Analysis on Lie groups an introduction

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Faraut, Jacques 1940- (VerfasserIn)
Format: Buch
Sprache:English
Veröffentlicht: Cambridge [u.a.] Cambridge Univ. Press 2008
Ausgabe:1. publ.
Schriftenreihe:Cambridge studies in advanced mathematics 110
Schlagworte:
Online-Zugang:Inhaltsverzeichnis
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nam a2200000zcb4500
001 BV023324181
003 DE-604
005 20080717
007 t|
008 080602s2008 xxu |||| 00||| eng d
010 |a 2007053046 
020 |a 9780521719308  |9 978-0-521-71930-8 
035 |a (OCoLC)186349511 
035 |a (DE-599)BVBBV023324181 
040 |a DE-604  |b ger  |e aacr 
041 0 |a eng 
044 |a xxu  |c US 
049 |a DE-703  |a DE-20  |a DE-11  |a DE-188  |a DE-19 
050 0 |a QA387 
082 0 |a 512/.482  |2 22 
084 |a SK 340  |0 (DE-625)143232:  |2 rvk 
100 1 |a Faraut, Jacques  |d 1940-  |e Verfasser  |0 (DE-588)108109577  |4 aut 
245 1 0 |a Analysis on Lie groups  |b an introduction  |c Jacques Faraut 
250 |a 1. publ. 
264 1 |a Cambridge [u.a.]  |b Cambridge Univ. Press  |c 2008 
300 |a X, 302 S. 
336 |b txt  |2 rdacontent 
337 |b n  |2 rdamedia 
338 |b nc  |2 rdacarrier 
490 1 |a Cambridge studies in advanced mathematics  |v 110 
500 |a Includes bibliographical references and index 
650 4 |a Lie algebras 
650 4 |a Lie groups 
650 0 7 |a Lie-Gruppe  |0 (DE-588)4035695-4  |2 gnd  |9 rswk-swf 
650 0 7 |a Analysis  |0 (DE-588)4001865-9  |2 gnd  |9 rswk-swf 
655 7 |0 (DE-588)4151278-9  |a Einführung  |2 gnd-content 
689 0 0 |a Lie-Gruppe  |0 (DE-588)4035695-4  |D s 
689 0 1 |a Analysis  |0 (DE-588)4001865-9  |D s 
689 0 |5 DE-604 
830 0 |a Cambridge studies in advanced mathematics  |v 110  |w (DE-604)BV000003678  |9 110 
856 4 2 |m Digitalisierung UB Bayreuth  |q application/pdf  |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016508225&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA  |3 Inhaltsverzeichnis 
943 1 |a oai:aleph.bib-bvb.de:BVB01-016508225 

Datensatz im Suchindex

_version_ 1819615795691388928
adam_text Contents Preface page ix 1 The linear group 1 1.1 Topological groups 1 1.2 The group GL(n, R) 2 1.3 Examples of subgroups of G L(n , R) 5 1.4 Polar decomposition in GL(n, R) 7 1.5 The orthogonal group H 1.6 Gram decomposition 13 1.7 Exercises 14 2 The exponential map 18 2.1 Exponential of a matrix 18 2.2 Logarithm of a matrix 25 2.3 Exercises 29 3 Linear Lie groups 36 3.1 One parameter subgroups 36 3.2 lie algebra of a linear Lie group 38 3.3 linear lie groups are submanifolds 41 3.4 Campbell-Hausdorff formula 44 3.5 Exercises 47 4 Lie algebras 50 4.1 Definitions and examples 50 4.2 Nilpotent and solvable Lie algebras 56 4.3 Semi-simple Lie algebras 62 4.4 Exercises 69 vi Contents 5 Haar measure 74 5.1 Haar measure 74 5.2 Case of a group which is an open set in R 76 5.3 Haar measure on a product 78 5.4 Some facts about differential calculus 81 5.5 Invariant vector fields and Haar measure on a linear Lie group 86 5.6 Exercises 90 6 Representations of compact groups 95 6.1 Unitary representations 95 6.2 Compact self-adjoint operators 98 6.3 Schur orthogonality relations 103 6.4 Peter-Weyl Theorem 107 6.5 Characters and central functions 115 6.6 Absolute convergence of Fourier series 117 6.7 Casimir operator 119 6.8 Exercises 123 7 The groups 5(7(2) and S0(3), Haar measures and irreducible representations 127 7.1 Adjoint representation of SU(2) 127 7.2 Haar measure on 5ř/(2) 130 7.3 The group 50(3) 133 7.4 Euler angles 134 7.5 Irreducible representations of SU(2) 136 7.6 Irreducible representations of 50(3) 142 7.7 Exercises 149 8 Analysis on the group SU(2) 158 8.1 Fourier series on 50(2) 158 8.2 Functions of class Ck 160 8.3 Laplace operator on the group SUÇ2) 163 8.4 Uniform convergence of Fourier series on the group SU(2) 167 8.5 Heat equation on 50(2) 172 8.6 Heat equation on 517(2) 176 8.7 Exercises 182 9 Analysis on the sphere and the Euclidean space 186 9.1 Integration formulae 186 9.2 Laplace operator 191 9.3 Spherical harmonics 194 9.4 Spherical polynomials 200 Contents vii 9.5 Funk-Hecke Theorem 204 9.6 Fourier transform and Bochner-Hecke relations 208 9.7 Dirichlet problem and Poisson kernel 212 9.8 An integral transform 220 9.9 Heat equation 225 9.10 Exercises 227 10 Analysis on the spaces of symmetric and Hermitian matrices 231 10.1 Integration formulae 231 10.2 Radial part of the Laplace operator 238 10.3 Heat equation and orbital integrals 242 10.4 Fourier transforms of invariant functions 245 10.5 Exercises 246 11 Irreducible representations of the unitary group 249 11.1 Highest weight theorem 249 11.2 Weyl formulae 253 11.3 Holomorphic representations 260 11.4 Polynomial representations 264 11.5 Exercises 269 12 Analysis on the unitary group 274 12.1 Laplace operator 274 12.2 Uniform convergence of Fourier series on the unitary group 276 12.3 Series expansions of central functions 278 12.4 Generalised Taylor series 284 12.5 Radial part of the Laplace operator on the unitary group 288 12.6 Heat equation on the unitary group 292 12.7 Exercises 297 Bibliography 299 Index 301
any_adam_object 1
author Faraut, Jacques 1940-
author_GND (DE-588)108109577
author_facet Faraut, Jacques 1940-
author_role aut
author_sort Faraut, Jacques 1940-
author_variant j f jf
building Verbundindex
bvnumber BV023324181
callnumber-first Q - Science
callnumber-label QA387
callnumber-raw QA387
callnumber-search QA387
callnumber-sort QA 3387
callnumber-subject QA - Mathematics
classification_rvk SK 340
ctrlnum (OCoLC)186349511
(DE-599)BVBBV023324181
dewey-full 512/.482
dewey-hundreds 500 - Natural sciences and mathematics
dewey-ones 512 - Algebra
dewey-raw 512/.482
dewey-search 512/.482
dewey-sort 3512 3482
dewey-tens 510 - Mathematics
discipline Mathematik
edition 1. publ.
format Book
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01766nam a2200469zcb4500</leader><controlfield tag="001">BV023324181</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20080717 </controlfield><controlfield tag="007">t|</controlfield><controlfield tag="008">080602s2008 xxu |||| 00||| eng d</controlfield><datafield tag="010" ind1=" " ind2=" "><subfield code="a">2007053046</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780521719308</subfield><subfield code="9">978-0-521-71930-8</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)186349511</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV023324181</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">xxu</subfield><subfield code="c">US</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-703</subfield><subfield code="a">DE-20</subfield><subfield code="a">DE-11</subfield><subfield code="a">DE-188</subfield><subfield code="a">DE-19</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA387</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">512/.482</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 340</subfield><subfield code="0">(DE-625)143232:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Faraut, Jacques</subfield><subfield code="d">1940-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)108109577</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Analysis on Lie groups</subfield><subfield code="b">an introduction</subfield><subfield code="c">Jacques Faraut</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">1. publ.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge [u.a.]</subfield><subfield code="b">Cambridge Univ. Press</subfield><subfield code="c">2008</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">X, 302 S.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Cambridge studies in advanced mathematics</subfield><subfield code="v">110</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references and index</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Lie algebras</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Lie groups</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Lie-Gruppe</subfield><subfield code="0">(DE-588)4035695-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Analysis</subfield><subfield code="0">(DE-588)4001865-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="0">(DE-588)4151278-9</subfield><subfield code="a">Einführung</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Lie-Gruppe</subfield><subfield code="0">(DE-588)4035695-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Analysis</subfield><subfield code="0">(DE-588)4001865-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Cambridge studies in advanced mathematics</subfield><subfield code="v">110</subfield><subfield code="w">(DE-604)BV000003678</subfield><subfield code="9">110</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Bayreuth</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&amp;doc_library=BVB01&amp;local_base=BVB01&amp;doc_number=016508225&amp;sequence=000002&amp;line_number=0001&amp;func_code=DB_RECORDS&amp;service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-016508225</subfield></datafield></record></collection>
genre (DE-588)4151278-9 Einführung gnd-content
genre_facet Einführung
id DE-604.BV023324181
illustrated Not Illustrated
indexdate 2024-12-23T21:01:21Z
institution BVB
isbn 9780521719308
language English
lccn 2007053046
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-016508225
oclc_num 186349511
open_access_boolean
owner DE-703
DE-20
DE-11
DE-188
DE-19
DE-BY-UBM
owner_facet DE-703
DE-20
DE-11
DE-188
DE-19
DE-BY-UBM
physical X, 302 S.
publishDate 2008
publishDateSearch 2008
publishDateSort 2008
publisher Cambridge Univ. Press
record_format marc
series Cambridge studies in advanced mathematics
series2 Cambridge studies in advanced mathematics
spellingShingle Faraut, Jacques 1940-
Analysis on Lie groups an introduction
Cambridge studies in advanced mathematics
Lie algebras
Lie groups
Lie-Gruppe (DE-588)4035695-4 gnd
Analysis (DE-588)4001865-9 gnd
subject_GND (DE-588)4035695-4
(DE-588)4001865-9
(DE-588)4151278-9
title Analysis on Lie groups an introduction
title_auth Analysis on Lie groups an introduction
title_exact_search Analysis on Lie groups an introduction
title_full Analysis on Lie groups an introduction Jacques Faraut
title_fullStr Analysis on Lie groups an introduction Jacques Faraut
title_full_unstemmed Analysis on Lie groups an introduction Jacques Faraut
title_short Analysis on Lie groups
title_sort analysis on lie groups an introduction
title_sub an introduction
topic Lie algebras
Lie groups
Lie-Gruppe (DE-588)4035695-4 gnd
Analysis (DE-588)4001865-9 gnd
topic_facet Lie algebras
Lie groups
Lie-Gruppe
Analysis
Einführung
url http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016508225&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA
volume_link (DE-604)BV000003678
work_keys_str_mv AT farautjacques analysisonliegroupsanintroduction