A course in functional analysis

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Conway, John B. 1939- (VerfasserIn)
Format: Buch
Sprache:English
Veröffentlicht: New York, NY Springer 2007
Ausgabe:2. ed., [Nachdr.]
Schriftenreihe:Graduate texts in mathematics 96
Schlagworte:
Online-Zugang:Inhaltsverzeichnis
Klappentext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nam a2200000 cb4500
001 BV023246258
003 DE-604
005 20220701
007 t|
008 080408s2007 gw d||| |||| 00||| eng d
020 |a 9780387972459  |9 978-0-387-97245-9 
020 |a 0387972455  |9 0-387-97245-5 
035 |a (OCoLC)254457519 
035 |a (DE-599)BVBBV023246258 
040 |a DE-604  |b ger  |e rakwb 
041 0 |a eng 
044 |a gw  |c DE 
049 |a DE-91G  |a DE-739  |a DE-706  |a DE-703  |a DE-188 
050 0 |a QA320 
082 0 |a 515.7 
084 |a SK 600  |0 (DE-625)143248:  |2 rvk 
084 |a MAT 460f  |2 stub 
100 1 |a Conway, John B.  |d 1939-  |e Verfasser  |0 (DE-588)110699882  |4 aut 
245 1 0 |a A course in functional analysis  |c John B. Conway 
250 |a 2. ed., [Nachdr.] 
264 1 |a New York, NY  |b Springer  |c 2007 
300 |a XVI, 399 S.  |b graph. Darst. 
336 |b txt  |2 rdacontent 
337 |b n  |2 rdamedia 
338 |b nc  |2 rdacarrier 
490 1 |a Graduate texts in mathematics  |v 96 
500 |a Literaturverz. S. 384 - 389 
650 4 |a Funktionalanalysis 
650 4 |a Functional analysis 
650 0 7 |a Hilbert-Raum  |0 (DE-588)4159850-7  |2 gnd  |9 rswk-swf 
650 0 7 |a Funktionalanalysis  |0 (DE-588)4018916-8  |2 gnd  |9 rswk-swf 
650 0 7 |a Banach-Raum  |0 (DE-588)4004402-6  |2 gnd  |9 rswk-swf 
689 0 0 |a Funktionalanalysis  |0 (DE-588)4018916-8  |D s 
689 0 |5 DE-604 
689 1 0 |a Hilbert-Raum  |0 (DE-588)4159850-7  |D s 
689 1 |8 1\p  |5 DE-604 
689 2 0 |a Banach-Raum  |0 (DE-588)4004402-6  |D s 
689 2 |8 2\p  |5 DE-604 
830 0 |a Graduate texts in mathematics  |v 96  |w (DE-604)BV000000067  |9 96 
856 4 2 |m Digitalisierung UB Bayreuth  |q application/pdf  |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016431717&sequence=000003&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA  |3 Inhaltsverzeichnis 
856 4 2 |m Digitalisierung UB Bayreuth  |q application/pdf  |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016431717&sequence=000004&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA  |3 Klappentext 
883 1 |8 1\p  |a cgwrk  |d 20201028  |q DE-101  |u https://d-nb.info/provenance/plan#cgwrk 
883 1 |8 2\p  |a cgwrk  |d 20201028  |q DE-101  |u https://d-nb.info/provenance/plan#cgwrk 
943 1 |a oai:aleph.bib-bvb.de:BVB01-016431717 

Datensatz im Suchindex

DE-BY-TUM_call_number 0048 MAT 460f 2001 A 10975(2,2007)
0104 MAT 460f 2001 A 10975(2,2007)
DE-BY-TUM_katkey 1627958
DE-BY-TUM_location LSB
01
DE-BY-TUM_media_number 040010227228
040010088036
_version_ 1820897413940903936
adam_text Contents Preface vii Preface to the Second Edition xi CHAPTER I Hilbert Spaces §1. Elementary Properties and Examples 1 §2. Orthogonality 7 §3. The Riesz Representation Theorem 1 1 §4. Orthonormal Sets of Vectors and Bases 14 §5. Isomorphic Hilbert Spaces and the Fourier Transform for the Circle 19 §6. The Direct Sum of Hilbert Spaces 23 CHAPTER II Operators on Hilbert Space §1. Elementary Properties and Examples 26 §2. The Adjoint of an Operator 31 §3. Projections and Idempotents; Invariant and Reducing Subspaces 36 §4. Compact Operators 41 §5.* The Diagonalization of Compact Self-Adjoint Operators 46 §6.* An Application: Sturm- Liou ville Systems 49 §7.* The Spectral Theorem and Functional Calculus for Compact Normal Operators 54 §8.· Unitary Equivalence for Compact Normal Operators 60 CHAPTER III Banach Spaces §1. Elementary Properties and Examples 63 §2. Linear Operators on Normed Spaces 67 xiv Contents §3. Finite Dimensional Normed Spaces 69 §4. Quotients and Products of Normed Spaces 70 §5. Linear Functionals 73 §6. The Hahn-Banach Theorem 77 §7. An Application: Banach Limits 82 §8.* An Application: Runge s Theorem 83 §9.* An Application: Ordered Vector Spaces 86 §10. The Dual of a Quotient Space and a Subspace 88 §11. Reflexive Spaces 89 §12. The Open Mapping and Closed Graph Theorems 90 §13. Complemented Subspaces of a Banach Space 93 §14. The Principle of Uniform Boundedness 95 CHAPTER IV Locally Convex Spaces §1. Elementary Properties and Examples 99 §2. Metrizable and Norma ble Locally Convex Spaces 105 §3. Some Geometric Consequences of the Hahn-Banach Theorem 108 §4.* Some Examples of the Dual Space of a Locally Convex Space 114 §5.* Inductive Limits and the Space of Distributions 116 CHAPTER V Weak Topologies §1. Duality 124 §2. The Dual of a Subspace and a Quotient Space 128 §3. Alaoglu s Theorem 130 §4. Reflexivity Revisited 131 §5. Separability and Metrizability 134 §6.· An Application: The Stone-Čech Compactification 137 §7. The Krein-Milman Theorem 141 §8. An Application: The Stone- Weierstrass Theorem 145 §9.· The Schauder Fixed Point Theorem 149 §10.* The Ryll-Nardzewski Fixed Point Theorem 151 §11.* An Application: Haar Measure on a Compact Group 154 §12* The Krein-Smulian Theorem 159 §13.» Weak Compactness 163 CHAPTER VI Linear Operators on a Banach Space §1. The Adjoint of a Linear Operator 166 §2* The Banach-Stone Theorem 171 §3. Compact Operators 173 §4. Invariant Subspaces 178 §5. Weakly Compact Operators 183 Contents Xv CHAPTER VII Banach Algebras and Spectral Theory for Operators on a Banach Space §1. Elementary Properties and Examples 187 §2. Ideals and Quotients 191 §3. The Spectrum 195 §4. The Riesz Functional Calculus 199 §5. Dependence of the Spectrum on the Algebra 205 §6. The Spectrum of a Linear Operator 208 §7. The Spectral Theory of a Compact Operator 214 §8. Abelian Banach Algebras 218 §9.* The Group Algebra of a Locally Compact Abelian Group 223 CHAPTER VIII C*-Algebras §1. Elementary Properties and Examples 232 §2. Abelian C*-Algebras and the Functional Calculus in C -Algebras 236 §3. The Positive Elements in a C -Algebra 240 §4.· Ideals and Quotients of C-Algebras 245 §5.* Representations of C*-Algebras and the Gelfand-Naimark-Segal Construction 248 CHAPTER IX Normal Operators on Hubert Space §1. Spectral Measures and Representations of Abelian C -Algebras 255 §2. The Spectral Theorem 262 §3. Star-Cyclic Normal Operators 268 §4. Some Applications of the Spectral Theorem 271 §5. Topologies on 9ЦЖ) 274 §6. Commuting Operators 276 §7. Abelian von Neumann Algebras 281 §8. The Functional Calculus for Normal Operators: The Conclusion of the Saga 285 §9. Invariant Subspaces for Normal Operators 290 §10. Multiplicity Theory for Normal Operators: A Complete Set of Unitary Invariants 293 CHAPTER X Unbounded Operators §1. Basic Properties and Examples 303 §2. Symmetric and Self-Adjoint Operators 308 §3. The Cayley Transform 316 §4. Unbounded Normal Operators and the Spectral Theorem 319 §5. Stone s Theorem 327 §6. The Fourier Transform and Differentiation 334 §7. Moments 343 xvi Contents CHAPTER XI Fredholm Theory §1. The Spectrum Revisited 347 §2. Fredholm Operators 349 §3. The Fredholm Index 352 §4. The Essential Spectrum 358 §5. The Components of if IF 362 §6. A Finer Analysis of the Spectrum 363 APPENDIX A Preliminaries §1. Linear Algebra 369 §2. Topology 371 APENDIX B The Dual of Π{μ) 375 APPENDIX С The Dual of C0(X) 378 Bibliography 384 List of Symbols 391 Index 395 This book «s an introductory text in functional analysis, aimed at the graduate student with a firm background in integration and measure theory. Unlike many modem treatments, this book begins with the particular and works its way to the more general, helping ttie stu¬ dent to develop an intuitive feel for the subject For example, the author introduces the concept of a Banach space only after having introduced HNbert spaces, and discussing their properties. The stu¬ dent WH also appreciate the large number of examples and exercises which have been »eluded.
any_adam_object 1
author Conway, John B. 1939-
author_GND (DE-588)110699882
author_facet Conway, John B. 1939-
author_role aut
author_sort Conway, John B. 1939-
author_variant j b c jb jbc
building Verbundindex
bvnumber BV023246258
callnumber-first Q - Science
callnumber-label QA320
callnumber-raw QA320
callnumber-search QA320
callnumber-sort QA 3320
callnumber-subject QA - Mathematics
classification_rvk SK 600
classification_tum MAT 460f
ctrlnum (OCoLC)254457519
(DE-599)BVBBV023246258
dewey-full 515.7
dewey-hundreds 500 - Natural sciences and mathematics
dewey-ones 515 - Analysis
dewey-raw 515.7
dewey-search 515.7
dewey-sort 3515.7
dewey-tens 510 - Mathematics
discipline Mathematik
edition 2. ed., [Nachdr.]
format Book
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02334nam a2200553 cb4500</leader><controlfield tag="001">BV023246258</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20220701 </controlfield><controlfield tag="007">t|</controlfield><controlfield tag="008">080408s2007 gw d||| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780387972459</subfield><subfield code="9">978-0-387-97245-9</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0387972455</subfield><subfield code="9">0-387-97245-5</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)254457519</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV023246258</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">gw</subfield><subfield code="c">DE</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91G</subfield><subfield code="a">DE-739</subfield><subfield code="a">DE-706</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-188</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA320</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515.7</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 600</subfield><subfield code="0">(DE-625)143248:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 460f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Conway, John B.</subfield><subfield code="d">1939-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)110699882</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">A course in functional analysis</subfield><subfield code="c">John B. Conway</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">2. ed., [Nachdr.]</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New York, NY</subfield><subfield code="b">Springer</subfield><subfield code="c">2007</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XVI, 399 S.</subfield><subfield code="b">graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Graduate texts in mathematics</subfield><subfield code="v">96</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Literaturverz. S. 384 - 389</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Funktionalanalysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Functional analysis</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Hilbert-Raum</subfield><subfield code="0">(DE-588)4159850-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Funktionalanalysis</subfield><subfield code="0">(DE-588)4018916-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Banach-Raum</subfield><subfield code="0">(DE-588)4004402-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Funktionalanalysis</subfield><subfield code="0">(DE-588)4018916-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Hilbert-Raum</subfield><subfield code="0">(DE-588)4159850-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Banach-Raum</subfield><subfield code="0">(DE-588)4004402-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Graduate texts in mathematics</subfield><subfield code="v">96</subfield><subfield code="w">(DE-604)BV000000067</subfield><subfield code="9">96</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Bayreuth</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&amp;doc_library=BVB01&amp;local_base=BVB01&amp;doc_number=016431717&amp;sequence=000003&amp;line_number=0001&amp;func_code=DB_RECORDS&amp;service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Bayreuth</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&amp;doc_library=BVB01&amp;local_base=BVB01&amp;doc_number=016431717&amp;sequence=000004&amp;line_number=0002&amp;func_code=DB_RECORDS&amp;service_type=MEDIA</subfield><subfield code="3">Klappentext</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-016431717</subfield></datafield></record></collection>
id DE-604.BV023246258
illustrated Illustrated
indexdate 2024-12-23T20:58:50Z
institution BVB
isbn 9780387972459
0387972455
language English
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-016431717
oclc_num 254457519
open_access_boolean
owner DE-91G
DE-BY-TUM
DE-739
DE-706
DE-703
DE-188
owner_facet DE-91G
DE-BY-TUM
DE-739
DE-706
DE-703
DE-188
physical XVI, 399 S. graph. Darst.
publishDate 2007
publishDateSearch 2007
publishDateSort 2007
publisher Springer
record_format marc
series Graduate texts in mathematics
series2 Graduate texts in mathematics
spellingShingle Conway, John B. 1939-
A course in functional analysis
Graduate texts in mathematics
Funktionalanalysis
Functional analysis
Hilbert-Raum (DE-588)4159850-7 gnd
Funktionalanalysis (DE-588)4018916-8 gnd
Banach-Raum (DE-588)4004402-6 gnd
subject_GND (DE-588)4159850-7
(DE-588)4018916-8
(DE-588)4004402-6
title A course in functional analysis
title_auth A course in functional analysis
title_exact_search A course in functional analysis
title_full A course in functional analysis John B. Conway
title_fullStr A course in functional analysis John B. Conway
title_full_unstemmed A course in functional analysis John B. Conway
title_short A course in functional analysis
title_sort a course in functional analysis
topic Funktionalanalysis
Functional analysis
Hilbert-Raum (DE-588)4159850-7 gnd
Funktionalanalysis (DE-588)4018916-8 gnd
Banach-Raum (DE-588)4004402-6 gnd
topic_facet Funktionalanalysis
Functional analysis
Hilbert-Raum
Banach-Raum
url http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016431717&sequence=000003&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA
http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016431717&sequence=000004&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA
volume_link (DE-604)BV000000067
work_keys_str_mv AT conwayjohnb acourseinfunctionalanalysis