Atomic physics
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Oxford [u.a.]
Oxford University Press
2007
|
Ausgabe: | reprint. (twice with corr.) |
Schriftenreihe: | Oxford master series in atomic, optical and laser physics
|
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV023183321 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | t | ||
008 | 080226s2007 ad|| |||| 00||| eng d | ||
020 | |a 9780198506966 |9 978-0-19-850696-6 | ||
020 | |a 9780198506959 |9 978-0-19-850695-9 | ||
035 | |a (OCoLC)263430759 | ||
035 | |a (DE-599)BVBBV023183321 | ||
040 | |a DE-604 |b ger |e rakwb | ||
041 | 0 | |a eng | |
049 | |a DE-355 |a DE-703 | ||
082 | 0 | |a 539.7 | |
084 | |a UM 2000 |0 (DE-625)145841: |2 rvk | ||
100 | 1 | |a Foot, Christopher J. |e Verfasser |0 (DE-588)136908713 |4 aut | |
245 | 1 | 0 | |a Atomic physics |c C. J. Foot |
250 | |a reprint. (twice with corr.) | ||
264 | 1 | |a Oxford [u.a.] |b Oxford University Press |c 2007 | |
300 | |a XIII, 331 S. |b Ill., graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 0 | |a Oxford master series in atomic, optical and laser physics | |
650 | 0 | 7 | |a Atomphysik |0 (DE-588)4003423-9 |2 gnd |9 rswk-swf |
655 | 7 | |0 (DE-588)4123623-3 |a Lehrbuch |2 gnd-content | |
689 | 0 | 0 | |a Atomphysik |0 (DE-588)4003423-9 |D s |
689 | 0 | |5 DE-604 | |
856 | 4 | 2 | |m Digitalisierung UB Regensburg |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016369824&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-016369824 |
Datensatz im Suchindex
_version_ | 1804137451670732800 |
---|---|
adam_text | Contents
1
Early atomic physics
1
1.1
Introduction
1
1.2
Spectrum of atomic hydrogen
1
1.3
Bohr s theory
3
1.4
Relativistic effects
5
1.5
Moseley and the atomic number
7
1.6
Radiative decay
11
1.7
Einstein A and
В
coefficients
11
1.8
The
Zeeman
effect
13
1.8.1
Experimental observation of the
Zeeman
effect
17
1.9
Summary of atomic units
18
Exercises
19
2
The
hydrogen atom
22
2.1
The
Schrödinger
equation
22
2.1.1
Solution of the angular equation
23
2.1.2
Solution of the radial equation
26
2.2
Transitions
29
2.2.1
Selection rules
30
2.2.2
Integration with respect to
θ
32
2.2.3
Parity
32
2.3
Fine structure
34
2.3.1
Spin of the electron
35
2.3.2
The spin-orbit interaction
36
2.3.3
The fine structure of hydrogen
38
2.3.4
The Lamb shift
40
2.3.5
Transitions between fine-structure levels
41
Further reading
42
Exercises
42
3
Helium
45
3.1
The ground state of helium
45
3.2
Excited states of helium
46
3.2.1
Spin eigenstates
51
3.2.2
Transitions in helium
52
3.3
Evaluation of the integrals in helium
53
3.3.1
Ground state
53
3.3.2
Excited states: the direct integral
54
3.3.3
Excited states: the exchange integral
55
χ
Contents
Further reading
56
Exercises
58
4
The alkalis
60
4.1
Shell structure and the periodic table
60
4.2
The quantum defect
61
4.3
The central-field approximation
64
4.4
Numerical solution of the
Schrödinger
equation
68
4.4.1
Self-consistent solutions
70
4.5
The spin-orbit interaction: a quantum mechanical
approach
71
4.6
Fine structure in the alkalis
73
4.6.1
Relative intensities of fine-structure transitions
74
Further reading
75
Exercises
76
5
The LS-coupling scheme
80
5.1
Fine structure in the Lib-coupling scheme
83
5.2
The jj-coupling scheme
84
5.3
Intermediate coupling: the transition between coupling
schemes
86
5.4
Selection rules in the LS-couplmg scheme
90
5.5
The
Zeeman
effect
90
5.6
Summary
93
Further reading
94
Exercises
94
6
Hyperfme structure and isotope shift
97
6.1
Hyperfine structure
97
6.1.1
Hyperfine structure for s-electrons
97
6.1.2
Hydrogen
maser
100
6.1.3
Hyperfine structure for
Ι φ
0 101
6.1.4
Comparison of hyperfine and fine structures
102
6.2
Isotope shift
105
6.2.1
Mass effects
105
6.2.2
Volume shift
106
6.2.3
Nuclear information from atoms
108
6.3
Zeeman
effect and hyperfine structure
108
6.3.1
Zeeman
effect of a weak field,
μ
-gB
< A
109
6.3.2
Zeeman
effect of a strong field,
μ^Β
>
A
110
6.3.3
Intermediate field strength 111
6.4
Measurement of hyperfine structure
112
6.4.1
The atomic-beam technique
114
6.4.2
Atomic clocks
Ц8
Further reading
119
Exercises
120
7
The interaction of atoms with radiation
123
7.1
Setting up the equations
123
Contents xi
7.1.1
Perturbation
by an oscillating
electric
field
124
7.1.2
The rotating-wave approximation
125
7.2
The Einstein
В
coefficients
126
7.3
Interaction with monochromatic radiation
127
7.3.1
The concepts of
тг
-pulses
and
тг/2
-pulses
128
7.3.2
The Bloch vector and Bloch sphere
128
7.4
Ramsey fringes
132
7.5
Radiative damping
134
7.5.1
The damping of a classical
dipole
135
7.5.2
The optical Bloch equations
137
7.6
The optical absorption cross-section
138
7.6.1
Cross-section for pure radiative broadening
141
7.6.2
The saturation intensity
142
7.6.3
Power broadening
143
7.7
The a.c. Stark effect or light shift
144
7.8
Comment on semiclassical theory
145
7.9
Conclusions
146
Further reading
147
Exercises
148
8
Doppler-free
leiser
spectroscopy
151
8.1
Doppler
broadening of spectral lines
151
8.2
The crossed-beam method
153
8.3
Saturated absorption spectroscopy
155
8.3.1
Principle of saturated absorption spectroscopy
156
8.3.2
Cross-over resonances in saturation spectroscopy
159
8.4
Two-photon spectroscopy
163
8.5
Calibration in laser spectroscopy
168
8.5.1
Calibration of the relative frequency
168
8.5.2
Absolute calibration
169
8.5.3
Optical frequency combs
171
Further reading
175
Exercises
175
9
Laser cooling and trapping
178
9.1
The scattering force
179
9.2
Slowing an atomic beam
182
9.2.1
Chirp cooling
184
9.3
The optical molasses technique
185
9.3.1
The
Doppler
cooling limit
188
9.4
The magneto-optical trap
190
9.5
Introduction to the
dipole
force
194
9.6
Theory of the
dipole
force
197
9.6.1
Optical lattice
201
9.7
The Sisyphus cooling technique
203
9.7.1
General remarks
203
9.7.2
Detailed description of Sisyphus cooling
204
9.7.3
Limit of the Sisyphus cooling mechanism
207
xii Contents
9.8
Raman transitions
208
9.8.1
Velocity selection by Raman transitions
208
9.8.2
Raman cooling
210
9.9
An atomic fountain
211
9.10
Conclusions
213
Exercises
214
10
Magnetic trapping, evaporative cooling and
Bose—
Einstein condensation
218
10.1
Principle of magnetic trapping
218
10.2
Magnetic trapping
220
10.2.1
Confinement in the radial direction
220
10.2.2
Confinement in the axial direction
221
10.3
Evaporative cooling
224
10.4
Bose-Einstein condensation
226
10.5
Bose-Einstein condensation in trapped atomic vapours
228
10.5.1
The scattering length
229
10.6
A Bose-Einstein condensate
234
10.7
Properties of Bose-condensed gases
239
10.7.1
Speed of sound
239
10.7.2
Healing length
240
10.7.3
The coherence of a Bose-Einstein condensate
240
10.7.4
The atom laser
242
10.8
Conclusions
242
Exercises
243
11
Atom
interferometry
246
11.1
Young s double-slit experiment
247
11.2
A diffraction grating for atoms
249
11.3
The three-grating interferometer
251
11.4
Measurement of rotation
251
11.5
The diffraction of atoms by light
253
11.5.1
Interferometry
with Raman transitions
255
11.6
Conclusions
257
Further reading
258
Exercises
258
12
Ion traps
259
12.1
The force on ions in an electric field
259
12.2
Earnshaw s theorem
260
12.3
The Paul trap
261
12.3.1
Equilibrium of a ball on a rotating saddle
262
12.3.2
The effective potential in an a.c. field
262
12.3.3
The linear Paul trap
262
12.4
Buffer gas cooling
266
12.5
Laser cooling of trapped ions
267
12.6
Quantum jumps
269
12.7
The Penning trap and the Paul trap
271
Contents xiii
12.7.1
The Penning trap
272
12.7.2
Mass spectroscopy of ions
274
12.7.3
The anomalous magnetic moment of the electron
274
12.8
Electron beam ion trap
275
12.9
Resolved sideband cooling
277
12.10
Summary of ion traps
279
Further reading
279
Exercises
280
13
Quantum computing
282
13.1
Qubits and their properties
283
13.1.1
Entanglement
284
13.2
A quantum logic gate
287
13.2.1
Making
a CNOT
gate
287
13.3
Parallelism in quantum computing
289
13.4
Summary of quantum computers
291
13.5
Decoherence and quantum error correction
291
13.6
Conclusion
293
Further reading
294
Exercises
294
A Appendix A: Perturbation theory
298
A.I Mathematics of perturbation theory
298
A.
2
Interaction of classical oscillators of similar frequencies
299
В
Appendix B: The calculation of electrostatic energies
302
С
Appendix C: Magnetic
dipole
transitions
305
D
Appendix D: The line shape in saturated absorption
spectroscopy
307
E
Appendix E: Raman and two-photon transitions
310
E.I Raman transitions
310
E.2 Two-photon transitions
313
F
Appendix F: The statistical mechanics of
Bose—
Einstein condensation
315
F.I The statistical mechanics of photons
315
F.2 Bose-Einstein condensation
316
F.2.1 Bose-Einstein condensation in a harmonic trap
318
References
319
Index
326
|
adam_txt |
Contents
1
Early atomic physics
1
1.1
Introduction
1
1.2
Spectrum of atomic hydrogen
1
1.3
Bohr's theory
3
1.4
Relativistic effects
5
1.5
Moseley and the atomic number
7
1.6
Radiative decay
11
1.7
Einstein A and
В
coefficients
11
1.8
The
Zeeman
effect
13
1.8.1
Experimental observation of the
Zeeman
effect
17
1.9
Summary of atomic units
18
Exercises
19
2
The
hydrogen atom
22
2.1
The
Schrödinger
equation
22
2.1.1
Solution of the angular equation
23
2.1.2
Solution of the radial equation
26
2.2
Transitions
29
2.2.1
Selection rules
30
2.2.2
Integration with respect to
θ
32
2.2.3
Parity
32
2.3
Fine structure
34
2.3.1
Spin of the electron
35
2.3.2
The spin-orbit interaction
36
2.3.3
The fine structure of hydrogen
38
2.3.4
The Lamb shift
40
2.3.5
Transitions between fine-structure levels
41
Further reading
42
Exercises
42
3
Helium
45
3.1
The ground state of helium
45
3.2
Excited states of helium
46
3.2.1
Spin eigenstates
51
3.2.2
Transitions in helium
52
3.3
Evaluation of the integrals in helium
53
3.3.1
Ground state
53
3.3.2
Excited states: the direct integral
54
3.3.3
Excited states: the exchange integral
55
χ
Contents
Further reading
56
Exercises
58
4
The alkalis
60
4.1
Shell structure and the periodic table
60
4.2
The quantum defect
61
4.3
The central-field approximation
64
4.4
Numerical solution of the
Schrödinger
equation
68
4.4.1
Self-consistent solutions
70
4.5
The spin-orbit interaction: a quantum mechanical
approach
71
4.6
Fine structure in the alkalis
73
4.6.1
Relative intensities of fine-structure transitions
74
Further reading
75
Exercises
76
5
The LS-coupling scheme
80
5.1
Fine structure in the Lib-coupling scheme
83
5.2
The jj-coupling scheme
84
5.3
Intermediate coupling: the transition between coupling
schemes
86
5.4
Selection rules in the LS-couplmg scheme
90
5.5
The
Zeeman
effect
90
5.6
Summary
93
Further reading
94
Exercises
94
6
Hyperfme structure and isotope shift
97
6.1
Hyperfine structure
97
6.1.1
Hyperfine structure for s-electrons
97
6.1.2
Hydrogen
maser
100
6.1.3
Hyperfine structure for
Ι φ
0 101
6.1.4
Comparison of hyperfine and fine structures
102
6.2
Isotope shift
105
6.2.1
Mass effects
105
6.2.2
Volume shift
106
6.2.3
Nuclear information from atoms
108
6.3
Zeeman
effect and hyperfine structure
108
6.3.1
Zeeman
effect of a weak field,
μ
-gB
< A
109
6.3.2
Zeeman
effect of a strong field,
μ^Β
>
A
110
6.3.3
Intermediate field strength 111
6.4
Measurement of hyperfine structure
112
6.4.1
The atomic-beam technique
114
6.4.2
Atomic clocks
Ц8
Further reading
119
Exercises
120
7
The interaction of atoms with radiation
123
7.1
Setting up the equations
123
Contents xi
7.1.1
Perturbation
by an oscillating
electric
field
124
7.1.2
The rotating-wave approximation
125
7.2
The Einstein
В
coefficients
126
7.3
Interaction with monochromatic radiation
127
7.3.1
The concepts of
тг
-pulses
and
тг/2
-pulses
128
7.3.2
The Bloch vector and Bloch sphere
128
7.4
Ramsey fringes
132
7.5
Radiative damping
134
7.5.1
The damping of a classical
dipole
135
7.5.2
The optical Bloch equations
137
7.6
The optical absorption cross-section
138
7.6.1
Cross-section for pure radiative broadening
141
7.6.2
The saturation intensity
142
7.6.3
Power broadening
143
7.7
The a.c. Stark effect or light shift
144
7.8
Comment on semiclassical theory
145
7.9
Conclusions
146
Further reading
147
Exercises
148
8
Doppler-free
leiser
spectroscopy
151
8.1
Doppler
broadening of spectral lines
151
8.2
The crossed-beam method
153
8.3
Saturated absorption spectroscopy
155
8.3.1
Principle of saturated absorption spectroscopy
156
8.3.2
Cross-over resonances in saturation spectroscopy
159
8.4
Two-photon spectroscopy
163
8.5
Calibration in laser spectroscopy
168
8.5.1
Calibration of the relative frequency
168
8.5.2
Absolute calibration
169
8.5.3
Optical frequency combs
171
Further reading
175
Exercises
175
9
Laser cooling and trapping
178
9.1
The scattering force
179
9.2
Slowing an atomic beam
182
9.2.1
Chirp cooling
184
9.3
The optical molasses technique
185
9.3.1
The
Doppler
cooling limit
188
9.4
The magneto-optical trap
190
9.5
Introduction to the
dipole
force
194
9.6
Theory of the
dipole
force
197
9.6.1
Optical lattice
201
9.7
The Sisyphus cooling technique
203
9.7.1
General remarks
203
9.7.2
Detailed description of Sisyphus cooling
204
9.7.3
Limit of the Sisyphus cooling mechanism
207
xii Contents
9.8
Raman transitions
208
9.8.1
Velocity selection by Raman transitions
208
9.8.2
Raman cooling
210
9.9
An atomic fountain
211
9.10
Conclusions
213
Exercises
214
10
Magnetic trapping, evaporative cooling and
Bose—
Einstein condensation
218
10.1
Principle of magnetic trapping
218
10.2
Magnetic trapping
220
10.2.1
Confinement in the radial direction
220
10.2.2
Confinement in the axial direction
221
10.3
Evaporative cooling
224
10.4
Bose-Einstein condensation
226
10.5
Bose-Einstein condensation in trapped atomic vapours
228
10.5.1
The scattering length
229
10.6
A Bose-Einstein condensate
234
10.7
Properties of Bose-condensed gases
239
10.7.1
Speed of sound
239
10.7.2
Healing length
240
10.7.3
The coherence of a Bose-Einstein condensate
240
10.7.4
The atom laser
242
10.8
Conclusions
242
Exercises
243
11
Atom
interferometry
246
11.1
Young's double-slit experiment
247
11.2
A diffraction grating for atoms
249
11.3
The three-grating interferometer
251
11.4
Measurement of rotation
251
11.5
The diffraction of atoms by light
253
11.5.1
Interferometry
with Raman transitions
255
11.6
Conclusions
257
Further reading
258
Exercises
258
12
Ion traps
259
12.1
The force on ions in an electric field
259
12.2
Earnshaw's theorem
260
12.3
The Paul trap
261
12.3.1
Equilibrium of a ball on a rotating saddle
262
12.3.2
The effective potential in an a.c. field
262
12.3.3
The linear Paul trap
262
12.4
Buffer gas cooling
266
12.5
Laser cooling of trapped ions
267
12.6
Quantum jumps
269
12.7
The Penning trap and the Paul trap
271
Contents xiii
12.7.1
The Penning trap
272
12.7.2
Mass spectroscopy of ions
274
12.7.3
The anomalous magnetic moment of the electron
274
12.8
Electron beam ion trap
275
12.9
Resolved sideband cooling
277
12.10
Summary of ion traps
279
Further reading
279
Exercises
280
13
Quantum computing
282
13.1
Qubits and their properties
283
13.1.1
Entanglement
284
13.2
A quantum logic gate
287
13.2.1
Making
a CNOT
gate
287
13.3
Parallelism in quantum computing
289
13.4
Summary of quantum computers
291
13.5
Decoherence and quantum error correction
291
13.6
Conclusion
293
Further reading
294
Exercises
294
A Appendix A: Perturbation theory
298
A.I Mathematics of perturbation theory
298
A.
2
Interaction of classical oscillators of similar frequencies
299
В
Appendix B: The calculation of electrostatic energies
302
С
Appendix C: Magnetic
dipole
transitions
305
D
Appendix D: The line shape in saturated absorption
spectroscopy
307
E
Appendix E: Raman and two-photon transitions
310
E.I Raman transitions
310
E.2 Two-photon transitions
313
F
Appendix F: The statistical mechanics of
Bose—
Einstein condensation
315
F.I The statistical mechanics of photons
315
F.2 Bose-Einstein condensation
316
F.2.1 Bose-Einstein condensation in a harmonic trap
318
References
319
Index
326 |
any_adam_object | 1 |
any_adam_object_boolean | 1 |
author | Foot, Christopher J. |
author_GND | (DE-588)136908713 |
author_facet | Foot, Christopher J. |
author_role | aut |
author_sort | Foot, Christopher J. |
author_variant | c j f cj cjf |
building | Verbundindex |
bvnumber | BV023183321 |
classification_rvk | UM 2000 |
ctrlnum | (OCoLC)263430759 (DE-599)BVBBV023183321 |
dewey-full | 539.7 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 539 - Modern physics |
dewey-raw | 539.7 |
dewey-search | 539.7 |
dewey-sort | 3539.7 |
dewey-tens | 530 - Physics |
discipline | Physik |
discipline_str_mv | Physik |
edition | reprint. (twice with corr.) |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01423nam a2200373 c 4500</leader><controlfield tag="001">BV023183321</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">080226s2007 ad|| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780198506966</subfield><subfield code="9">978-0-19-850696-6</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780198506959</subfield><subfield code="9">978-0-19-850695-9</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)263430759</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV023183321</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-355</subfield><subfield code="a">DE-703</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">539.7</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UM 2000</subfield><subfield code="0">(DE-625)145841:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Foot, Christopher J.</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)136908713</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Atomic physics</subfield><subfield code="c">C. J. Foot</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">reprint. (twice with corr.)</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Oxford [u.a.]</subfield><subfield code="b">Oxford University Press</subfield><subfield code="c">2007</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XIII, 331 S.</subfield><subfield code="b">Ill., graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Oxford master series in atomic, optical and laser physics</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Atomphysik</subfield><subfield code="0">(DE-588)4003423-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="0">(DE-588)4123623-3</subfield><subfield code="a">Lehrbuch</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Atomphysik</subfield><subfield code="0">(DE-588)4003423-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Regensburg</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016369824&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-016369824</subfield></datafield></record></collection> |
genre | (DE-588)4123623-3 Lehrbuch gnd-content |
genre_facet | Lehrbuch |
id | DE-604.BV023183321 |
illustrated | Illustrated |
index_date | 2024-07-02T20:02:14Z |
indexdate | 2024-07-09T21:12:30Z |
institution | BVB |
isbn | 9780198506966 9780198506959 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-016369824 |
oclc_num | 263430759 |
open_access_boolean | |
owner | DE-355 DE-BY-UBR DE-703 |
owner_facet | DE-355 DE-BY-UBR DE-703 |
physical | XIII, 331 S. Ill., graph. Darst. |
publishDate | 2007 |
publishDateSearch | 2007 |
publishDateSort | 2007 |
publisher | Oxford University Press |
record_format | marc |
series2 | Oxford master series in atomic, optical and laser physics |
spelling | Foot, Christopher J. Verfasser (DE-588)136908713 aut Atomic physics C. J. Foot reprint. (twice with corr.) Oxford [u.a.] Oxford University Press 2007 XIII, 331 S. Ill., graph. Darst. txt rdacontent n rdamedia nc rdacarrier Oxford master series in atomic, optical and laser physics Atomphysik (DE-588)4003423-9 gnd rswk-swf (DE-588)4123623-3 Lehrbuch gnd-content Atomphysik (DE-588)4003423-9 s DE-604 Digitalisierung UB Regensburg application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016369824&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Foot, Christopher J. Atomic physics Atomphysik (DE-588)4003423-9 gnd |
subject_GND | (DE-588)4003423-9 (DE-588)4123623-3 |
title | Atomic physics |
title_auth | Atomic physics |
title_exact_search | Atomic physics |
title_exact_search_txtP | Atomic physics |
title_full | Atomic physics C. J. Foot |
title_fullStr | Atomic physics C. J. Foot |
title_full_unstemmed | Atomic physics C. J. Foot |
title_short | Atomic physics |
title_sort | atomic physics |
topic | Atomphysik (DE-588)4003423-9 gnd |
topic_facet | Atomphysik Lehrbuch |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016369824&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT footchristopherj atomicphysics |