Data warehousing and mining concepts, methodologies, tools, and applications 1

Gespeichert in:
Bibliographische Detailangaben
Format: Buch
Sprache:English
Veröffentlicht: Hershey, Pa. [u.a.] Information Science Reference (2008)
Schriftenreihe:Premier reference source
Online-Zugang:Inhaltsverzeichnis
Klappentext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nam a2200000 cc4500
001 BV023211008
003 DE-604
005 20080701
007 t|
008 080312s2008 xxuad|| |||| 00||| eng d
035 |a (OCoLC)635127953 
035 |a (DE-599)BVBBV023211008 
040 |a DE-604  |b ger  |e rakwb 
041 0 |a eng 
044 |a xxu  |c US 
049 |a DE-355  |a DE-384 
245 1 0 |a Data warehousing and mining  |b concepts, methodologies, tools, and applications  |n 1  |c John Wang [ed.] 
264 1 |a Hershey, Pa. [u.a.]  |b Information Science Reference  |c (2008) 
300 |a LXXI, 590, 20 S.  |b Ill., graph. Darst. 
336 |b txt  |2 rdacontent 
337 |b n  |2 rdamedia 
338 |b nc  |2 rdacarrier 
490 0 |a Premier reference source 
700 1 |a Wang, John  |d 1955-  |e Sonstige  |0 (DE-588)132281031  |4 oth 
773 0 8 |w (DE-604)BV023211000  |g 1 
856 4 2 |m Digitalisierung UB Regensburg  |q application/pdf  |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016397069&sequence=000003&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA  |3 Inhaltsverzeichnis 
856 4 2 |m Digitalisierung UB Regensburg  |q application/pdf  |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016397069&sequence=000004&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA  |3 Klappentext 
943 1 |a oai:aleph.bib-bvb.de:BVB01-016397069 

Datensatz im Suchindex

_version_ 1819576773147361280
adam_text Contents by Volume Volume I Section 1. Fundamental Concepts and Theories This section serves as the foundation for this exhaustive reference tool by addressing crucial theories essential to the understanding of data mining and warehousing. Chapters found within these pages provide an excellent framework in which to position data mining and warehousing within the field of information science and technology, individual contributions provide insight into the critical incorpo¬ ration of data mining and warehousing in the global community and explore crucial stumbling blocks of this field. Within this introductory section, the reader can learn and choose from a compendium of expert research on the elemental theories underscoring the research and application of data mining and warehousing. Chapter 1.1. Administering and Managing a Data Warehouse / James E. Yao, Chang Liu, QiyangChen, and June Lu .........................................................................1 Chapter 1.2. Knowledge Structure and Data Mining Techniques / Rick L. Wilson, Peter A. Rosen, and Mohammad SaadAl-Ahmadi ...............................................................................9 Chapter 1.3. Physical Data Warehousing Design / Ladjel Bellatreche and Mukesh Mohania ........................................................................................... 18 Chapter 1.4. Introduction to Data Mining Techniques via Multiple Criteria Optimization Approaches and Applications / Yong Shi, Yi Peng, Gang Кои, and Zhengxin Chen ..........................26 Chapter 1.5. Privacy-Preserving Data Mining on the Web: Foundations and Techniques / Stanley R. M. Oliveira and Osmar R. Zafane .....................................................................................50 Chapter 1.6. Multi-Label Classification: An Overview / Grigorios Tsoumakas and Loamtis Katakis ..................................................................................................................................64 Chapter 1.7. Online Data Mining / Héctor Oscar Nigro and Sandra Elizabeth Gonzalez Cisara .....................................................................................................75 Chapter 1.8. A Look Back at the PAKDD Data Mining Competition 2006 / Nathaniel B. Nortel and Chew Lim Tan..............................................................................................84 Chapter 1.9. Introduction to Data Mining in Bioinformatics / Hui-Hnang Hsu .................................93 Chapter 1.10. Algorithmic Aspects of Protein Threading/ Tatsuya Akutsu ......................................103 Chapter 1.11. A Tutorial on Hierarchical Classification with Applications in Bioinformatics I Alex Freitas and André C.P.L.F. de Carvalho......................................................... 119 Chapter 1.12. Introduction to Data Mining and its Applications to Manufacturing / Jose D. Montero ................................................................................................................................146 Chapter 1.13. Data Warehousing and OLAP/ Jose Hernandez-Orallo ............................................169 Chapter 1.14. Data Warehousing, Multi-Dimensional Data Models and OLAP/ Prasad M. Deshpande and Karthikeyan Ramasamy ........................................................................179 Chapter 1.15. A Literature Overview of Fuzzy Database Modeling/ Z M. Ma ...............................187 Chapter 1.16. Conceptual Modeling Solutions for the Data Warehouse / Stefano Rizzi.................. 208 Chapter 1.17. Pattern Comparison in Data Mining: A Survey / Irene Ntoutsi, Nikos Pelekis, and Yannis Theodoridis .............................................................................................228 Chapter 1.18. Pattern Mining and Clustering on Image Databases / Marmette BoueU Pierre Gançarski, and Marie-Aude Anfaure, and Omar Boussaid ...................................................254 Chapter 1.19. Conceptual Data Modeling Patterns: Representation and Validation / Dinesh Batra ...........................................................................................................280 Chapter 1.20. Mining Association Rules in Data Warehouses / Haorianto Cokrowijoyo Tjioe and David Tuniar ..............................................................................303 Chapter 1.21. Exception Rules in Data Mining / Olena Daly and Danid Taniar .............................336 Chapter 1.22. Process-Based Data Mining/ Karim K. Hirji ............................................................343 Chapter 1.23. Integration of Data Sources through Data Mining / Andreas Koeller ........................350 Chapter 1.24. Ensemble Data Mining Methods / Nikunj C. Oza ......................................................356 Chapter 1.25. Evaluation of Data Mining Methods / Paolo Giudici ................................................364 Chapter 1.26. Discovering an Effective Measure in Data Mining/ Tukao Ito.................................. 371 Chapter 1.27. Data Warehousing and Data Mining Lessons and EC Companies / Neerja Sethi and Vij ay Sethi ..............................................................................................................381 Chapter 1.28. Best Practices in Data Warehousing from the Federal Perspective/ Les Pang ......................................................................................................................389 Chapter 1.29. Decision Support and Data Warehousing: Challenges of a Global Information Environment/Alexander Anisimo v ..............................................................................397 Chapter 1.30. An Experimental Replication with Data Warehouse Metrics / Manuel Serrano, Coral Calero, and Mario Piattini .........................................................................408 Chapter 1.31. Data Warehousing Solutions for Reporting Problems / Juha Kontio .........................429 Section 2. Development and Design Methodologies This section provides in-depth coverage of conceptual architecture, enabling the reader to gain a com¬ prehensive unders landing of the emergingtechnologicaldevelopments within thefieldof dataminingand warehousing. Research fundamentals imperative to the understanding of developmental processes within information management are offered. From broad examinations to specific discussions on electronic tools, the research found within this section spans the discipline while also offering detailed, specific discussions. Basic designs, as well as abstract developments, are explained within these chapters, and frameworks for implementing secure data warehouses are explored. Chapter 2.1. A Multi-Agent Approach to Collaborative Knowledge Production / Juan Manuel Dodero, Paloma Díaz, and Ignacio Aedo................................................................... 438 Chapter 2.2. A Framework for Organizational Data Analysis and Organizational Data Mining / Bernd Knobloc h .........................................................................................................449 Chapter 2.3. Rule-Based Parsing for Web Data Extraction / David Camacho, Ricardo A¡er, and Juan Cuadrado ....................................................................................................469 Chapter 2.4. Conceptual and Systematic Design Approach for XML Document Warehouses / Vicky Nassis, R. Rajugan, Tharam S. Dillon, and Wenny Rahayu ....................................................485 Chapter 2.5. A Framework for Efficient Association Rule Mining in XML Data / Ji Zhang, Han Liu. Tok Wang Ling. Robert M. Bruckner, and A. Min Tjoa .....................................509 Chapter 2.6. A Methodology for Building XML Data Warehouses / Laura Irina Rusu, J. Wenny Rahayu. and David Taniar .................................................................................................530 Chapter 2.7. Applying UML for Modeling the Physical Design of Data Warehouses / Sergio Lujan-Mora and Juan Trujillo ...............................................................................................556 Volume II Chapter 2.8. Physical Modeling of Data Warehouses Using UML Component and Deployment Diagrams: Design and Implementation Issues / Sergio Lujan-Mora and Juan Trujillo ...............................................................................................................................591 Chapter 2.9. GeoCache: A Cache for GML Geographical Data / Lionel Savary, Georges Gardarin, and Karine Zeitouni ...........................................................................................622 Chapter 2.10. A Java Technology Based Distributed Software Architecture for Web Usage Mining / Juan M. Hernansáez, Juan A. Bolia, and Antonio EG. Skarmeta ..........................642 Chapter 2.11. Spatial Data Warehouse Modelling / Maria Luisa Damiani and Stefano Spaccapietra ........................................................................................................................659 Chapter 2.12. Designing Secure Data Warehouses / Rodolfo Villarroel, Eduardo Fernández-Medina, Juan Trujillo, and Mario Piattini ......................................................679 Chapter 2.13. Privacy-Preserving Data Mining: Development and Directions / Bhavuni Thuraisingham ....................................................................................................................693 Chapter 2.14. A Service Discovery Model for Mobile Agent-Based Distributed Data Mining / Xining Li, Lei Song ....................................................................................................705 Chapter 2.15. Node Partitioned Data Warehouses: Experimental Evidence and Improvements / Pedro Furtado .........................................................................................................718 Chapter 2.16. Managing Late Measurements in Data Warehouses / Matteo Golfarelli and Stefano Rizzi.................................................................................................. 738 Chapter 2.17. Toward a Grid-Based Zero-Latency Data Warehousing Implementation for Continuous Data Streams Processing / Tho Manh Nguyen, Peter Brezany, A. Min Tjoa, and Edgar Weippl ................................................................................755 Chapter 2.18. Data Warehouse Design to Support Customer Relationship Management Analyses / Colleen Cunningham, Il-Yeol Song, and Peter P. Chen ............................787 Chapter 2.19. An Information-Theoretic Framework for Process Structure and Data Mining / Gianluigi Greco, Antonella Guzzo, and Luigi Pontieri............................................. 810 Chapter 2.20. Domain-Driven Data Mining: A Practical Methodology / Longhing Cao and Chengqi Zhang ...................................................................................................93 j Chapter 2.21. Metric Methods in Data Mining I Dan A. Simovici ....................................................849 Chapter 2.22. Mining Geo-Referenced Databases: A Way to Improve Decision-Making / Maribel Yasmina Santos and Luis Alfredo Amaral ...........................................................................880 Chapter 2.23. Ontology-Based Construction of Grid Data Mining Workflows / Peter Brezany, Ivan Janeiak, and A. Min Tjoa .................................................................................913 Chapter 2.24. Exploratory Time Series Data Mining by Genetic Clustering / T. Warren Liao ...................................................................................................................................942 Chapter 2.25. Two Rough Set Approaches to Mining Hop Extraction Data/ Jerzy W. Grzymala-Busse , Zdzisław S. Hippe, Teresa Mroczek, Edward Roj, and Bolesław Skowronski ..................................................................................................................963 Chapter 2.26. Semantics-Aware Advanced OLAP Visualization of Multidimensional Data Cubes I Alfredo Cuzzocrea, Domenico Sacca, and Paolo Serafino .........................................974 Chapter 2.27. A Presentation Model and Non-Traditional Visualization for OLAP / Andreas Maniatis, Panos Vassiliadis, Spiros Skiadopoulos, Yunnis Vassiliou, George Mavrogonatos, and Ilias Michalarias ................................................................................1004 Chapter 2.28. An Ontology-Based Data Mediation Framework for Semantic Environments / Adrian Mocan and Emilia С impian ...................................................................... 1037 Chapter 2.29. Engineering Conceptual Data Models from Domain Ontologies: A Critical Evaluation / Haya El-Ghalayini, Mohammed Odeh, and Richard McClatchey ............1068 Chapter 2.30. Data Mining of Bayesian Network Structure Using a Semantic Genetic Algorithm-Based Approach I Sachin Shetty, Min Song, and Mansoor Alam................................. 1081 Chapter 2.31. A Bayesian Framework for Improving Clustering Accuracy of Protein Sequences Based on Association Rules / Peng- Yeng Yin, Shyong-Jian Shyu, Guan-Shieng Huang, andShuang-Te Liao .....................................................................................1091 Chapter 2.32. Improving Classification Accuracy of Decision Trees for Different Abstraction Levels of Data/ Mina Jeong and Doheon Lee .............................................................1103 Chapter 2.33. Improving Similarity Search in Time Series Using Wavelets / loannis Liabotis, Babis Theodoulidis, and Mohamad Saraee ......................................................... Π 16 Chapter 2.34. Cluster-Based Input Selection for Transparant Fuzzy Modeling / Can Yang, Jun Meng, andShanan Zhu ............................................................................................1138 Chapter 2.35. Combinatorial Fusion Analysis: Methods and Practices of Combining Multiple Scoring Systems / D. Frank Hsu, Yun-Sheng Chung, and Bruce S. Kristal .....................1157 Chapter 2.36. Databases Modeling of Engineering Information /Ζ. M. Ma ................................... 1 182 Volume III Chapter 2.37. Novel Efficient Classifiers Based on Data Cube / Lixin Fu .....................................1205 Chapter 2.38. Partially Supervised Classification: Based on Weighted Unlabeled Samples Support Vector Machine / ZhigangLiu, Wenzhong Shi, Deren Li, andQianqing Qin ...........................................................................................................1216 Chapter 2.39. Periodic Streaming Data Reduction Using Flexible Adjustment of Time Section Size / Jae hoon Kim andSeog Park ..........................................................................1231 Chapter 2.40. Hybrid Query and Data Ordering for Fast and Progressive Range-Aggregate Query Answering / Cyrus Shahabi, Mehrdad Jahangiri, and Dimitris Sacharíais .........................................................................................................................1250 Chapter 2.41. Linguistic Rule Extraction from Support Vector Machine Classifiers / XiujuFu, Lipo Wang, GihGuang Hung, and Liping Goh ...............................................................1269 Chapter 2.42. Preference-Based Frequent Pattern Mining / Moonjung Cho, Jian Pei, Haixun Wang, and Wei Wang ..........................................................................................................1280 Section 3. Tools and Technologies This section presents extensive coverage of the interaction between data mining and warehousing and various tools and technologies that researchers, practitioners, and students alike can implement in their daily lives. These chapters educate readers about fundamental tools such as the Internet and mobile technology, while also providing insight into new and upcoming technologies, theories, and instruments that will soon be commonplace. Within these rigorously researched chapters, readers are presented with countless examples of the tools and technologies essential to the field of data mining and warehousing. In addition, the successful implementation and resulting impact of these various tools and technologies are discussed within this collection of chapters. Chapter 3.1. Algorithms for Data Mining / Tadao Tukaoka, Nigel K. LI. Pope, and Kevin E. Voges .........................................................................................................................1301 Chapter 3.2. Super Computer Heterogeneous Classifier Meta-Ensembles / Anthony Bagnali, Gavin Cawley, Ian Whittley, Larry Bull, Matthew Studley, Mike Pettipher, and Firat Tekiner ...................................................................................................1320 Chapter 3.3. Navigation Rules for Exploring Large Multidimensional Data Cubes / Navin Kumar, Aryya Gangopadhyay, George Karabatis, Sanjay Bapna, andZhiyuan Chen ........................................................................................................................... J334 Chapter 3.4. The Use of Smart Tokens in Cleaning Integrated Warehouse Data / Christie I. Ezeife and Wnothy E. Ohanekwu .................................................................................. J355 Chapter 3.5. An Implemented Representation and Reasoning System for Creating and Exploiting Large Knowledge Bases of Narrative Information / Gian Piero larri .....................1376 Chapter 3.6. Spatio-Temporal Prediction Using Data Mining Tools / Margaret H. Dunham, Nathaniel Ayewah, Zhigang Li, Kathryn Bean, and Me Huang .................1400 Chapter 3.7. Data Mining Using Qualitative Information on the Web / Taeho Hong and Woojong Suh ........................................................................................................1416 Chapter 3.8. Computational Intelligence Techniques Driven Intelligent Agents for Web Data Mining and Information Retrieval / MasoudMohummadian and Rie Jentzsch ..............................................................................................................................1435 Chapter 3.9. Internet Data Mining Using Statistical Techniques / Kuldeep Kumar .......................1446 Chapter 3.10. Mining E-Mail Data / Steffen Bickel and Tobias Scheffer ........................................1454 Chapter 3.11. Exploiting Captions for Web Data Mining I Neil C. Rowe ......................................1461 Chapter 3.12. Agent-Mediated Knowledge Acquisition for User Profiling / A. Andreevskaia, R. Abi-Aad, and T. Radhakrishnan .....................................................................1486 Chapter 3.13. Mobile User Data Mining and its Applications I John Goh and David Tatuar ............................................................................................................................1502 Chapter 3.14. Mobile Phone Customer Type Discrimination via Stochastic Gradient Boosting / Dan Steinberg, Mikhaylo Golovnya, and Nicholas Scott Cardell .................................1519 Chapter 3.15. Intelligent Cache Management for Mobile Data Warehouse Systems / Shi-Ming Huang, Binshan Lin, and Qun-Shi Deng ........................................................................1539 Chapter 3.16. VRMiner: A Tool for Multimedia Database Mining with Virtual Reality / H. Azzag, F. Picarougne, C. Guinoi, andG. Venturini ...................................................................1557 Chapter 3.17. Spatial Navigation Assistance System for Large Virtual Environments: The Data Mining Approach / Mehmed Kantardzic, Pedram Sadeghian, and Walaa M. Sheta ........................................................................................................................1573 Chapter 3.18. Bitmap Indices for Data Warehouses / Kurt Stockinger andKeshengWu ..............................................................................................................................1590 Chapter 3.19. Indexing in Data Warehouses: Bitmaps and Beyond / Karen C. Davis andAshimu Gupta .................................................................................................1606 Chapter 3.20. Visualization Techniques for Data Mining / Herna L. Viktor and Eric Paquet ..............................................................................................................................1623 Chapter 3.21. Video Data Mining / JungHwan Oh, JeongKyu Lee, and Sue Hwang .............................................................................................................................. 631 Chapter 3.22. Interactive Visual Data Mining IShouhong WangandHai Wang ...........................1638 Chapter 3.23. Data Mining in Gene Expression Analysis: A Survey / Min Han, Le Gruenwald, and Tyrrell Conway ...............................................................................1643 Chapter 3.24. A Haplotype Analysis System for Genes Discovery of Common Diseases/ Takas hiKido ..................................................................................................1674 Section 4. Utilization and Application This section introduces and discusses a variety of the existing applications of data mining and warehous¬ ing that have influenced government, culture, and biology and also proposes new ways in which data mining and warehousing can be implemented in society. Within these selections, particular issues, such as the use of data mining and warehousing in human resources and the incorporation of data analysis techniques into homeland security strategies, are explored and debated. Contributions included in this section provide excellent coverage of today s IT community and insight into how data mining and warehousing impacts the social fabric of our present-day global village. Chapter 4.1. Strategic Utilization of Data Mining / Chandras. Amaravadi..................................1689 Chapter 4.2. Biological Data Mining / George Tzanis, Christos Berberidis, and Ioannis Vlahavas .............................................................................................................................1696 Chapter 4.3. Biomedical Data Mining Using RBF Neural Networks / Feng Chu and Lipo Wang ...............................................................................................................1706 Chapter 4.4. Bioinformatics Data Management and Data Mining / Boris Galitsky .......................1714 Chapter 4.5. Deterministic Motif Mining in Protein Databases / Pedro Gabriel Ferreira and Paulo Jorge Azevedo ................................................................................................................1722 Chapter 4.6. Differential Association Rules: Understanding Annotations in Protein Interaction Networks / Christopher Bese mann, Anne Dentón, Ajay Yekkirala, Ron Hutchison, and Marc Anderson ............................................................................................... I747 Chapter 4.7. Data Mining and Knowledge Discovery in Metabolomics / Christian Baumgartner and Armin Graber....................................................................................] 759 Chapter 4.8. Comparative Genome Annotation Systems / Kwangmin Choi and Sun Kim ........................................................................................................................................... J734 Chapter 4.9. The Application of Data Mining Techniques in Health Plan Population Management: A Disease Management Approach / Theodore L. Perry, Travis Tucker, Laurel R. Hudson, William Gandy, Amy L. Neftzger, and Guy B. Hamar ......................................1799 Chapter 4.10. Data Mining Medical Digital Libraries / Colleen Cunningham and Xiaohua Ни ..............................................................................................................................1810 Volume IV Chapter 4.11. Data Mining in Diabetes Diagnosis and Detection / Indranil Bose .........................1817 Chapter 4.12. Data Warehousing and Analytics in Banking: Concepts / L. Venkat Narayanan .......................................................................................................................1825 Chapter 4.13. Data Warehousing and Analytics in Banking: Implementation / L. Venkat Narayanan .......................................................................................................................1840 Chapter 4.14. Beyond Classification: Challenges of Data Mining for Credit Scoring I Anna Olecka .........................................................................................................1855 Chapter 4.15. ATOPSIS Data Mining Demonstration and Application to Credit Scoring / Desheng Wu and David L Olson .........................................................................1877 Chapter 4.16. The Utilization of Business Intelligence and Data Mining in the Insurance Marketplace / Jeff Hoffman ............................................................................................1888 Chapter 4.17. Ontology-Based Data Warehousing and Mining Approaches in Petroleum Industries / Shastri L Nimmagadda and Heinz Dreher................................................1901 Chapter 4.18. A Study on Web Searching: Overlap and Distance of the Search Engine Results / ShanfengZhu, Xiaotie Deng, Qizhi Fang, and Weimin Zheng ............................1926 Chapter 4.19. Data Mining in Web Services Discovery and Monitoring / RichiNayak .....................................................................................................................................1938 Chapter 4.20. A Data Mining Driven Approach for Web Classification and Filtering Based on Multimodal Content Analysis / Mohamed Hammami, YoussefChahir, and Liming Chen ....................................................................................................................................1958 Chapter 4.21. Acquiring Semantic Sibling Associations from Web Documents / Marko Brunzel and Myra Spiliopoulou ..........................................................................................1987 Chapter 4.22. Traversal Pattern Mining in Web Usage Data / Yongqiao Xiao and Jenq-Foung (J.F.) Yao .....................................................................................................................2004 Chapter 4.23. Facilitating and Improving the Use of Web Services with Data Mining / RichiNayak .....................................................................................................................................2022 Chapter 4.24. E-Mail Worm Detection Using Data Mining / Mohammad M. Masud, Latifur Khan, and Bhavani Thuraisingham ....................................................................................2036 Chapter 4.25. User-Centered Interactive Data Mining / Yan Zhao, Yaohua Chetu andYiyuYao ....................................................................................................................................2051 Chapter 4.26. Advanced Data Mining and Visualization Techniques with Probabilistic Principal Surfaces: Applications to Astronomy and Genetics / Antonino Statano, Lara De Vinco, Giuseppe Longo, and Roberto Tagliaferri............................................................. 2067 Chapter 4.27. Using Data Mining for Forecasting Data Management Needs / Qingyu Zhang and Richard S. Segali ..............................................................................................2088 Chapter 4.28. Visual Data Mining for Discovering Association Rules / Kesaraporn Techapichetvanich and Amitava Datta .......................................................................2105 Chapter 4.29. Generalization Data Mining in Fuzzy Object-Oriented Databases / Rafal Angryk, Roy Ladner, and Frederick E. Petry ........................................................................2121 Chapter 4.30. Fuzzy Miner: Extracting Fuzzy Rules from Numerical Patterns / Nikos Pelekis, Babis Theodoulidis, loannis Kopanakis, and Yannis Theodoridis ..........................2141 Chapter 4.31. Empowering the OLAP Technology to Support Complex Dimension Hierarchies I Svetlana Mansmann and Marc H. Scholl...............................................2164 Chapter 4.32. Understanding Decision-Making in Data Warehousing and Related Decision Support Systems: An Explanatory Study of a Customer Relationship Management Application / John D. Wells and Traci J. Hess ..........................................................2185 Chapter 4.33. Statistical Sampling to Instantiate Materialized View Selection Problems in Data Warehouses / Mesbah U. Ahmed, Vikas Agrawal, Udayan Nandkeolyar, and P. S. Sundararaghavan .............................................................................................................2201 Chapter 4.34. Development of Control Signatures with a Hybrid Data Mining and Genetic Algorithm / Alex Burns, Shital Shah, and Andrew Kusiak ................................................2226 Chapter 4.35. Feature Selection for the Promoter Recognition and Prediction Problem / George Potamias and Alexandras Kanterakis ...............................................................2248 Chapter 4.36. Data Warehousing Search Engine / Hadrian Peter and Charles Greenidge ..........................................................................................................................2263 Section 5. Organizational and Social Implications This section includes a wide range of research pertaining to the social and organizational impact of data mining and warehousing around the world. Chapters introducing this section illustrate varying perspec¬ tives on organizational data mining, as well as its relationship to cognition. Other contributions discuss the potential of data mining and warehousing for transforming business, government and medicine, as well as providing insight into individual behavior. Particular selections explain the design of a data model for social applications, provide insight into the implications of data mining and warehousing in the banking sector, and explain data mining s use in generating credit scores. The inquiries and methods presented in this section offer insight into the integration of data mining and warehousing in social and organizational settings while also emphasizing the potential for future societal applications. Chapter 5.1. Data Mining in Practice / Sherry Y. Chen andXiaohui Liu .......................................2273 Chapter 5.2. Model Indentification through Data Mining / Diego Liberati ....................................2281 Chapter 5.3. Organizational Data Mining (ODM): An Introduction / Hamid R. Nemati and Christopher D. Barko ..................................................................................2289 Chapter 5.4. Constructionist Perspective of Organizational Data Mining/ Isabel Ramos and João Álvaro Carvalho .......................................................................................2296 Chapter 5.5. The Role of Data Mining in Organizational Cognition / Chandra S. Amaravadi and FarhadDaneshgar .............................................................................2302 Chapter 5.6. Ontology-Based Interpretation and Validation of Mined Knowledge: Normative and Cognitive Factors in Data Mining I Ana Isabel Canhoto .......................................2316 Chapter 5.7. Design of a Data Model for Social Network Applications / Susanta Mitra, Aditya Bagchi, andA.K.Bandyopadhyay ...............................................................2338 Chapter 5.8. Humanitites Data Warehousing/ Janet Delve ............................................................2364 Chapter 5.9. Data Mining in Human Resources / Marvin D. Troutt and Lori K. Long ....................................................................................................................................2371 Chapter 5.10. Privacy Preserving Data Mining, Concepts, Techniques, and Evaluation Methodologies / Igor Nai Fovino .................................................................................2379 Chapter 5.11. Privacy-Preserving Data Mining and the Need for Confluence of Research and Practice / Lixin Fu, Hamid Nemati, and Fereidoon Sadri........................................ 2402 Chapter 5.12. Data Mining in the Federal Government / Les Pang ...............................................2421 Volume V Chapter 5.13. Data Warehousing and the Organization of Governmental Databases / Franklin Maxwell Harper ...............................................................................................................2427 Chapter 5.14. Data Mining and the Banking Sector: Managing Risk in Lending and Credit Card Activities I Àkos Felsõvályi and Jennifer Courant ...............................................2438 Chapter 5.15. Data Mining for Credit Scoring / lndranil Bose, Cheng Pni Katt, Chi King Tsz, Lau Wai Ki, and Wong Cho Hung ............................................................................2449 Chapter 5.16. Credit Card Users Data Mining / André de Carvalho, Antonio P. Braga, and Teresa Ludermir .........................................................................................2464 Chapter 5.17. Data Mining for Supply Chain Management in Complex Networks / Mahesh S. Raisinghani and Manoj К Singh ..................................................................................2468 Chapter 5.18.TSeural Network-Based Stock Market Return Forecasting Using Data Mining for Variable Reduction / DavidEnke ..................................................................................2476 Chapter 5.19. Data Mining and Knowledge Discovery in Healthcare Organizations: A Decision-Tree Approach / Murat Caner Testik, George C. Runger, Bradford Kirkman-Liff, and Edward A. Smith ................................................................................2494 Chapter 5.20. Data Mining Techniques and Medical Decision Making for Urological Dysfunction / N. Sriraam, V. Natasha, and H Kam....................................................2506 Chapter 5.21. Heuristics in Medical Data Mining / Susan E. George ............................................2517 Chapter 5.22. An Approach to Mining Crime Patterns / SikhaBagui ............................................2523 Chapter 5.23. Web Usage Mining Data Preparation / BamshadMobasher ....................................2551 Chapter 5.24. Classification Of 3G Mobile Phone Customers / Ankur Jain, Lalit Wangikar, Martin Ahrens, Ranjan Rao, Suddha Sattwa Kundu, and Sutirtha Ghosh ................................................................................................................................2558 Chapter 5.25. Impediments to Exploratory Data Mining Success / JeffZeanah ............................2566 Section 6. Managerial Impact This section presents contemporary coverage of the more formal implications of data mining and ware¬ housing, more specifically related to the corporate and managerial utilization of information-sharing technologies and applications, and how these technologies can he facilitated within organizations. Core ideas such as successful data mining in franchise organizations and the use of data analysis to predict customer behavior are discussed throughout these chapters. Contributions within this section seek to answer the fundamental question of data mining and warehousing implementation in organizations: How can particular techniques best be integrated into businesses and what are the potential obstacles to such integration? Particular chapters provide case studies of data mining and warehousing use in business and address some of the most significant issues that have arisen from data mining and ware¬ housing implementation. Chapter 6.1. Data Mining and Business Intelligence: Tools, Technologies, and Applications I Jeffrey Hsu ........................................................................................................2584 Chapter 6.2. Data Mining and Decision Support for Business and Science / Auroop R. Ganguly, Amar Gupta, and Shiraj Khan .......................................................................2618 Chapter 6.3. Data Warehousing Interoperability for the Extended Enterprise / Aristides Triantafillakis, Panagiotis Kanellis, and Drakoulis Martakos ........................................2626 Chapter 6.4. Data Warehousing and Mining in Supply Chains / Richard Mathieu and Reuven R. Levary .....................................................................................................................2637 Chapter 6.5. Management of Data Streams for Large-Scale Data Mining / Jon R. Wright, Gregg T. Vesonder, and Tamraparni Dasu .............................................................2644 Chapter 6.6. Customized Recommendation Mechanism Based on Web Data Mining and Case-Based Reasoning I Jin Sung Kim ....................................................................................2659 Chapter 6.7. Gaining Strategic Advantage through Bibliomining: Data Mining for Management Decisions in Corporate, Special, Digital, and Traditional Libraries / Scott Nicholson and Jeffrey Stanton ...............................................................................................2673 Chapter 6.8. Expanding Data Mining Power with System Dynamics / Edilberto Casado ............................................................................................................................2688 Chapter 6.9. Data Mining and Mobile Business Data / Richi Nayak ..............................................2697 Chapter 6.10. Neural Data Mining System for Trust-Based Evaluation in Smart Organizations / T. T. Wong ..............................................................................................................2704 Chapter 6.11. Data Mining in Franchise Organizations / Ye-Sho Chen, Robert Just is, and P. PeteChong ...........................................................................................................................2722 Chapter 6.12. Translating Advances in Data Mining in Business Operations: The Art of Data Mining in Retailing / Henry Dillon and Beverley Hope .......................................2734 Chapter 6.13. Data Warehousing: The 3M Experience / Hugh J. Watson, Barbara H. Wixom, and Dale L Goodhue ......................................................................................2749 Chapter 6.14. Business Data Warehouse: The Case of Wal-Mart / Indranil Bose, Lam Albert Kar Chun, Leung Vivien Wai Yue, Li Hoi Wan Ines, and Wong Oi Ling Helen .................................................................................................................2762 Chapter 6.15. A Porter Framework for Understanding the Strategic Potential of Data Mining for the Australian Banking Industry / Kate A. Smith and Mark S. Dale ....................2772 Chapter 6.16. Data Mining for Combining Forecasts in Inventory Management / Chi Kin Chan ..................................................................................................................................2792 Chapter 6.17. Analytical Customer Requirement Analysis Based on Data Mining / Jianxin (Roger) Jiao, Yiyang Zhang, and Martin Helander ...........................................................2798 Chapter 6.18. Predicting Future Customers via Ensembling Gradually Expanded Trees / Yang Yu, Chuan Zhan, Xu-Ying Liu, Ming Li, and Zhi-Hua Zhou ..................................................2816 Chapter 6.19. Marketing Data Mining / Victor S. Y. Lo ...................................................................2824 Section 7. Critical Issues This section addresses conceptual and theoretical issues related to the field of data mining and ware¬ housing, yvhich include the ethical implications of data collection and the numerous approaches adopted by researchers that aid in making data mining and warehousing morę effective. Within these chapters, the reader is presented with an in-depth analysis of the most current and relevant conceptual inquires within this growing field of study. Particular chapters address data partitioning, data warehouse re¬ freshment, and mining with incomplete data sets. Overall, contributions within this section ask unique, often theoretical questions related to the study of data mining and warehousing and, more often than not. conclude that solutions are both numerous and contradictory. Chapter 7.1. Ethics Of Data Mining ¡Jack Cook ...........................................................................2834 Chapter 7.2. Ethical Dilemmas in Data Mining and Warehousing/ Joseph A. Cazier and Ryan С LaBrie .........................................................................................................................2841 Chapter 7.3. Privacy and Confidentiality Issues in Data Mining / Yücel Saygin ............................2850 Chapter 7.4. Privacy Implications of Organizational Data Mining / Hamid R Nemati, Charmion Brathwaite, and Kara Harrington .................................................................................2856 Chapter 7.5. Privacy in Data Mining Textbooks / James Lawler and John C. Molluzzo ............................................................................................................................2872 Chapter 7.6. Data Mining for intrusion Detection / Alebandar Lazarevic ....................................2880 Chapter 7.7. E-Commerce and Data Mining: Integration Issues and Challenges / Parviz Partow-Navid and Ludwig Slusky .......................................................................................2888 Chapter 7.8. A Data Mining Approach to Formulating a Successful Purchasing Negotiation Strategy / Hokey Min and Ahmed Emam ....................................................................2900 Chapter 7.9. Data Mining Medical Information: Should Artificial Neural Networks Be Used to Analyse Trauma Audit Data? / Thomas Chesney, Kay Penny, Peter Oakley, Simon Davies, David Chesney, Nicola Majfulli, and John Templeton ...........................................2915 Chapter 7.10. A Data Mining Approach to Diagnosing Student Learning Problems in Sciences Courses / Gwo-Jen Hwang ...............................................................................................2928 Chapter 7.11. Effective Intelligent Data Mining Using Dempster-Shafer Theory / Malcolm J. Beynon ..........................................................................................................................2943 Chapter 7.12. An Intelligent Support System Integrating Data Mining and Online Analytical Processing / Rahul Singh, Richard T. Redmond, and Victoria Yoon .............................2964 Chapter 7.13. A Successive Decision Tree Approach to Mining Remotely Sensed Image Data / Jianting Zhang, Wieguo Liu, and Le Gruenwald ......................................................2978 Chapter 7.14. Mining for Mutually Exclusive Items in Transaction Databases / George Tzanis and Christos Berberidis..........................................................................................2993 Chapter 7.15. Re-Sampling Based Data Mining Using Rough Set Theory / Benjamin Griffiths and Malcolm J. Beynon ....................................................................................3005 Chapter 7.16. Data Mining with Incomplete Data / Hai Wang and Shouhong Wang .....................3027 Chapter 7.17. Routing Attribute Data Mining Based on Rough Set Theory / YanbingLiu, ShixinSun, Menghao Wang, and Hong Tang ............................................................3033 Volume VI Chapter 7.18. Data Warehouse Refreshment / Alkis Simitisis, Panos Vassiliadis, Spiros Skiadopoulos, and Timos Sellis ............................................................................................3049 Chapter 7.19. An Algebraic Approach to Data Quality Metrics for Entity Resolution Over Large Datasets / John Talburt, Richard Wang, Kimberly Hess, and Emily Km ................................................................................................................................. 3067 Chapter 7.20. A Hybrid Approach for Data Warehouse View Selection / Biren Shah, Karthik Ramachandran, and Vijay Raghavan .............................................................3085 Chapter 7.21. A Space-Efficient Protocol for Consistency of External View Maintenance on Data Warehouse Systems: A Proxy Approach / Shi-Ming Huang, DavidC. Yen, andHsiang-Yuan Hsueh ...........................................................................................3116 Chapter 7.22. DWFIST: The Data Warehouse of Frequent Itemsets Tactics Approach / Rodrigo Salvador Monteiro, Geraldo Zimbrão, Holger Schwarz, Bernhard Mitschang, and Jano Moreira de Souza ...........................................■..............................3142 Chapter 7.23. A Hyper-Heuristic for Descriptive Rule Induction / Tho Hoan Pham and Tu Bao Ho ................................................................................................................................ 3 164 Chapter 7.24. Improved Data Partitioning for Building Large ROLAP Data Cubes in Parallel / Ying Chen, Frank Dehne, Toad Eavis, and A. Rau-Chaplin .............................3176 Chapter 7.25. An Ontology of Data Modelling Languages: A Study Using a Common-Sense Realistic Ontology I Simon K. Milton and Ed Kazmierczak ................................3194 Chapter 7.26. Robust Classification Based on Correlations Between Attributes / Alexandros Nanopoulos, Apostólos N. Papadopoulos, Yannis Manolopoulos, and Tatjana Welzer-Druzovec................................................................................................................3212 Chapter 7.27. Finding Non-Coincidental Sporadic Rules Using Apriori-Inverse / Yun Sing Koh, Nathan Rountree, and Richard O Keefe ..................................................................3222 Chapter 7.28. Discovering Surprising Instances of Simpson s Paradox in Hierarchical Multidimensional Data / Carem С. Fabris and Alex A. Freitas .................................3235 Chapter 7.29. Discovering Frequent Embedded Subtree Patterns from Large Databases of Unordered Labeled Trees / Yongqiao Xiao, Jenq-Foung Yao, and Guizhen Yang ...........................................................................................................................3252 Chapter 7.30. A Single Pass Algorithm for Discovering Significant Intervals in Time-Series Data / Sugar Savia and Sharma Chakravarthy ..........................................................3272 Chapter 7.31. SeqPAM: A Sequence Clustering Algorithm for Web Personalization / Pradeep Kumar, Raju S. Варі, and P. Radha Krishna ........................................3285 Chapter 7.32. Kernal Width Selection for SVM Classification: A Meta-Learning Approach / Shawkat AH and Kate A. Smith ........................................................................ 3308 Chapter 7.33. A Parallel Implementation Scheme of Relational Tables Based on Multidimensional Extendible Array / K. M. Azharul Hasan, Tatsuo Tsuji, and Ken Higuchi ........................................................................................................ 3324 Section 8. Emerging Trends This section highlights research potential within the field of data mining and warehousing while also exploring uncharted areas of study for the advancement of the discipline. Introducing this section are selections providing . Discussions exploring semantic data mining. Web data warehousing and spatio- temporal databases provide insight into forthcoming issues in data mining and warehousing study. These contributions, which conclude this exhaustive, multi-volume set, provide emerging trends and suggestions for future research within this rapidly expanding discipline. Chapter 8.1. Toward Integrating Data Warehousing with Data Mining Techniques / Rokia Missaoui, Ganaël Jatteau, Ameur Boujenoui, and Sami Nabouali ......................................3346 Chapter 8.2. Combining Data Warehousing and Data Mining Techniques for Web Log Analysis / Torben Bach Pedersen, Jesper Thorhauge, and Seren E. Jespersen ......................3364 Chapter 8.3. Web Data Warehousing Convergence: From Schematic to Systematic / D. Xuun Le,J. Wenny Rahayu, and David Tatuar ..........................................................................3386 Chapter 8.4. Web Technology and Data Warehouse Synergies / John M. Artz ................................3411 Chapter 8.5. Metadata Management: A Requirement for Web Warehousing and KnowledgeManagement / Gilbert W. ¿aware .................................................................................3416 Chapter 8.6. An Immune Systems Approach for Classifying Mobile Phone Usage / Hanny Yulius Limanto, Тау Joe Cing, and Andrew Watkins ...........................................................3440 Chapter 8.7. User Interface Formalization in Visual Data Mining / Tiziana Catarei, Stephen Kimani, and Stefano Lodi.................................................................................................. 3451 Chapter 8.8. Mining in Spatio-Temporal Databases / Junmei Wang, Wynne Hsu, and Mong Li Lee .............................................................................................................................3477 Chapter 8.9. Algebraic Reconstruction Technique in Image Reconstruction Based on Data Mining / Zhong Qu ............................................................................................................3493 Chapter 8.10. Evolutionary Induction of Mixed Decision Trees / Marek Kretowski and Marek Grzes .............................................................................................................................3509 Chapter 8.11. Semantic Data Mining / Protima Banerjee, Xiaohua Ни, andlllhoiYoo ..................................................................................................................................3524 Chapter 8.12. Metadata- and Ontology-Based Semantic Web Mining/ Marie Aude Auf aure, Bénédicte Le Grand, Michel Soto, and Nacerá Bennacer ...........................3531 Chapter 8.13. Integrating Semantic Knowledge with Web Usage Mining for Personalization / Honghua Dai and Batnshad Mobasher ...............................................................3557 Chapter 8.14. Mining in Music Databases / Ioannis Karydis, Alexandras Nanopoulos, and Yannis Manolopoulos ...............................................................................................................3586 Chapter 8.15. Multimedia Data Mining Concept/ Janusz Swierzowicz ..........................................3611 Chapter 8.16. Robust Face Recognition for Data Mining / Brian C. Loveli andShaokang Chen ........................................................................................................................3621 Chapter 8.17. Data Mining and Homeland Security / Jeffrey W. Seifert.........................................3630 Chapter 8.18. Homeland Security Data Mining and Link Analysis / Bhavani Thuraisingham ..................................................................................................................3639 Chapter 8.19. Seismological Data Warehousing and Mining: A Survey/ Gerasimos Marketos, Yannis Theodoridis, Ioannis S. Kalogeras...................................................3645 Chapter 8.20. Realizing Knowledge Assets in the Medical Sciences with Data Mining: An Overview I Adam Fadlalla and Nilmini Wickramasinghe ........................................................3662 Chapter 8.21·. Mining Clinical Trial Data / Jose Ma. J. Alvir, Javier Cabrera, Frank Caridi, and Ha Nguyen ........................................................................................................3675 Chapter 8.22. Vertical Database Design for Scalable Data Mining / William Perrizo, Qiang Ding, Манит Serazi, Taufik Abidin, and Baoying Wang .....................................................3694 DATA WAREHOUSING AND MINING Concepts. Methodologies, Tools, and implications In recent years, the science of managing and analyzing targe datasets has emerged as a critical area of research, in the race to answer vita! questions and make knowledgeable decisions, impressive amounts of data are now being generated at a rapid pace, increasing the opportunities and challenges associated with the abiîity to effectively analyze this data, 5 Warehousing and Mining: Concepts, Methodologies, Tools, and Applications provides the most comprehensive compilation of research avail¬ able in this emerging and increasingly important fieîd.This six-volume set offers tools, designs, and outcomes of the utilization of data mining and warehousing technologies, such as algorithms, concept lattices., multìdimensìona} data, and online analytical processing. With more than 230 chapters contributed by over 500 experts from around the globe, this authoritative collection will provide libraries with the essential reference on data mining and wareftousing. Topics Covered ■ Active databases ■ fernel methods ■ Algorithms ■ Knowledge model « Automation ■ togic constraints ■ Benchmarking ■ Mteraarray technologies ■ Clustering * ■ Multidimensional databases m Concept lattices ■ Neural networks ■ Conceptual modeling ■ Object orientation ■ Control flow modeling ■ Object-relational databases ■ Database maintenance ■ ODBMS • Database systems · Online analytical processing (OLAP) « Data consultants ■ Pattern discovery • Data flow analysis » Performance evaluation ■ Data manipulation ■ Regression testing ■ Data modeling ■ Relational database implementation • Data warehouses ■ Software maintenance • Dynamic access patterns ■ Software testing Ш Firewall ш Structured query language (SQL) ■ Formal methods ■ Supply chain management • Fuzzy applications · ■ Impact analysis · ■ • Information systerns ■ Integration ■ Integrity constraints
any_adam_object 1
author_GND (DE-588)132281031
building Verbundindex
bvnumber BV023211008
ctrlnum (OCoLC)635127953
(DE-599)BVBBV023211008
format Book
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01388nam a2200301 cc4500</leader><controlfield tag="001">BV023211008</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20080701 </controlfield><controlfield tag="007">t|</controlfield><controlfield tag="008">080312s2008 xxuad|| |||| 00||| eng d</controlfield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)635127953</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV023211008</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">xxu</subfield><subfield code="c">US</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-355</subfield><subfield code="a">DE-384</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Data warehousing and mining</subfield><subfield code="b">concepts, methodologies, tools, and applications</subfield><subfield code="n">1</subfield><subfield code="c">John Wang [ed.]</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Hershey, Pa. [u.a.]</subfield><subfield code="b">Information Science Reference</subfield><subfield code="c">(2008)</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">LXXI, 590, 20 S.</subfield><subfield code="b">Ill., graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Premier reference source</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, John</subfield><subfield code="d">1955-</subfield><subfield code="e">Sonstige</subfield><subfield code="0">(DE-588)132281031</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="w">(DE-604)BV023211000</subfield><subfield code="g">1</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Regensburg</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&amp;doc_library=BVB01&amp;local_base=BVB01&amp;doc_number=016397069&amp;sequence=000003&amp;line_number=0001&amp;func_code=DB_RECORDS&amp;service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Regensburg</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&amp;doc_library=BVB01&amp;local_base=BVB01&amp;doc_number=016397069&amp;sequence=000004&amp;line_number=0002&amp;func_code=DB_RECORDS&amp;service_type=MEDIA</subfield><subfield code="3">Klappentext</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-016397069</subfield></datafield></record></collection>
id DE-604.BV023211008
illustrated Illustrated
indexdate 2024-12-23T20:57:55Z
institution BVB
language English
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-016397069
oclc_num 635127953
open_access_boolean
owner DE-355
DE-BY-UBR
DE-384
owner_facet DE-355
DE-BY-UBR
DE-384
physical LXXI, 590, 20 S. Ill., graph. Darst.
publishDate 2008
publishDateSearch 2008
publishDateSort 2008
publisher Information Science Reference
record_format marc
series2 Premier reference source
spellingShingle Data warehousing and mining concepts, methodologies, tools, and applications
title Data warehousing and mining concepts, methodologies, tools, and applications
title_auth Data warehousing and mining concepts, methodologies, tools, and applications
title_exact_search Data warehousing and mining concepts, methodologies, tools, and applications
title_full Data warehousing and mining concepts, methodologies, tools, and applications 1 John Wang [ed.]
title_fullStr Data warehousing and mining concepts, methodologies, tools, and applications 1 John Wang [ed.]
title_full_unstemmed Data warehousing and mining concepts, methodologies, tools, and applications 1 John Wang [ed.]
title_short Data warehousing and mining
title_sort data warehousing and mining concepts methodologies tools and applications
title_sub concepts, methodologies, tools, and applications
url http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016397069&sequence=000003&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA
http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016397069&sequence=000004&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA
volume_link (DE-604)BV023211000
work_keys_str_mv AT wangjohn datawarehousingandminingconceptsmethodologiestoolsandapplications1