Ending spam Bayesian content filtering and the art of statistical language classification

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Zdziarski, Jonathan (VerfasserIn)
Format: Buch
Sprache:English
Veröffentlicht: San Francisco No Starch Press 2005
Schlagworte:
Online-Zugang:Inhaltsverzeichnis
Klappentext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nam a2200000zc 4500
001 BV023289869
003 DE-604
005 20160113
007 t
008 080506s2005 xxua||| |||| 00||| eng d
010 |a 2005008221 
016 7 |a LO 2005008221  |2 DE-101 
020 |a 1593270526  |9 1-593-27052-6 
035 |a (OCoLC)58595154 
035 |a (DE-599)DNB 2005008221 
040 |a DE-604  |b ger  |e aacr 
041 0 |a eng 
044 |a xxu  |c US 
049 |a DE-739  |a DE-522 
050 0 |a TK5105.743 
082 0 |a 005.7/13  |2 22 
084 |a ST 276  |0 (DE-625)143642:  |2 rvk 
100 1 |a Zdziarski, Jonathan  |e Verfasser  |4 aut 
245 1 0 |a Ending spam  |b Bayesian content filtering and the art of statistical language classification  |c by Jonathan A. Zdziarski 
264 1 |a San Francisco  |b No Starch Press  |c 2005 
300 |a XX, 287 S.  |b Ill. 
336 |b txt  |2 rdacontent 
337 |b n  |2 rdamedia 
338 |b nc  |2 rdacarrier 
650 4 |a Spam filtering (Electronic mail) 
650 4 |a Filters (Mathematics) 
650 4 |a Spam filtering (Electronic mail)  |x Computer programs 
650 4 |a Electronic mail systems  |x Security measures 
650 4 |a Spam (Electronic mail)  |x Prevention 
650 0 7 |a Mail-Filter  |0 (DE-588)4792631-4  |2 gnd  |9 rswk-swf 
689 0 0 |a Mail-Filter  |0 (DE-588)4792631-4  |D s 
689 0 |5 DE-604 
856 4 2 |m Digitalisierung UB Passau  |q application/pdf  |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016474497&sequence=000013&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA  |3 Inhaltsverzeichnis 
856 4 2 |m Digitalisierung UB Passau  |q application/pdf  |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016474497&sequence=000014&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA  |3 Klappentext 
999 |a oai:aleph.bib-bvb.de:BVB01-016474497 

Datensatz im Suchindex

_version_ 1804137612638683136
adam_text BRIEF CONTENTS Introduction................................................................................................................. xvii PART I: An Introduction to Spam Filtering Chapter 1 : The History of Spam ........................................................................................3 Chapter 2: Historical Approaches to Fighting Spam ..........................................................25 Chapter 3: Language Classification Concepts ...................................................................45 Chapter 4: Statistical Filtering Fundamentals .....................................................................63 PART II: Fundamentals of Statistical Filtering Chapter 5: Decoding: Uncombobulating Messages ...........................................................87 Chapter 6: Tokenization: The Building Blocks of Spam .......................................................97 Chapter 7: The Low-Down Dirty Tricks of Spammers ........................................................ Ill Chapter 8: Data Storage for a Zillion Records ................................................................141 Chapter 9: Scaling in Large Environments ......................................................................157 PART III: Advanced Concepts of Statistical Filtering Chapter 10: Testing Theory ..........................................................................................177 Chapter 11 : Concept Identification: Advanced Tokenization ............................................197 Chapter 12: Fifth-Order Markovian Discrimination ..........................................................215 Chapter 13: Intelligent Feature Set Reduction ..................................................................227 Chapter 14: Collaborative Algorithms ...........................................................................241 Appendix: Shining Examples of Filtering ........................................................................257 Index .........................................................................................................................275 Join author Jonathan Zdziarski for a look inside the brilliant minds that have conceived clever new ways to fight spam in all its nefarious forms. This landmark title describes, in-depth, how statistical filtering is being used by next-generation spam filters to identify and filter unwanted messages, how spam filtering works, and how language classification and machine learning combine to produce remarkably accurate spam filters. After reading Ending Spam, you ll have a complete understanding of the mathematical approaches used by today s spam filters as well as decoding, tokenization, various algorithms (including Bayesian analysis and Markovian discrimination), and the benefits of using open-source solutions to end spam. Zdziarski interviewed creators of many of the best spam filters and has included their insights in this revealing examination of the anti-spam crusade. If you re a programmer designing a new spam filter, a network admin implementing a spam-filtering solution, or ¡ust someone who s curious about how spam filters work and the tactics spammers use to evade them, Ending Spam will serve as an informative analysis of the war against spammers.
adam_txt BRIEF CONTENTS Introduction. xvii PART I: An Introduction to Spam Filtering Chapter 1 : The History of Spam .3 Chapter 2: Historical Approaches to Fighting Spam .25 Chapter 3: Language Classification Concepts .45 Chapter 4: Statistical Filtering Fundamentals .63 PART II: Fundamentals of Statistical Filtering Chapter 5: Decoding: Uncombobulating Messages .87 Chapter 6: Tokenization: The Building Blocks of Spam .97 Chapter 7: The Low-Down Dirty Tricks of Spammers . Ill Chapter 8: Data Storage for a Zillion Records .141 Chapter 9: Scaling in Large Environments .157 PART III: Advanced Concepts of Statistical Filtering Chapter 10: Testing Theory .177 Chapter 11 : Concept Identification: Advanced Tokenization .197 Chapter 12: Fifth-Order Markovian Discrimination .215 Chapter 13: Intelligent Feature Set Reduction .227 Chapter 14: Collaborative Algorithms .241 Appendix: Shining Examples of Filtering .257 Index .275 Join author Jonathan Zdziarski for a look inside the brilliant minds that have conceived clever new ways to fight spam in all its nefarious forms. This landmark title describes, in-depth, how statistical filtering is being used by next-generation spam filters to identify and filter unwanted messages, how spam filtering works, and how language classification and machine learning combine to produce remarkably accurate spam filters. After reading Ending Spam, you'll have a complete understanding of the mathematical approaches used by today's spam filters as well as decoding, tokenization, various algorithms (including Bayesian analysis and Markovian discrimination), and the benefits of using open-source solutions to end spam. Zdziarski interviewed creators of many of the best spam filters and has included their insights in this revealing examination of the anti-spam crusade. If you're a programmer designing a new spam filter, a network admin implementing a spam-filtering solution, or ¡ust someone who's curious about how spam filters work and the tactics spammers use to evade them, Ending Spam will serve as an informative analysis of the war against spammers.
any_adam_object 1
any_adam_object_boolean 1
author Zdziarski, Jonathan
author_facet Zdziarski, Jonathan
author_role aut
author_sort Zdziarski, Jonathan
author_variant j z jz
building Verbundindex
bvnumber BV023289869
callnumber-first T - Technology
callnumber-label TK5105
callnumber-raw TK5105.743
callnumber-search TK5105.743
callnumber-sort TK 45105.743
callnumber-subject TK - Electrical and Nuclear Engineering
classification_rvk ST 276
ctrlnum (OCoLC)58595154
(DE-599)DNB 2005008221
dewey-full 005.7/13
dewey-hundreds 000 - Computer science, information, general works
dewey-ones 005 - Computer programming, programs, data, security
dewey-raw 005.7/13
dewey-search 005.7/13
dewey-sort 15.7 213
dewey-tens 000 - Computer science, information, general works
discipline Informatik
discipline_str_mv Informatik
format Book
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01865nam a2200445zc 4500</leader><controlfield tag="001">BV023289869</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20160113 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">080506s2005 xxua||| |||| 00||| eng d</controlfield><datafield tag="010" ind1=" " ind2=" "><subfield code="a">2005008221</subfield></datafield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">LO 2005008221</subfield><subfield code="2">DE-101</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1593270526</subfield><subfield code="9">1-593-27052-6</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)58595154</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DNB 2005008221</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">xxu</subfield><subfield code="c">US</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-739</subfield><subfield code="a">DE-522</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TK5105.743</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">005.7/13</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ST 276</subfield><subfield code="0">(DE-625)143642:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Zdziarski, Jonathan</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Ending spam</subfield><subfield code="b">Bayesian content filtering and the art of statistical language classification</subfield><subfield code="c">by Jonathan A. Zdziarski</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">San Francisco</subfield><subfield code="b">No Starch Press</subfield><subfield code="c">2005</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XX, 287 S.</subfield><subfield code="b">Ill.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Spam filtering (Electronic mail)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Filters (Mathematics)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Spam filtering (Electronic mail)</subfield><subfield code="x">Computer programs</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Electronic mail systems</subfield><subfield code="x">Security measures</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Spam (Electronic mail)</subfield><subfield code="x">Prevention</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mail-Filter</subfield><subfield code="0">(DE-588)4792631-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Mail-Filter</subfield><subfield code="0">(DE-588)4792631-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Passau</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&amp;doc_library=BVB01&amp;local_base=BVB01&amp;doc_number=016474497&amp;sequence=000013&amp;line_number=0001&amp;func_code=DB_RECORDS&amp;service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Passau</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&amp;doc_library=BVB01&amp;local_base=BVB01&amp;doc_number=016474497&amp;sequence=000014&amp;line_number=0002&amp;func_code=DB_RECORDS&amp;service_type=MEDIA</subfield><subfield code="3">Klappentext</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-016474497</subfield></datafield></record></collection>
id DE-604.BV023289869
illustrated Illustrated
index_date 2024-07-02T20:42:53Z
indexdate 2024-07-09T21:15:04Z
institution BVB
isbn 1593270526
language English
lccn 2005008221
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-016474497
oclc_num 58595154
open_access_boolean
owner DE-739
DE-522
owner_facet DE-739
DE-522
physical XX, 287 S. Ill.
publishDate 2005
publishDateSearch 2005
publishDateSort 2005
publisher No Starch Press
record_format marc
spelling Zdziarski, Jonathan Verfasser aut
Ending spam Bayesian content filtering and the art of statistical language classification by Jonathan A. Zdziarski
San Francisco No Starch Press 2005
XX, 287 S. Ill.
txt rdacontent
n rdamedia
nc rdacarrier
Spam filtering (Electronic mail)
Filters (Mathematics)
Spam filtering (Electronic mail) Computer programs
Electronic mail systems Security measures
Spam (Electronic mail) Prevention
Mail-Filter (DE-588)4792631-4 gnd rswk-swf
Mail-Filter (DE-588)4792631-4 s
DE-604
Digitalisierung UB Passau application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016474497&sequence=000013&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis
Digitalisierung UB Passau application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016474497&sequence=000014&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA Klappentext
spellingShingle Zdziarski, Jonathan
Ending spam Bayesian content filtering and the art of statistical language classification
Spam filtering (Electronic mail)
Filters (Mathematics)
Spam filtering (Electronic mail) Computer programs
Electronic mail systems Security measures
Spam (Electronic mail) Prevention
Mail-Filter (DE-588)4792631-4 gnd
subject_GND (DE-588)4792631-4
title Ending spam Bayesian content filtering and the art of statistical language classification
title_auth Ending spam Bayesian content filtering and the art of statistical language classification
title_exact_search Ending spam Bayesian content filtering and the art of statistical language classification
title_exact_search_txtP Ending spam Bayesian content filtering and the art of statistical language classification
title_full Ending spam Bayesian content filtering and the art of statistical language classification by Jonathan A. Zdziarski
title_fullStr Ending spam Bayesian content filtering and the art of statistical language classification by Jonathan A. Zdziarski
title_full_unstemmed Ending spam Bayesian content filtering and the art of statistical language classification by Jonathan A. Zdziarski
title_short Ending spam
title_sort ending spam bayesian content filtering and the art of statistical language classification
title_sub Bayesian content filtering and the art of statistical language classification
topic Spam filtering (Electronic mail)
Filters (Mathematics)
Spam filtering (Electronic mail) Computer programs
Electronic mail systems Security measures
Spam (Electronic mail) Prevention
Mail-Filter (DE-588)4792631-4 gnd
topic_facet Spam filtering (Electronic mail)
Filters (Mathematics)
Spam filtering (Electronic mail) Computer programs
Electronic mail systems Security measures
Spam (Electronic mail) Prevention
Mail-Filter
url http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016474497&sequence=000013&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA
http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016474497&sequence=000014&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA
work_keys_str_mv AT zdziarskijonathan endingspambayesiancontentfilteringandtheartofstatisticallanguageclassification