frequency domain 451 21.6 Phasors and waves; complex amplitude 453 Problems 458 phical, numerical, and other aspects of first-order equations 460 22.1 Graphical features of first-order equations 460 22.2 The Euler method for numerical solution 463 22.3 Nonlinear equations of separable type 466 22.4 Differentials and the solution of first-order equations 469 22.5 Change of variable in a differential equation 473 Problems 476 CO H Z LU -z 23.1 23.2 23.3 o o 23.4 23.5 23.6 23.7 23.8 23.9 onlinear differential equations and the phase plane 480 Autonomous second-order equations 481 Constructing a phase diagram for (x, x) 482 (x, x) phase diagrams for other linear equations; stability 486 The pendulum equation 489 The general phase plane 491 Approximate linearization 494 Classification of linear equilibrium points 496 Limit cycles 497 A numerical method for phase paths 499 Problems 501 Transforms and Fourier Series e Laplace transform 505 24.1 The Laplace transform 505 24.2 Laplace transforms of r e±(, sin f, cos t 506 24.3 Scale rule; shift rule; factors f and ew 508 24.4 Inverting a Laplace transform 512 24.5 Laplace transforms of derivatives 515 24.6 Application to differential equations 516 24.7 The unit function and the delay rule 519 24.8 The division rule for f(t)/t 524 Problems 525 place and z transforms: applications 527 25.1 Division by s and integration 527 25.2 The impulse function 530 25.3 Impedance in the s domain 533 25.4 Transfer functions in the s domain 535 25.5 The convolution theorem 541 25.6 General response of a system from its impulsive response 543 25.7 Convolution integral in terms of memory 544 25.8 Discrete systems 545 25.9 The z transform 548 25.10 Behaviour of z transforms in the complex plane 552 25.11 z transforms and difference equations 556 Problems 558 rier series 562 26.1 Fourier series for a periodic function 563 26.2 Integrals of periodic functions 564 26.3 Calculating the Fourier coefficients 566 26.4 Examples of Fourier series 569 26.5 Use of symmetry: sine and cosine series 572 26.6 Functions defined on a finite range: half-range series 574 26.7 Spectrum of a periodic function 577 26.8 Obtaining one Fourier series from another 578 26.9 The two-sided Fourier series 579 Problems 582 burier transforms 586 27.1 Sine and cosine transforms 27.2 The exponential Fourier transform 27.3 Short notations: alternative expressions 27.4 Fourier transforms of some basic functions 27.5 Rules for manipulating transforms 27.6 The delta function and periodic functions 27.7 Convolution theorem for Fourier transforms 27.8 The shah function 27.9 Energy in a signal: Rayleigh s theorem 27.10 Diffraction from a uniformly radiating strip 27.11 General source distribution and the inverse transform 27.12 Transforms in radiation problems Problems Multivariable calculus Differentiation of functions of two variables 623 28.1 Depiction of functions of two variables 624 28.2 Partial derivatives 627 28.3 Higher derivatives 629 28.4 Tangent plane and normal to a surface 632 28.5 Maxima, minima, and other stationary points 635 28.6 The method of least squares 638 28.7 Differentiating an integral with respect to a parameter 640 Problems 642 Functions of two variables: geometry and formulae 645 29.1 The incremental approximation 645 29.2 Small changes and errors 648 29.3 The derivative in any direction 651 29.4 Implicit differentiation 654 29.5 Normal to a curve 657 29.6 Gradient vector in two dimensions 659 Problems 662 »n rules, restricted maxima, coordinate systems 664 30.1 Chain rule for a single parameter 664 30.2 Restricted maxima and minima: the Lagrange multiplier 667 30.3 Curvilinear coordinates in two dimensions 672 30.4 Orthogonal coordinates 675 30.5 The chain rule for two parameters 676 30.6 The use of differentials 679 Problems 681 tions of any number of variables 683 31.1 The incremental approximation; errors 683 31.2 Implicit differentiation 686 O 587 O z 590 H 592 m z 593 - Cfl 596 599 601 605 607 608 612 613 618 31.3 Chain rules CO 31.4 The gradient vector in three dimensions 1? z 31.5 Normal to a surface UJ h- 31.6 Equation of the tangent plane z 31.7 Directional derivative in terms of gradient o o 31.8 Stationary points 31.9 The envelope of a family of curves Problems 688 688 690 691 692 696 702 704 uble integration 708 32.1 Repeated integrals with constant limits 709 32.2 Examples leading to repeated integrals with constant limits 710 32.3 Repeated integrals over non-rectangular regions 713 32.4 Changing the order of integration for non-rectangular regions 715 32.5 Double integrals 717 32.6 Polar coordinates 721 32.7 Separable integrals 724 32.8 General change of variable; the Jacobian determinant 727 Problems 732 ine integrals 735 33.1 Evaluation of line integrals 736 33.2 General line integrals in two and three dimensions 739 33.3 Paths parallel to the axes 743 33.4 Path independence and perfect differentials 744 33.5 Closed paths 746 33.6 Green s theorem 748 33.7 Line integrals and work 750 33.8 Conservative fields 752 33.9 Potential for a conservative field 754 33.10 Single-valuedness of potentials 756 Problems 759 or fields: divergence and curl 762 34.1 Vector fields and field lines 762 34.2 Divergence of a vector field 764 34.3 Surface and volume integrals 765 34.4 The divergence theorem; flux of a vector field 770 34.5 Curl of a vector field 773 34.6 Cylindrical polar coordinates 777 34.7 General curvilinear coordinates 779 34.8 Stokes s theorem 781 Problems 785 Discrete mathematics s 789 35.1 Notation 789 35.2 Equality, union, and intersection 790 35.3 Venn diagrams 792 Problems 799 o O z }olean algebra: logic gates and switching functions 801 ^ z 36.1 Laws of Boolean algebra 801 7* 36.2 Logic gates and truth tables 803 36.3 Logic networks 805 36.4 The inverse truth-table problem 808 36.5 Switching circuits 809 Problems 812 iraph theory and its applications 814 37.1 Examples of graphs 815 37.2 Definitions and properties of graphs 817 37.3 How many simple graphs are there? 818 37.4 Paths and cycles 820 37.5 Trees 821 37.6 Electrical circuits: the cutset method 823 37.7 Signal-flow graphs 827 37.8 Planar graphs 831 37.9 Further applications 834 Problems 837 erence equations 842 38.1 Discrete variables 842 38.2 Difference equations: general properties 845 38.3 First-order difference equations and the cobweb 847 38.4 Constant-coefficient linear difference equations 849 38.5 The logistic difference equation 854 Problems 859 Probability and statistics liability 865 39.1 Sample spaces, events, and probability 866 39.2 Sets and probability 868 39.3 Frequencies and combinations 872 39.4 Conditional probability 875 39.5 Independent events 877 39.6 Total probability 879 39.7 Bayes theorem 880 Problems 881 m variables and probability distributions 884 40.1 Probability distributions 885 40.2 The binomial distribution 887 40.3 Expected value and variance 889 40.4 Geometric distribution 891 40.5 CO 40.6 t- z 40.7 LU 1- 40.8 z 40.9 o Poisson distribution 892 Other discrete distributions 894 Continuous random variables and distributions 895 Mean and variance of continuous random variables 897 The normal distribution 898 Problems 901 escriptive statistics 903 41.1 Representing data 903 41.2 Random samples and sampling distributions 908 41.3 Sample mean and variance, and their estimation 910 41.4 Central limit theorem 911 41.5 Regression 913 Problems 915 Projects plications projects using symbolic computing 919 42.1 Symbolic computation 919 42.2 Projects 920 Self-tests: Selected answers 931 swers to selected problems 937 Appendices 948 A Some algebraical rules 948 B Trigonometric formulae 949 C Areas and volumes 951 D A table of derivatives 952 E Table of indefinite and definite integrals 953 F Laplace transforms, inverses, and rules 955 G Exponential Fourier transforms and rules 956 H Probability distributions and tables 957 I Dimensions and units 959 Further reading g6i tlndex 962
any_adam_object 1
author Jordan, Dominic W.
Smith, Peter 1935-
author_GND (DE-588)115172602
(DE-588)141762349
author_facet Jordan, Dominic W.
Smith, Peter 1935-
author_role aut
aut
author_sort Jordan, Dominic W.
author_variant d w j dw dwj
p s ps
building Verbundindex
bvnumber BV023342161
callnumber-first Q - Science
callnumber-label QA300
callnumber-raw QA300
callnumber-search QA300
callnumber-sort QA 3300
callnumber-subject QA - Mathematics
classification_rvk SK 110
SK 950
ctrlnum (OCoLC)191732532
(DE-599)BVBBV023342161
dewey-full 510
515
dewey-hundreds 500 - Natural sciences and mathematics
dewey-ones 510 - Mathematics
515 - Analysis
dewey-raw 510
515
dewey-search 510
515
dewey-sort 3510
dewey-tens 510 - Mathematics
discipline Mathematik
edition Fourth edition
format Book
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02474nam a2200577 c 4500</leader><controlfield tag="001">BV023342161</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20170427 </controlfield><controlfield tag="007">t|</controlfield><controlfield tag="008">080612s2008 xx a||| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780199282012</subfield><subfield code="9">978-0-19-928201-2</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)191732532</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV023342161</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-29T</subfield><subfield code="a">DE-634</subfield><subfield code="a">DE-11</subfield><subfield code="a">DE-573</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA300</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">510</subfield><subfield code="2">22</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 110</subfield><subfield code="0">(DE-625)143215:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 950</subfield><subfield code="0">(DE-625)143273:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Jordan, Dominic W.</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)115172602</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Mathematical techniques</subfield><subfield code="b">an introduction for the engineering, physical, and mathematical sciences</subfield><subfield code="c">D. W. Jordan and P. Smith</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">Fourth edition</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Oxford [u.a.]</subfield><subfield code="b">Oxford Univ. Press</subfield><subfield code="c">2008</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XX, 976 Seiten</subfield><subfield code="b">Illustrationen, Diagramme</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Hier auch später erschienene, unveränderte Nachdrucke</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Analyse mathématique</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical analysis</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mathematica</subfield><subfield code="g">Programm</subfield><subfield code="0">(DE-588)4268208-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mathematik</subfield><subfield code="0">(DE-588)4037944-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mathematische Physik</subfield><subfield code="0">(DE-588)4037952-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Ingenieurwissenschaften</subfield><subfield code="0">(DE-588)4137304-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="8">1\p</subfield><subfield code="0">(DE-588)4143389-0</subfield><subfield code="a">Aufgabensammlung</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Mathematik</subfield><subfield code="0">(DE-588)4037944-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Ingenieurwissenschaften</subfield><subfield code="0">(DE-588)4137304-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Mathematik</subfield><subfield code="0">(DE-588)4037944-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Mathematische Physik</subfield><subfield code="0">(DE-588)4037952-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Mathematica</subfield><subfield code="g">Programm</subfield><subfield code="0">(DE-588)4268208-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="8">3\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Smith, Peter</subfield><subfield code="d">1935-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)141762349</subfield><subfield code="4">aut</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HBZ Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&amp;doc_library=BVB01&amp;local_base=BVB01&amp;doc_number=016525909&amp;sequence=000002&amp;line_number=0001&amp;func_code=DB_RECORDS&amp;service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">3\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-016525909</subfield></datafield></record></collection>
genre 1\p (DE-588)4143389-0 Aufgabensammlung gnd-content
genre_facet Aufgabensammlung
id DE-604.BV023342161
illustrated Illustrated
indexdate 2024-12-23T21:02:32Z
institution BVB
isbn 9780199282012
language English
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-016525909
oclc_num 191732532
open_access_boolean
owner DE-29T
DE-634
DE-11
DE-573
owner_facet DE-29T
DE-634
DE-11
DE-573
physical XX, 976 Seiten Illustrationen, Diagramme
publishDate 2008
publishDateSearch 2008
publishDateSort 2008
publisher Oxford Univ. Press
record_format marc
spellingShingle Jordan, Dominic W.
Smith, Peter 1935-
Mathematical techniques an introduction for the engineering, physical, and mathematical sciences
Analyse mathématique
Mathematical analysis
Mathematica Programm (DE-588)4268208-3 gnd
Mathematik (DE-588)4037944-9 gnd
Mathematische Physik (DE-588)4037952-8 gnd
Ingenieurwissenschaften (DE-588)4137304-2 gnd
subject_GND (DE-588)4268208-3
(DE-588)4037944-9
(DE-588)4037952-8
(DE-588)4137304-2
(DE-588)4143389-0
title Mathematical techniques an introduction for the engineering, physical, and mathematical sciences
title_auth Mathematical techniques an introduction for the engineering, physical, and mathematical sciences
title_exact_search Mathematical techniques an introduction for the engineering, physical, and mathematical sciences
title_full Mathematical techniques an introduction for the engineering, physical, and mathematical sciences D. W. Jordan and P. Smith
title_fullStr Mathematical techniques an introduction for the engineering, physical, and mathematical sciences D. W. Jordan and P. Smith
title_full_unstemmed Mathematical techniques an introduction for the engineering, physical, and mathematical sciences D. W. Jordan and P. Smith
title_short Mathematical techniques
title_sort mathematical techniques an introduction for the engineering physical and mathematical sciences
title_sub an introduction for the engineering, physical, and mathematical sciences
topic Analyse mathématique
Mathematical analysis
Mathematica Programm (DE-588)4268208-3 gnd
Mathematik (DE-588)4037944-9 gnd
Mathematische Physik (DE-588)4037952-8 gnd
Ingenieurwissenschaften (DE-588)4137304-2 gnd
topic_facet Analyse mathématique
Mathematical analysis
Mathematica Programm
Mathematik
Mathematische Physik
Ingenieurwissenschaften
Aufgabensammlung
url http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016525909&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA
work_keys_str_mv AT jordandominicw mathematicaltechniquesanintroductionfortheengineeringphysicalandmathematicalsciences
AT smithpeter mathematicaltechniquesanintroductionfortheengineeringphysicalandmathematicalsciences