Atomic physics

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Foot, Christopher J. (VerfasserIn)
Format: Buch
Sprache:English
Veröffentlicht: Oxford [u.a.] Oxford University Press 2007
Ausgabe:reprint. (twice with corr.)
Schriftenreihe:Oxford master series in atomic, optical and laser physics
Schlagworte:
Online-Zugang:Inhaltsverzeichnis
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nam a2200000 c 4500
001 BV023183321
003 DE-604
005 00000000000000.0
007 t
008 080226s2007 ad|| |||| 00||| eng d
020 |a 9780198506966  |9 978-0-19-850696-6 
020 |a 9780198506959  |9 978-0-19-850695-9 
035 |a (OCoLC)263430759 
035 |a (DE-599)BVBBV023183321 
040 |a DE-604  |b ger  |e rakwb 
041 0 |a eng 
049 |a DE-355  |a DE-703 
082 0 |a 539.7 
084 |a UM 2000  |0 (DE-625)145841:  |2 rvk 
100 1 |a Foot, Christopher J.  |e Verfasser  |0 (DE-588)136908713  |4 aut 
245 1 0 |a Atomic physics  |c C. J. Foot 
250 |a reprint. (twice with corr.) 
264 1 |a Oxford [u.a.]  |b Oxford University Press  |c 2007 
300 |a XIII, 331 S.  |b Ill., graph. Darst. 
336 |b txt  |2 rdacontent 
337 |b n  |2 rdamedia 
338 |b nc  |2 rdacarrier 
490 0 |a Oxford master series in atomic, optical and laser physics 
650 0 7 |a Atomphysik  |0 (DE-588)4003423-9  |2 gnd  |9 rswk-swf 
655 7 |0 (DE-588)4123623-3  |a Lehrbuch  |2 gnd-content 
689 0 0 |a Atomphysik  |0 (DE-588)4003423-9  |D s 
689 0 |5 DE-604 
856 4 2 |m Digitalisierung UB Regensburg  |q application/pdf  |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016369824&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA  |3 Inhaltsverzeichnis 
999 |a oai:aleph.bib-bvb.de:BVB01-016369824 

Datensatz im Suchindex

_version_ 1804137451670732800
adam_text Contents 1 Early atomic physics 1 1.1 Introduction 1 1.2 Spectrum of atomic hydrogen 1 1.3 Bohr s theory 3 1.4 Relativistic effects 5 1.5 Moseley and the atomic number 7 1.6 Radiative decay 11 1.7 Einstein A and В coefficients 11 1.8 The Zeeman effect 13 1.8.1 Experimental observation of the Zeeman effect 17 1.9 Summary of atomic units 18 Exercises 19 2 The hydrogen atom 22 2.1 The Schrödinger equation 22 2.1.1 Solution of the angular equation 23 2.1.2 Solution of the radial equation 26 2.2 Transitions 29 2.2.1 Selection rules 30 2.2.2 Integration with respect to θ 32 2.2.3 Parity 32 2.3 Fine structure 34 2.3.1 Spin of the electron 35 2.3.2 The spin-orbit interaction 36 2.3.3 The fine structure of hydrogen 38 2.3.4 The Lamb shift 40 2.3.5 Transitions between fine-structure levels 41 Further reading 42 Exercises 42 3 Helium 45 3.1 The ground state of helium 45 3.2 Excited states of helium 46 3.2.1 Spin eigenstates 51 3.2.2 Transitions in helium 52 3.3 Evaluation of the integrals in helium 53 3.3.1 Ground state 53 3.3.2 Excited states: the direct integral 54 3.3.3 Excited states: the exchange integral 55 χ Contents Further reading 56 Exercises 58 4 The alkalis 60 4.1 Shell structure and the periodic table 60 4.2 The quantum defect 61 4.3 The central-field approximation 64 4.4 Numerical solution of the Schrödinger equation 68 4.4.1 Self-consistent solutions 70 4.5 The spin-orbit interaction: a quantum mechanical approach 71 4.6 Fine structure in the alkalis 73 4.6.1 Relative intensities of fine-structure transitions 74 Further reading 75 Exercises 76 5 The LS-coupling scheme 80 5.1 Fine structure in the Lib-coupling scheme 83 5.2 The jj-coupling scheme 84 5.3 Intermediate coupling: the transition between coupling schemes 86 5.4 Selection rules in the LS-couplmg scheme 90 5.5 The Zeeman effect 90 5.6 Summary 93 Further reading 94 Exercises 94 6 Hyperfme structure and isotope shift 97 6.1 Hyperfine structure 97 6.1.1 Hyperfine structure for s-electrons 97 6.1.2 Hydrogen maser 100 6.1.3 Hyperfine structure for Ι φ 0 101 6.1.4 Comparison of hyperfine and fine structures 102 6.2 Isotope shift 105 6.2.1 Mass effects 105 6.2.2 Volume shift 106 6.2.3 Nuclear information from atoms 108 6.3 Zeeman effect and hyperfine structure 108 6.3.1 Zeeman effect of a weak field, μ -gB < A 109 6.3.2 Zeeman effect of a strong field, μ^Β > A 110 6.3.3 Intermediate field strength 111 6.4 Measurement of hyperfine structure 112 6.4.1 The atomic-beam technique 114 6.4.2 Atomic clocks Ц8 Further reading 119 Exercises 120 7 The interaction of atoms with radiation 123 7.1 Setting up the equations 123 Contents xi 7.1.1 Perturbation by an oscillating electric field 124 7.1.2 The rotating-wave approximation 125 7.2 The Einstein В coefficients 126 7.3 Interaction with monochromatic radiation 127 7.3.1 The concepts of тг -pulses and тг/2 -pulses 128 7.3.2 The Bloch vector and Bloch sphere 128 7.4 Ramsey fringes 132 7.5 Radiative damping 134 7.5.1 The damping of a classical dipole 135 7.5.2 The optical Bloch equations 137 7.6 The optical absorption cross-section 138 7.6.1 Cross-section for pure radiative broadening 141 7.6.2 The saturation intensity 142 7.6.3 Power broadening 143 7.7 The a.c. Stark effect or light shift 144 7.8 Comment on semiclassical theory 145 7.9 Conclusions 146 Further reading 147 Exercises 148 8 Doppler-free leiser spectroscopy 151 8.1 Doppler broadening of spectral lines 151 8.2 The crossed-beam method 153 8.3 Saturated absorption spectroscopy 155 8.3.1 Principle of saturated absorption spectroscopy 156 8.3.2 Cross-over resonances in saturation spectroscopy 159 8.4 Two-photon spectroscopy 163 8.5 Calibration in laser spectroscopy 168 8.5.1 Calibration of the relative frequency 168 8.5.2 Absolute calibration 169 8.5.3 Optical frequency combs 171 Further reading 175 Exercises 175 9 Laser cooling and trapping 178 9.1 The scattering force 179 9.2 Slowing an atomic beam 182 9.2.1 Chirp cooling 184 9.3 The optical molasses technique 185 9.3.1 The Doppler cooling limit 188 9.4 The magneto-optical trap 190 9.5 Introduction to the dipole force 194 9.6 Theory of the dipole force 197 9.6.1 Optical lattice 201 9.7 The Sisyphus cooling technique 203 9.7.1 General remarks 203 9.7.2 Detailed description of Sisyphus cooling 204 9.7.3 Limit of the Sisyphus cooling mechanism 207 xii Contents 9.8 Raman transitions 208 9.8.1 Velocity selection by Raman transitions 208 9.8.2 Raman cooling 210 9.9 An atomic fountain 211 9.10 Conclusions 213 Exercises 214 10 Magnetic trapping, evaporative cooling and Bose— Einstein condensation 218 10.1 Principle of magnetic trapping 218 10.2 Magnetic trapping 220 10.2.1 Confinement in the radial direction 220 10.2.2 Confinement in the axial direction 221 10.3 Evaporative cooling 224 10.4 Bose-Einstein condensation 226 10.5 Bose-Einstein condensation in trapped atomic vapours 228 10.5.1 The scattering length 229 10.6 A Bose-Einstein condensate 234 10.7 Properties of Bose-condensed gases 239 10.7.1 Speed of sound 239 10.7.2 Healing length 240 10.7.3 The coherence of a Bose-Einstein condensate 240 10.7.4 The atom laser 242 10.8 Conclusions 242 Exercises 243 11 Atom interferometry 246 11.1 Young s double-slit experiment 247 11.2 A diffraction grating for atoms 249 11.3 The three-grating interferometer 251 11.4 Measurement of rotation 251 11.5 The diffraction of atoms by light 253 11.5.1 Interferometry with Raman transitions 255 11.6 Conclusions 257 Further reading 258 Exercises 258 12 Ion traps 259 12.1 The force on ions in an electric field 259 12.2 Earnshaw s theorem 260 12.3 The Paul trap 261 12.3.1 Equilibrium of a ball on a rotating saddle 262 12.3.2 The effective potential in an a.c. field 262 12.3.3 The linear Paul trap 262 12.4 Buffer gas cooling 266 12.5 Laser cooling of trapped ions 267 12.6 Quantum jumps 269 12.7 The Penning trap and the Paul trap 271 Contents xiii 12.7.1 The Penning trap 272 12.7.2 Mass spectroscopy of ions 274 12.7.3 The anomalous magnetic moment of the electron 274 12.8 Electron beam ion trap 275 12.9 Resolved sideband cooling 277 12.10 Summary of ion traps 279 Further reading 279 Exercises 280 13 Quantum computing 282 13.1 Qubits and their properties 283 13.1.1 Entanglement 284 13.2 A quantum logic gate 287 13.2.1 Making a CNOT gate 287 13.3 Parallelism in quantum computing 289 13.4 Summary of quantum computers 291 13.5 Decoherence and quantum error correction 291 13.6 Conclusion 293 Further reading 294 Exercises 294 A Appendix A: Perturbation theory 298 A.I Mathematics of perturbation theory 298 A. 2 Interaction of classical oscillators of similar frequencies 299 В Appendix B: The calculation of electrostatic energies 302 С Appendix C: Magnetic dipole transitions 305 D Appendix D: The line shape in saturated absorption spectroscopy 307 E Appendix E: Raman and two-photon transitions 310 E.I Raman transitions 310 E.2 Two-photon transitions 313 F Appendix F: The statistical mechanics of Bose— Einstein condensation 315 F.I The statistical mechanics of photons 315 F.2 Bose-Einstein condensation 316 F.2.1 Bose-Einstein condensation in a harmonic trap 318 References 319 Index 326
adam_txt Contents 1 Early atomic physics 1 1.1 Introduction 1 1.2 Spectrum of atomic hydrogen 1 1.3 Bohr's theory 3 1.4 Relativistic effects 5 1.5 Moseley and the atomic number 7 1.6 Radiative decay 11 1.7 Einstein A and В coefficients 11 1.8 The Zeeman effect 13 1.8.1 Experimental observation of the Zeeman effect 17 1.9 Summary of atomic units 18 Exercises 19 2 The hydrogen atom 22 2.1 The Schrödinger equation 22 2.1.1 Solution of the angular equation 23 2.1.2 Solution of the radial equation 26 2.2 Transitions 29 2.2.1 Selection rules 30 2.2.2 Integration with respect to θ 32 2.2.3 Parity 32 2.3 Fine structure 34 2.3.1 Spin of the electron 35 2.3.2 The spin-orbit interaction 36 2.3.3 The fine structure of hydrogen 38 2.3.4 The Lamb shift 40 2.3.5 Transitions between fine-structure levels 41 Further reading 42 Exercises 42 3 Helium 45 3.1 The ground state of helium 45 3.2 Excited states of helium 46 3.2.1 Spin eigenstates 51 3.2.2 Transitions in helium 52 3.3 Evaluation of the integrals in helium 53 3.3.1 Ground state 53 3.3.2 Excited states: the direct integral 54 3.3.3 Excited states: the exchange integral 55 χ Contents Further reading 56 Exercises 58 4 The alkalis 60 4.1 Shell structure and the periodic table 60 4.2 The quantum defect 61 4.3 The central-field approximation 64 4.4 Numerical solution of the Schrödinger equation 68 4.4.1 Self-consistent solutions 70 4.5 The spin-orbit interaction: a quantum mechanical approach 71 4.6 Fine structure in the alkalis 73 4.6.1 Relative intensities of fine-structure transitions 74 Further reading 75 Exercises 76 5 The LS-coupling scheme 80 5.1 Fine structure in the Lib-coupling scheme 83 5.2 The jj-coupling scheme 84 5.3 Intermediate coupling: the transition between coupling schemes 86 5.4 Selection rules in the LS-couplmg scheme 90 5.5 The Zeeman effect 90 5.6 Summary 93 Further reading 94 Exercises 94 6 Hyperfme structure and isotope shift 97 6.1 Hyperfine structure 97 6.1.1 Hyperfine structure for s-electrons 97 6.1.2 Hydrogen maser 100 6.1.3 Hyperfine structure for Ι φ 0 101 6.1.4 Comparison of hyperfine and fine structures 102 6.2 Isotope shift 105 6.2.1 Mass effects 105 6.2.2 Volume shift 106 6.2.3 Nuclear information from atoms 108 6.3 Zeeman effect and hyperfine structure 108 6.3.1 Zeeman effect of a weak field, μ -gB < A 109 6.3.2 Zeeman effect of a strong field, μ^Β > A 110 6.3.3 Intermediate field strength 111 6.4 Measurement of hyperfine structure 112 6.4.1 The atomic-beam technique 114 6.4.2 Atomic clocks Ц8 Further reading 119 Exercises 120 7 The interaction of atoms with radiation 123 7.1 Setting up the equations 123 Contents xi 7.1.1 Perturbation by an oscillating electric field 124 7.1.2 The rotating-wave approximation 125 7.2 The Einstein В coefficients 126 7.3 Interaction with monochromatic radiation 127 7.3.1 The concepts of тг -pulses and тг/2 -pulses 128 7.3.2 The Bloch vector and Bloch sphere 128 7.4 Ramsey fringes 132 7.5 Radiative damping 134 7.5.1 The damping of a classical dipole 135 7.5.2 The optical Bloch equations 137 7.6 The optical absorption cross-section 138 7.6.1 Cross-section for pure radiative broadening 141 7.6.2 The saturation intensity 142 7.6.3 Power broadening 143 7.7 The a.c. Stark effect or light shift 144 7.8 Comment on semiclassical theory 145 7.9 Conclusions 146 Further reading 147 Exercises 148 8 Doppler-free leiser spectroscopy 151 8.1 Doppler broadening of spectral lines 151 8.2 The crossed-beam method 153 8.3 Saturated absorption spectroscopy 155 8.3.1 Principle of saturated absorption spectroscopy 156 8.3.2 Cross-over resonances in saturation spectroscopy 159 8.4 Two-photon spectroscopy 163 8.5 Calibration in laser spectroscopy 168 8.5.1 Calibration of the relative frequency 168 8.5.2 Absolute calibration 169 8.5.3 Optical frequency combs 171 Further reading 175 Exercises 175 9 Laser cooling and trapping 178 9.1 The scattering force 179 9.2 Slowing an atomic beam 182 9.2.1 Chirp cooling 184 9.3 The optical molasses technique 185 9.3.1 The Doppler cooling limit 188 9.4 The magneto-optical trap 190 9.5 Introduction to the dipole force 194 9.6 Theory of the dipole force 197 9.6.1 Optical lattice 201 9.7 The Sisyphus cooling technique 203 9.7.1 General remarks 203 9.7.2 Detailed description of Sisyphus cooling 204 9.7.3 Limit of the Sisyphus cooling mechanism 207 xii Contents 9.8 Raman transitions 208 9.8.1 Velocity selection by Raman transitions 208 9.8.2 Raman cooling 210 9.9 An atomic fountain 211 9.10 Conclusions 213 Exercises 214 10 Magnetic trapping, evaporative cooling and Bose— Einstein condensation 218 10.1 Principle of magnetic trapping 218 10.2 Magnetic trapping 220 10.2.1 Confinement in the radial direction 220 10.2.2 Confinement in the axial direction 221 10.3 Evaporative cooling 224 10.4 Bose-Einstein condensation 226 10.5 Bose-Einstein condensation in trapped atomic vapours 228 10.5.1 The scattering length 229 10.6 A Bose-Einstein condensate 234 10.7 Properties of Bose-condensed gases 239 10.7.1 Speed of sound 239 10.7.2 Healing length 240 10.7.3 The coherence of a Bose-Einstein condensate 240 10.7.4 The atom laser 242 10.8 Conclusions 242 Exercises 243 11 Atom interferometry 246 11.1 Young's double-slit experiment 247 11.2 A diffraction grating for atoms 249 11.3 The three-grating interferometer 251 11.4 Measurement of rotation 251 11.5 The diffraction of atoms by light 253 11.5.1 Interferometry with Raman transitions 255 11.6 Conclusions 257 Further reading 258 Exercises 258 12 Ion traps 259 12.1 The force on ions in an electric field 259 12.2 Earnshaw's theorem 260 12.3 The Paul trap 261 12.3.1 Equilibrium of a ball on a rotating saddle 262 12.3.2 The effective potential in an a.c. field 262 12.3.3 The linear Paul trap 262 12.4 Buffer gas cooling 266 12.5 Laser cooling of trapped ions 267 12.6 Quantum jumps 269 12.7 The Penning trap and the Paul trap 271 Contents xiii 12.7.1 The Penning trap 272 12.7.2 Mass spectroscopy of ions 274 12.7.3 The anomalous magnetic moment of the electron 274 12.8 Electron beam ion trap 275 12.9 Resolved sideband cooling 277 12.10 Summary of ion traps 279 Further reading 279 Exercises 280 13 Quantum computing 282 13.1 Qubits and their properties 283 13.1.1 Entanglement 284 13.2 A quantum logic gate 287 13.2.1 Making a CNOT gate 287 13.3 Parallelism in quantum computing 289 13.4 Summary of quantum computers 291 13.5 Decoherence and quantum error correction 291 13.6 Conclusion 293 Further reading 294 Exercises 294 A Appendix A: Perturbation theory 298 A.I Mathematics of perturbation theory 298 A. 2 Interaction of classical oscillators of similar frequencies 299 В Appendix B: The calculation of electrostatic energies 302 С Appendix C: Magnetic dipole transitions 305 D Appendix D: The line shape in saturated absorption spectroscopy 307 E Appendix E: Raman and two-photon transitions 310 E.I Raman transitions 310 E.2 Two-photon transitions 313 F Appendix F: The statistical mechanics of Bose— Einstein condensation 315 F.I The statistical mechanics of photons 315 F.2 Bose-Einstein condensation 316 F.2.1 Bose-Einstein condensation in a harmonic trap 318 References 319 Index 326
any_adam_object 1
any_adam_object_boolean 1
author Foot, Christopher J.
author_GND (DE-588)136908713
author_facet Foot, Christopher J.
author_role aut
author_sort Foot, Christopher J.
author_variant c j f cj cjf
building Verbundindex
bvnumber BV023183321
classification_rvk UM 2000
ctrlnum (OCoLC)263430759
(DE-599)BVBBV023183321
dewey-full 539.7
dewey-hundreds 500 - Natural sciences and mathematics
dewey-ones 539 - Modern physics
dewey-raw 539.7
dewey-search 539.7
dewey-sort 3539.7
dewey-tens 530 - Physics
discipline Physik
discipline_str_mv Physik
edition reprint. (twice with corr.)
format Book
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01423nam a2200373 c 4500</leader><controlfield tag="001">BV023183321</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">080226s2007 ad|| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780198506966</subfield><subfield code="9">978-0-19-850696-6</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780198506959</subfield><subfield code="9">978-0-19-850695-9</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)263430759</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV023183321</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-355</subfield><subfield code="a">DE-703</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">539.7</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UM 2000</subfield><subfield code="0">(DE-625)145841:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Foot, Christopher J.</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)136908713</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Atomic physics</subfield><subfield code="c">C. J. Foot</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">reprint. (twice with corr.)</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Oxford [u.a.]</subfield><subfield code="b">Oxford University Press</subfield><subfield code="c">2007</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XIII, 331 S.</subfield><subfield code="b">Ill., graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Oxford master series in atomic, optical and laser physics</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Atomphysik</subfield><subfield code="0">(DE-588)4003423-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="0">(DE-588)4123623-3</subfield><subfield code="a">Lehrbuch</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Atomphysik</subfield><subfield code="0">(DE-588)4003423-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Regensburg</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&amp;doc_library=BVB01&amp;local_base=BVB01&amp;doc_number=016369824&amp;sequence=000002&amp;line_number=0001&amp;func_code=DB_RECORDS&amp;service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-016369824</subfield></datafield></record></collection>
genre (DE-588)4123623-3 Lehrbuch gnd-content
genre_facet Lehrbuch
id DE-604.BV023183321
illustrated Illustrated
index_date 2024-07-02T20:02:14Z
indexdate 2024-07-09T21:12:30Z
institution BVB
isbn 9780198506966
9780198506959
language English
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-016369824
oclc_num 263430759
open_access_boolean
owner DE-355
DE-BY-UBR
DE-703
owner_facet DE-355
DE-BY-UBR
DE-703
physical XIII, 331 S. Ill., graph. Darst.
publishDate 2007
publishDateSearch 2007
publishDateSort 2007
publisher Oxford University Press
record_format marc
series2 Oxford master series in atomic, optical and laser physics
spelling Foot, Christopher J. Verfasser (DE-588)136908713 aut
Atomic physics C. J. Foot
reprint. (twice with corr.)
Oxford [u.a.] Oxford University Press 2007
XIII, 331 S. Ill., graph. Darst.
txt rdacontent
n rdamedia
nc rdacarrier
Oxford master series in atomic, optical and laser physics
Atomphysik (DE-588)4003423-9 gnd rswk-swf
(DE-588)4123623-3 Lehrbuch gnd-content
Atomphysik (DE-588)4003423-9 s
DE-604
Digitalisierung UB Regensburg application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016369824&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis
spellingShingle Foot, Christopher J.
Atomic physics
Atomphysik (DE-588)4003423-9 gnd
subject_GND (DE-588)4003423-9
(DE-588)4123623-3
title Atomic physics
title_auth Atomic physics
title_exact_search Atomic physics
title_exact_search_txtP Atomic physics
title_full Atomic physics C. J. Foot
title_fullStr Atomic physics C. J. Foot
title_full_unstemmed Atomic physics C. J. Foot
title_short Atomic physics
title_sort atomic physics
topic Atomphysik (DE-588)4003423-9 gnd
topic_facet Atomphysik
Lehrbuch
url http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016369824&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA
work_keys_str_mv AT footchristopherj atomicphysics