Nodal discontinuous Galerkin methods algorithms, analysis, and applications

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Hesthaven, Jan S. (VerfasserIn), Warburton, Tim (VerfasserIn)
Format: Buch
Sprache:English
Veröffentlicht: New York, NY Springer 2008
Schriftenreihe:Texts in applied mathematics 54
Schlagworte:
Online-Zugang:Inhaltsverzeichnis
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nam a2200000 cb4500
001 BV023234829
003 DE-604
005 20200309
007 t
008 080402s2008 |||| |||| 00||| eng d
015 |a 07,N16,0680  |2 dnb 
016 7 |a 983611440  |2 DE-101 
020 |a 9780387720654  |c Gb. (Pr. in Vorb.)  |9 978-0-387-72065-4 
020 |a 9780387720678  |c ebook  |9 978-0-387-72067-8 
020 |a 0387720650  |c Gb. (Pr. in Vorb.)  |9 0-387-72065-0 
024 3 |a 9780387720654 
028 5 2 |a 11798514 
035 |a (OCoLC)191889938 
035 |a (DE-599)DNB983611440 
040 |a DE-604  |b ger  |e rakddb 
041 0 |a eng 
049 |a DE-29T  |a DE-91G  |a DE-384  |a DE-703  |a DE-11  |a DE-83  |a DE-706  |a DE-634  |a DE-19  |a DE-20 
050 0 |a TA347.F5 
082 0 |a 515.353  |2 22 
084 |a SK 920  |0 (DE-625)143272:  |2 rvk 
084 |a 65M60  |2 msc 
084 |a MAT 674f  |2 stub 
084 |a 510  |2 sdnb 
100 1 |a Hesthaven, Jan S.  |e Verfasser  |0 (DE-588)140381619  |4 aut 
245 1 0 |a Nodal discontinuous Galerkin methods  |b algorithms, analysis, and applications  |c Jan S. Hesthaven ; Tim Warburton 
264 1 |a New York, NY  |b Springer  |c 2008 
300 |a XIV, 500 Seiten  |b graphische Darstellungen 
336 |b txt  |2 rdacontent 
337 |b n  |2 rdamedia 
338 |b nc  |2 rdacarrier 
490 1 |a Texts in applied mathematics  |v 54 
650 4 |a Differential equations, Partial 
650 4 |a Finite element method 
650 4 |a Galerkin methods 
650 0 7 |a Partielle Differentialgleichung  |0 (DE-588)4044779-0  |2 gnd  |9 rswk-swf 
650 0 7 |a Galerkin-Methode  |0 (DE-588)4155831-5  |2 gnd  |9 rswk-swf 
650 0 7 |a Diskontinuierliche Galerkin-Methode  |0 (DE-588)4588309-9  |2 gnd  |9 rswk-swf 
689 0 0 |a Diskontinuierliche Galerkin-Methode  |0 (DE-588)4588309-9  |D s 
689 0 1 |a Partielle Differentialgleichung  |0 (DE-588)4044779-0  |D s 
689 0 |5 DE-604 
689 1 0 |a Galerkin-Methode  |0 (DE-588)4155831-5  |D s 
689 1 |8 1\p  |5 DE-604 
700 1 |a Warburton, Tim  |e Verfasser  |4 aut 
830 0 |a Texts in applied mathematics  |v 54  |w (DE-604)BV002476038  |9 54 
856 4 2 |m HBZ Datenaustausch  |q application/pdf  |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016420464&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA  |3 Inhaltsverzeichnis 
999 |a oai:aleph.bib-bvb.de:BVB01-016420464 
883 1 |8 1\p  |a cgwrk  |d 20201028  |q DE-101  |u https://d-nb.info/provenance/plan#cgwrk 

Datensatz im Suchindex

DE-BY-TUM_call_number 0102/MAT 674 2008 A 4415
DE-BY-TUM_katkey 1632969
DE-BY-TUM_media_number 040010815162
_version_ 1816712792774803456
adam_text Contents 1 Introduction 1 1.1 A brief account of history 10 1.2 Summary of the chapters 13 1.3 On the use and abuse of the Matlab codes 16 1.4 Scope of text and audience 16 2 The key ideas 19 2.1 Briefly on notation 19 2.2 Basic elements of the schemes 20 2.2.1 The first schemes 20 2.2.2 An alternative viewpoint 29 2.3 Toward more general formulations 31 2.4 Interlude on linear hyperbolic problems 34 2.5 Exercises 39 3 Making it work in one dimension 43 3.1 Legendre polynomials and nodal elements 43 3.2 Elementwise operations 51 3.3 Getting the grid together and computing the metric 56 3.4 Dealing with time 63 3.5 Putting it all together 64 3.6 Maxwell s equations 67 3.7 Exercises 72 4 Insight through theory 75 4.1 A bit more notation 75 4.2 Briefly on convergence 76 4.3 Approximations by orthogonal polynomials and consistency ... 77 4.4 Stability 83 4.5 Error estimates and error boundedness 85 4.6 Dispersive properties 88 XII Contents 4.7 Discrete stability and timestep choices 93 4.8 Taming the CFL condition 97 4.8.1 Improvements by mapping techniques 98 4.8.2 Filtering by co-volume grids 102 4.8.3 Local timestepping 108 4.9 Exercises 112 5 Nonlinear problems 115 5.1 Conservation laws 115 5.2 The basic schemes and their properties 118 5.3 Aliasing, instabilities, and filter stabilization 123 5.4 Problems on nonconservative form 134 5.5 Error estimates for nonlinear problems with smooth solutions . 135 5.6 Problems with discontinuous solutions 136 5.6.1 Filtering 139 5.6.2 Limiting 145 5.7 Strong stability-preserving Runge-Kutta methods 157 5.8 A few general results 160 5.9 The Euler equations of compressible gas dynamics 161 5.10 Exercises 165 6 Beyond one dimension 169 6.1 Modes and nodes in two dimensions 171 6.2 Elementwise operations 183 6.3 Assembling the grid 190 6.4 Timestepping and boundary conditions 197 6.5 Maxwell s equations 200 6.6 Compressible gas dynamics 206 6.6.1 Variational crimes, aliasing, filtering, and cubature integration 210 6.6.2 Numerical fluxes revisited 217 6.6.3 Limiters in two dimensions 224 6.7 A few theoretical results 236 6.8 Exercises 239 7 Higher-order equations 243 7.1 Higher-order time-dependent problems 245 7.1.1 The heat equation 245 7.1.2 Extensions to mixed and higher-order problems 255 7.2 Elliptic problems 261 7.2.1 Two-dimensional Poisson and Helmholtz equations .... 275 7.2.2 A look at basic theoretical properties 287 7.3 Intermission of solving linear systems 296 7.3.1 Direct methods 297 7.3.2 Iterative methods 299 Contents XIII 7.4 The incompressible Navier-Stokes equations 300 7.4.1 Temporal splitting scheme 301 7.4.2 The spatial discretization 302 7.4.3 Benchmarks and validations 308 7.5 The compressible Navier-Stokes equations 314 7.5.1 Integration-based gradient, divergence, and jump operators 316 7.5.2 Solver for the compressible Navier-Stokes equations of gas dynamics 319 7.5.3 A few test cases 326 7.6 Exercises 327 8 Spectral properties of discontinuous Galerkin operators.... 331 8.1 The Laplace eigenvalue problem 334 8.1.1 Impact of the penalty parameter on the spectrum 338 8.2 The Maxwell eigenvalue problem 342 8.2.1 The two-dimensional eigenvalue problem 348 8.2.2 The three-dimensional eigenproblem 367 8.2.3 Consequences in the time domain 370 9 Curvilinear elements and nonconforming discretizations . .. 373 9.1 Isoparametric curvilinear elements 373 9.1.1 Forming the curvilinear element 375 9.1.2 Building operators on curvilinear elements 378 9.1.3 Maxwell s equations on meshes with curvilinear elements 383 9.2 Nonconforming discretizations 386 9.2.1 Nonconforming element refinement 387 9.2.2 Nonconforming order refinement 396 9.3 Exercises 405 10 Into the third dimension 407 10.1 Modes and nodes in three dimensions 409 10.2 Elementwise operations 418 10.3 Assembling the grid 425 10.4 Briefly on timestepping 432 10.5 Maxwell s equations 432 10.6 Three-dimensional Poisson equation 437 10.7 Exercises 441 A Appendix A: Jacobi polynomials and beyond 445 A.I Orthonormal polynomials beyond one dimension 448 B Appendix B: Briefly on grid generation 451 B.I Fundamentals 453 B.2 Creating boundary maps 457 XIV Contents C Appendix C: Software, variables, and helpful scripts 461 C.I List of important variables defined in the codes 461 C.2 List of additional useful scripts 465 References 473 Index 495
adam_txt Contents 1 Introduction 1 1.1 A brief account of history 10 1.2 Summary of the chapters 13 1.3 On the use and abuse of the Matlab codes 16 1.4 Scope of text and audience 16 2 The key ideas 19 2.1 Briefly on notation 19 2.2 Basic elements of the schemes 20 2.2.1 The first schemes 20 2.2.2 An alternative viewpoint 29 2.3 Toward more general formulations 31 2.4 Interlude on linear hyperbolic problems 34 2.5 Exercises 39 3 Making it work in one dimension 43 3.1 Legendre polynomials and nodal elements 43 3.2 Elementwise operations 51 3.3 Getting the grid together and computing the metric 56 3.4 Dealing with time 63 3.5 Putting it all together 64 3.6 Maxwell's equations 67 3.7 Exercises 72 4 Insight through theory 75 4.1 A bit more notation 75 4.2 Briefly on convergence 76 4.3 Approximations by orthogonal polynomials and consistency . 77 4.4 Stability " 83 4.5 Error estimates and error boundedness 85 4.6 Dispersive properties 88 XII Contents 4.7 Discrete stability and timestep choices 93 4.8 Taming the CFL condition 97 4.8.1 Improvements by mapping techniques 98 4.8.2 Filtering by co-volume grids 102 4.8.3 Local timestepping 108 4.9 Exercises 112 5 Nonlinear problems 115 5.1 Conservation laws 115 5.2 The basic schemes and their properties 118 5.3 Aliasing, instabilities, and filter stabilization 123 5.4 Problems on nonconservative form 134 5.5 Error estimates for nonlinear problems with smooth solutions . 135 5.6 Problems with discontinuous solutions 136 5.6.1 Filtering 139 5.6.2 Limiting 145 5.7 Strong stability-preserving Runge-Kutta methods 157 5.8 A few general results 160 5.9 The Euler equations of compressible gas dynamics 161 5.10 Exercises 165 6 Beyond one dimension 169 6.1 Modes and nodes in two dimensions 171 6.2 Elementwise operations 183 6.3 Assembling the grid 190 6.4 Timestepping and boundary conditions 197 6.5 Maxwell's equations 200 6.6 Compressible gas dynamics 206 6.6.1 Variational crimes, aliasing, filtering, and cubature integration 210 6.6.2 Numerical fluxes revisited 217 6.6.3 Limiters in two dimensions 224 6.7 A few theoretical results 236 6.8 Exercises 239 7 Higher-order equations 243 7.1 Higher-order time-dependent problems 245 7.1.1 The heat equation 245 7.1.2 Extensions to mixed and higher-order problems 255 7.2 Elliptic problems 261 7.2.1 Two-dimensional Poisson and Helmholtz equations . 275 7.2.2 A look at basic theoretical properties 287 7.3 Intermission of solving linear systems 296 7.3.1 Direct methods 297 7.3.2 Iterative methods 299 Contents XIII 7.4 The incompressible Navier-Stokes equations 300 7.4.1 Temporal splitting scheme 301 7.4.2 The spatial discretization 302 7.4.3 Benchmarks and validations 308 7.5 The compressible Navier-Stokes equations 314 7.5.1 Integration-based gradient, divergence, and jump operators 316 7.5.2 Solver for the compressible Navier-Stokes equations of gas dynamics 319 7.5.3 A few test cases 326 7.6 Exercises 327 8 Spectral properties of discontinuous Galerkin operators. 331 8.1 The Laplace eigenvalue problem 334 8.1.1 Impact of the penalty parameter on the spectrum 338 8.2 The Maxwell eigenvalue problem 342 8.2.1 The two-dimensional eigenvalue problem 348 8.2.2 The three-dimensional eigenproblem 367 8.2.3 Consequences in the time domain 370 9 Curvilinear elements and nonconforming discretizations . . 373 9.1 Isoparametric curvilinear elements 373 9.1.1 Forming the curvilinear element 375 9.1.2 Building operators on curvilinear elements 378 9.1.3 Maxwell's equations on meshes with curvilinear elements 383 9.2 Nonconforming discretizations 386 9.2.1 Nonconforming element refinement 387 9.2.2 Nonconforming order refinement 396 9.3 Exercises 405 10 Into the third dimension 407 10.1 Modes and nodes in three dimensions 409 10.2 Elementwise operations 418 10.3 Assembling the grid 425 10.4 Briefly on timestepping 432 10.5 Maxwell's equations 432 10.6 Three-dimensional Poisson equation 437 10.7 Exercises 441 A Appendix A: Jacobi polynomials and beyond 445 A.I Orthonormal polynomials beyond one dimension 448 B Appendix B: Briefly on grid generation 451 B.I Fundamentals 453 B.2 Creating boundary maps 457 XIV Contents C Appendix C: Software, variables, and helpful scripts 461 C.I List of important variables defined in the codes 461 C.2 List of additional useful scripts 465 References 473 Index 495
any_adam_object 1
any_adam_object_boolean 1
author Hesthaven, Jan S.
Warburton, Tim
author_GND (DE-588)140381619
author_facet Hesthaven, Jan S.
Warburton, Tim
author_role aut
aut
author_sort Hesthaven, Jan S.
author_variant j s h js jsh
t w tw
building Verbundindex
bvnumber BV023234829
callnumber-first T - Technology
callnumber-label TA347
callnumber-raw TA347.F5
callnumber-search TA347.F5
callnumber-sort TA 3347 F5
callnumber-subject TA - General and Civil Engineering
classification_rvk SK 920
classification_tum MAT 674f
ctrlnum (OCoLC)191889938
(DE-599)DNB983611440
dewey-full 515.353
dewey-hundreds 500 - Natural sciences and mathematics
dewey-ones 515 - Analysis
dewey-raw 515.353
dewey-search 515.353
dewey-sort 3515.353
dewey-tens 510 - Mathematics
discipline Mathematik
discipline_str_mv Mathematik
format Book
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02421nam a2200589 cb4500</leader><controlfield tag="001">BV023234829</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20200309 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">080402s2008 |||| |||| 00||| eng d</controlfield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">07,N16,0680</subfield><subfield code="2">dnb</subfield></datafield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">983611440</subfield><subfield code="2">DE-101</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780387720654</subfield><subfield code="c">Gb. (Pr. in Vorb.)</subfield><subfield code="9">978-0-387-72065-4</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780387720678</subfield><subfield code="c">ebook</subfield><subfield code="9">978-0-387-72067-8</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0387720650</subfield><subfield code="c">Gb. (Pr. in Vorb.)</subfield><subfield code="9">0-387-72065-0</subfield></datafield><datafield tag="024" ind1="3" ind2=" "><subfield code="a">9780387720654</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">11798514</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)191889938</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DNB983611440</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-29T</subfield><subfield code="a">DE-91G</subfield><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-11</subfield><subfield code="a">DE-83</subfield><subfield code="a">DE-706</subfield><subfield code="a">DE-634</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-20</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TA347.F5</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515.353</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 920</subfield><subfield code="0">(DE-625)143272:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">65M60</subfield><subfield code="2">msc</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 674f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">510</subfield><subfield code="2">sdnb</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Hesthaven, Jan S.</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)140381619</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Nodal discontinuous Galerkin methods</subfield><subfield code="b">algorithms, analysis, and applications</subfield><subfield code="c">Jan S. Hesthaven ; Tim Warburton</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New York, NY</subfield><subfield code="b">Springer</subfield><subfield code="c">2008</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XIV, 500 Seiten</subfield><subfield code="b">graphische Darstellungen</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Texts in applied mathematics</subfield><subfield code="v">54</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Differential equations, Partial</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Finite element method</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Galerkin methods</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Partielle Differentialgleichung</subfield><subfield code="0">(DE-588)4044779-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Galerkin-Methode</subfield><subfield code="0">(DE-588)4155831-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Diskontinuierliche Galerkin-Methode</subfield><subfield code="0">(DE-588)4588309-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Diskontinuierliche Galerkin-Methode</subfield><subfield code="0">(DE-588)4588309-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Partielle Differentialgleichung</subfield><subfield code="0">(DE-588)4044779-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Galerkin-Methode</subfield><subfield code="0">(DE-588)4155831-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Warburton, Tim</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Texts in applied mathematics</subfield><subfield code="v">54</subfield><subfield code="w">(DE-604)BV002476038</subfield><subfield code="9">54</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HBZ Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&amp;doc_library=BVB01&amp;local_base=BVB01&amp;doc_number=016420464&amp;sequence=000002&amp;line_number=0001&amp;func_code=DB_RECORDS&amp;service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-016420464</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection>
id DE-604.BV023234829
illustrated Not Illustrated
index_date 2024-07-02T20:21:33Z
indexdate 2024-11-25T17:26:05Z
institution BVB
isbn 9780387720654
9780387720678
0387720650
language English
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-016420464
oclc_num 191889938
open_access_boolean
owner DE-29T
DE-91G
DE-BY-TUM
DE-384
DE-703
DE-11
DE-83
DE-706
DE-634
DE-19
DE-BY-UBM
DE-20
owner_facet DE-29T
DE-91G
DE-BY-TUM
DE-384
DE-703
DE-11
DE-83
DE-706
DE-634
DE-19
DE-BY-UBM
DE-20
physical XIV, 500 Seiten graphische Darstellungen
publishDate 2008
publishDateSearch 2008
publishDateSort 2008
publisher Springer
record_format marc
series Texts in applied mathematics
series2 Texts in applied mathematics
spellingShingle Hesthaven, Jan S.
Warburton, Tim
Nodal discontinuous Galerkin methods algorithms, analysis, and applications
Texts in applied mathematics
Differential equations, Partial
Finite element method
Galerkin methods
Partielle Differentialgleichung (DE-588)4044779-0 gnd
Galerkin-Methode (DE-588)4155831-5 gnd
Diskontinuierliche Galerkin-Methode (DE-588)4588309-9 gnd
subject_GND (DE-588)4044779-0
(DE-588)4155831-5
(DE-588)4588309-9
title Nodal discontinuous Galerkin methods algorithms, analysis, and applications
title_auth Nodal discontinuous Galerkin methods algorithms, analysis, and applications
title_exact_search Nodal discontinuous Galerkin methods algorithms, analysis, and applications
title_exact_search_txtP Nodal discontinuous Galerkin methods algorithms, analysis, and applications
title_full Nodal discontinuous Galerkin methods algorithms, analysis, and applications Jan S. Hesthaven ; Tim Warburton
title_fullStr Nodal discontinuous Galerkin methods algorithms, analysis, and applications Jan S. Hesthaven ; Tim Warburton
title_full_unstemmed Nodal discontinuous Galerkin methods algorithms, analysis, and applications Jan S. Hesthaven ; Tim Warburton
title_short Nodal discontinuous Galerkin methods
title_sort nodal discontinuous galerkin methods algorithms analysis and applications
title_sub algorithms, analysis, and applications
topic Differential equations, Partial
Finite element method
Galerkin methods
Partielle Differentialgleichung (DE-588)4044779-0 gnd
Galerkin-Methode (DE-588)4155831-5 gnd
Diskontinuierliche Galerkin-Methode (DE-588)4588309-9 gnd
topic_facet Differential equations, Partial
Finite element method
Galerkin methods
Partielle Differentialgleichung
Galerkin-Methode
Diskontinuierliche Galerkin-Methode
url http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016420464&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA
volume_link (DE-604)BV002476038
work_keys_str_mv AT hesthavenjans nodaldiscontinuousgalerkinmethodsalgorithmsanalysisandapplications
AT warburtontim nodaldiscontinuousgalerkinmethodsalgorithmsanalysisandapplications