Econometric analysis of count data
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Berlin [u.a.]
Springer
2008
|
Ausgabe: | 5. ed. |
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV023148656 | ||
003 | DE-604 | ||
005 | 20131119 | ||
007 | t| | ||
008 | 080214s2008 gw d||| |||| 00||| eng d | ||
015 | |a 08,N06,0745 |2 dnb | ||
016 | 7 | |a 987201514 |2 DE-101 | |
020 | |a 9783540776482 |c Gb. : EUR 106.95 (freier Pr.), sfr 174.00 (freier Pr.) |9 978-3-540-77648-2 | ||
020 | |a 3540776486 |c Gb. : EUR 106.95 (freier Pr.), sfr 174.00 (freier Pr.) |9 3-540-77648-6 | ||
020 | |a 9783540783893 |9 978-3-540-78389-3 | ||
020 | |a 9783642096402 |9 978-3-642-09640-2 | ||
024 | 3 | |a 9783540776482 | |
028 | 5 | 2 | |a 12215225 |
035 | |a (OCoLC)246632720 | ||
035 | |a (DE-599)DNB987201514 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 0 | |a eng | |
044 | |a gw |c XA-DE-BE | ||
049 | |a DE-355 |a DE-20 |a DE-N2 |a DE-703 |a DE-19 |a DE-M382 |a DE-945 |a DE-188 |a DE-91G |a DE-384 |a DE-83 | ||
050 | 0 | |a HB139 | |
082 | 0 | |a 330.015195 |2 22 | |
082 | 0 | |a 330.015195 |2 22/ger | |
084 | |a QH 237 |0 (DE-625)141552: |2 rvk | ||
084 | |a QH 252 |0 (DE-625)141562: |2 rvk | ||
084 | |a QH 300 |0 (DE-625)141566: |2 rvk | ||
084 | |a QV 230 |0 (DE-625)142145: |2 rvk | ||
084 | |a WIR 361f |2 stub | ||
084 | |a WIR 017f |2 stub | ||
084 | |a 510 |2 sdnb | ||
100 | 1 | |a Winkelmann, Rainer |d 1963- |e Verfasser |0 (DE-588)131412434 |4 aut | |
245 | 1 | 0 | |a Econometric analysis of count data |c Rainer Winkelmann |
250 | |a 5. ed. | ||
264 | 1 | |a Berlin [u.a.] |b Springer |c 2008 | |
300 | |a XIV, 333 S. |b graph. Darst. |c 235 mm x 155 mm | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
650 | 4 | |a Ökonometrisches Modell | |
650 | 4 | |a Econometrics | |
650 | 4 | |a Labor mobility |x Econometric models | |
650 | 4 | |a Time-series analysis | |
650 | 0 | 7 | |a Ökonometrie |0 (DE-588)4132280-0 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Arbeitsmobilität |0 (DE-588)4068809-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Ereignisdatenanalyse |0 (DE-588)4132103-0 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Zeitreihenanalyse |0 (DE-588)4067486-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Ökonometrisches Modell |0 (DE-588)4043212-9 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Ereignisdatenanalyse |0 (DE-588)4132103-0 |D s |
689 | 0 | 1 | |a Ökonometrisches Modell |0 (DE-588)4043212-9 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Arbeitsmobilität |0 (DE-588)4068809-4 |D s |
689 | 1 | 1 | |a Ereignisdatenanalyse |0 (DE-588)4132103-0 |D s |
689 | 1 | |5 DE-604 | |
689 | 2 | 0 | |a Ökonometrie |0 (DE-588)4132280-0 |D s |
689 | 2 | |8 1\p |5 DE-604 | |
689 | 3 | 0 | |a Zeitreihenanalyse |0 (DE-588)4067486-1 |D s |
689 | 3 | |8 2\p |5 DE-604 | |
856 | 4 | 2 | |m SWB Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016332219&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-016332219 |
Datensatz im Suchindex
DE-19_call_number | 0001/8 08-8412 |
---|---|
DE-19_location | 0 |
DE-BY-TUM_call_number | 0048 WIR 017f 2001 A 35900(5) 0102 WIR 017f 2001 A 35900(5) |
DE-BY-TUM_katkey | 1783192 |
DE-BY-TUM_location | LSB 01 |
DE-BY-TUM_media_number | 040010218454 040071470221 |
DE-BY-UBM_katkey | 3973167 |
DE-BY-UBM_media_number | 41613555460019 |
DE-BY-UBR_call_number | 40/QH 237 W774(5) |
DE-BY-UBR_katkey | 4263212 |
DE-BY-UBR_location | 40 |
DE-BY-UBR_media_number | 069035674848 |
_version_ | 1823054125537951744 |
adam_text | CONTENTS PREFACE . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . V 1 INTRODUCTION
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . 1 1.1 POISSON REGRESSION MODEL . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . 1 1.2 EXAMPLES. . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . 2 1.3 ORGANIZATION OF THE BOOK . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . 4 2 PROBABILITY MODELS FOR COUNT DATA .
. . . . . . . . . . . . . . . . . . . . . . . 7 2.1 INTRODUCTION . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . 7 2.2 POISSON DISTRIBUTION . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . 7 2.2.1 DEFINITIONS AND PROPERTIES .
. . . . . . . . . . . . . . . . . . . . . . . . . 7 2.2.2 GENESIS OF THE
POISSON DISTRIBUTION . . . . . . . . . . . . . . . . . . 10 2.2.3
POISSON PROCESS . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . 11 2.2.4 GENERALIZATIONS OF THE POISSON PROCESS . . . . .
. . . . . . . . . . 14 2.2.5 POISSON DISTRIBUTION AS A BINOMIAL LIMIT .
. . . . . . . . . . . . 15 2.2.6 EXPONENTIAL INTERARRIVAL TIMES . . . .
. . . . . . . . . . . . . . . . . . 16 2.2.7 NON-POISSONNESS . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 2.3 FURTHER
DISTRIBUTIONS FOR COUNT DATA . . . . . . . . . . . . . . . . . . . . . .
20 2.3.1 NEGATIVE BINOMIAL DISTRIBUTION . . . . . . . . . . . . . . . .
. . . . . 20 2.3.2 BINOMIAL DISTRIBUTION . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . 25 2.3.3 LOGARITHMIC DISTRIBUTION . . . . .
. . . . . . . . . . . . . . . . . . . . . . 27 2.3.4 SUMMARY. . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.4 MODIFIED COUNT DATA DISTRIBUTIONS . . . . . . . . . . . . . . . . .
. . . . . . . 30 2.4.1 TRUNCATION . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . 30 2.4.2 CENSORING AND GROUPING
. . . . . . . . . . . . . . . . . . . . . . . . . . . 31 2.4.3 ALTERED
DISTRIBUTIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 32 2.5 GENERALIZATIONS. . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . 33 2.5.1 MIXTURE DISTRIBUTIONS . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . 33 2.5.2 COMPOUND
DISTRIBUTIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
2.5.3 BIRTH PROCESS GENERALIZATIONS . . . . . . . . . . . . . . . . . .
. . . . . 39 2.5.4 KATZ FAMILY OF DISTRIBUTIONS . . . . . . . . . . . .
. . . . . . . . . . . . 40 VIII CONTENTS 2.5.5 ADDITIVE LOG-DIFFERENCED
PROBABILITY MODELS . . . . . . . . . . 41 2.5.6 LINEAR EXPONENTIAL
FAMILIES . . . . . . . . . . . . . . . . . . . . . . . . 42 2.5.7
SUMMARY. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . 44 2.6 DISTRIBUTIONS FOR OVER- AND UNDERDISPERSION . . .
. . . . . . . . . . . . . 45 2.6.1 GENERALIZED EVENT COUNT MODEL . . . .
. . . . . . . . . . . . . . . . . 45 2.6.2 GENERALIZED POISSON
DISTRIBUTION . . . . . . . . . . . . . . . . . . . . 46 2.6.3 POISSON
POLYNOMIAL DISTRIBUTION. . . . . . . . . . . . . . . . . . . . . 47
2.6.4 DOUBLE POISSON DISTRIBUTION . . . . . . . . . . . . . . . . . . .
. . . . . 49 2.6.5 SUMMARY. . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . 49 2.7 DURATION ANALYSIS AND COUNT
DATA . . . . . . . . . . . . . . . . . . . . . . . . 50 2.7.1
DISTRIBUTIONS FOR INTERARRIVAL TIMES . . . . . . . . . . . . . . . . . .
52 2.7.2 RENEWAL PROCESSES . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . 54 2.7.3 GAMMA COUNT DISTRIBUTION . . . . . . . . .
. . . . . . . . . . . . . . . . 56 2.7.4 DURATION MIXTURE MODELS . . . .
. . . . . . . . . . . . . . . . . . . . . . 59 3 POISSON REGRESSION . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 63 3.1 SPECIFICATION . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . 63 3.1.1 INTRODUCTION . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
3.1.2 ASSUMPTIONS OF THE POISSON REGRESSION MODEL . . . . . . . . . 63
3.1.3 ORDINARY LEAST SQUARES AND OTHER ALTERNATIVES . . . . . . . 65
3.1.4 INTERPRETATION OF PARAMETERS . . . . . . . . . . . . . . . . . . .
. . . . . 70 3.1.5 PERIOD AT RISK . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . 74 3.2 MAXIMUM LIKELIHOOD ESTIMATION .
. . . . . . . . . . . . . . . . . . . . . . . . . 77 3.2.1 INTRODUCTION
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 77 3.2.2 LIKELIHOOD FUNCTION AND MAXIMIZATION . . . . . . . . . . .
. . . . 77 3.2.3 NEWTON-RAPHSON ALGORITHM . . . . . . . . . . . . . . .
. . . . . . . . . 78 3.2.4 PROPERTIES OF THE MAXIMUM LIKELIHOOD
ESTIMATOR . . . . . 80 3.2.5 ESTIMATION OF THE VARIANCE MATRIX . . . . .
. . . . . . . . . . . . . . 82 3.2.6 APPROXIMATE DISTRIBUTION OF THE
POISSON REGRESSION COEFFICIENTS . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . 83 3.2.7 BIAS REDUCTION TECHNIQUES
. . . . . . . . . . . . . . . . . . . . . . . . . 84 3.3 PSEUDO-MAXIMUM
LIKELIHOOD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
3.3.1 LINEAR EXPONENTIAL FAMILIES . . . . . . . . . . . . . . . . . . .
. . . . . 89 3.3.2 BIASED POISSON MAXIMUM LIKELIHOOD INFERENCE . . . . .
. . . 90 3.3.3 ROBUST POISSON REGRESSION . . . . . . . . . . . . . . . .
. . . . . . . . . 91 3.3.4 NON-PARAMETRIC VARIANCE ESTIMATION . . . . .
. . . . . . . . . . . 95 3.3.5 POISSON REGRESSION AND LOG-LINEAR MODELS
. . . . . . . . . . . 97 3.3.6 GENERALIZED METHOD OF MOMENTS . . . . . .
. . . . . . . . . . . . . . 98 3.4 SOURCES OF MISSPECIFICATION. . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . 102 3.4.1 MEAN
FUNCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . 102 3.4.2 UNOBSERVED HETEROGENEITY . . . . . . . . . . . . . . .
. . . . . . . . . . . 103 3.4.3 MEASUREMENT ERROR . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . 105 3.4.4 DEPENDENT PROCESS .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 3.4.5
SELECTIVITY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . 107 3.4.6 SIMULTANEITY AND ENDOGENEITY . . . . . . .
. . . . . . . . . . . . . . . 108 CONTENTS IX 3.4.7 UNDERREPORTING . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
3.4.8 EXCESS ZEROS . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . 109 3.4.9 VARIANCE FUNCTION . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . 110 3.5 TESTING FOR
MISSPECIFICATION . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 112 3.5.1 CLASSICAL SPECIFICATION TESTS . . . . . . . . . . . . .
. . . . . . . . . . . 112 3.5.2 REGRESSION BASED TESTS. . . . . . . . .
. . . . . . . . . . . . . . . . . . . . 118 3.5.3 GOODNESS-OF-FIT TESTS
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118 3.5.4
TESTS FOR NON-NESTED MODELS. . . . . . . . . . . . . . . . . . . . . . .
. 120 3.6 OUTLOOK . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . 125 4 UNOBSERVED HETEROGENEITY
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
4.1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . 127 4.1.1 CONDITIONAL MEAN FUNCTION . .
. . . . . . . . . . . . . . . . . . . . . . . 127 4.1.2 PARTIAL EFFECTS
WITH UNOBSERVED HETEROGENEITY . . . . . . . . 128 4.1.3 UNOBSERVED
HETEROGENEITY IN THE POISSON MODEL . . . . . . . 129 4.1.4 PARAMETRIC
AND SEMI-PARAMETRIC MODELS . . . . . . . . . . . . . 130 4.2 PARAMETRIC
MIXTURE MODELS . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 130 4.2.1 GAMMA MIXTURE . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . 131 4.2.2 INVERSE GAUSSIAN MIXTURE. . . . . . .
. . . . . . . . . . . . . . . . . . . . 131 4.2.3 LOG-NORMAL MIXTURE . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132 4.3
NEGATIVE BINOMIAL MODELS . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . 134 4.3.1 NEGBIN II MODEL . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . 135 4.3.2 NEGBIN I MODEL . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136 4.3.3
NEGBIN K MODEL . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . 136 4.3.4 NEGBIN X MODEL . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . 137 4.4 SEMIPARAMETRIC MIXTURE
MODELS . . . . . . . . . . . . . . . . . . . . . . . . . . . 138 4.4.1
SERIES EXPANSIONS . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . 138 4.4.2 FINITE MIXTURE MODELS . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . 139 5 SAMPLE SELECTION AND ENDOGENEITY . .
. . . . . . . . . . . . . . . . . . . . . . . 143 5.1 CENSORING AND
TRUNCATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 143 5.1.1 TRUNCATED COUNT DATA MODELS . . . . . . . . . . . . . . . .
. . . . . . 144 5.1.2 ENDOGENOUS SAMPLING . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . 144 5.1.3 CENSORED COUNT DATA MODELS . . .
. . . . . . . . . . . . . . . . . . . . 146 5.1.4 GROUPED POISSON
REGRESSION MODEL . . . . . . . . . . . . . . . . . . 147 5.2 INCIDENTAL
CENSORING AND TRUNCATION . . . . . . . . . . . . . . . . . . . . . . .
148 5.2.1 OUTCOME AND SELECTION MODEL. . . . . . . . . . . . . . . . . .
. . . . . 148 5.2.2 MODELS OF NON-RANDOM SELECTION . . . . . . . . . . .
. . . . . . . . . 149 5.2.3 BIVARIATE NORMAL ERROR DISTRIBUTION . . . .
. . . . . . . . . . . . . 150 5.2.4 OUTCOME DISTRIBUTION . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . 152 5.2.5 INCIDENTAL
CENSORING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
153 5.2.6 INCIDENTAL TRUNCATION . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . 154 5.3 ENDOGENEITY IN COUNT DATA MODELS . . . . . .
. . . . . . . . . . . . . . . . . 156 5.3.1 INTRODUCTION AND EXAMPLES .
. . . . . . . . . . . . . . . . . . . . . . . . 156 5.3.2 PARAMETER
ANCILLARITY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
157 X CONTENTS 5.3.3 ENDOGENEITY AND MEAN FUNCTION . . . . . . . . . . .
. . . . . . . . . 159 5.3.4 A TWO-EQUATION FRAMEWORK . . . . . . . . . .
. . . . . . . . . . . . . . 161 5.3.5 INSTRUMENTAL VARIABLE ESTIMATION.
. . . . . . . . . . . . . . . . . . . 162 5.3.6 ESTIMATION IN STAGES . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165 5.4
SWITCHING REGRESSION. . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . 167 5.4.1 FULL INFORMATION MAXIMUM LIKELIHOOD
ESTIMATION . . . . . 168 5.4.2 MOMENT-BASED ESTIMATION. . . . . . . . .
. . . . . . . . . . . . . . . . . 170 5.4.3 NON-NORMALITY . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171 5.5 MIXED
DISCRETE-CONTINUOUS MODELS . . . . . . . . . . . . . . . . . . . . . . .
. 171 6 ZEROS IN COUNT DATA MODELS . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . 173 6.1 INTRODUCTION . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173 6.2
ZEROS IN THE POISSON MODEL . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . 174 6.2.1 EXCESS ZEROS AND OVERDISPERSION . . . . . . .
. . . . . . . . . . . . . 174 6.2.2 TWO-CROSSINGS THEOREM . . . . . . .
. . . . . . . . . . . . . . . . . . . . . 175 6.2.3 EFFECTS AT THE
EXTENSIVE MARGIN . . . . . . . . . . . . . . . . . . . . . 176 6.2.4
MULTI-INDEX MODELS. . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . 177 6.2.5 A GENERAL DECOMPOSITION RESULT . . . . . . . . . . .
. . . . . . . . . 177 6.3 HURDLE COUNT DATA MODELS . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . 178 6.3.1 HURDLE POISSON MODEL .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181 6.3.2
MARGINAL EFFECTS. . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . 182 6.3.3 HURDLE NEGATIVE BINOMIAL MODEL . . . . . . . . .
. . . . . . . . . . . 183 6.3.4 NON-NESTED HURDLE MODELS. . . . . . . .
. . . . . . . . . . . . . . . . . . 183 6.3.5 UNOBSERVED HETEROGENEITY
IN HURDLE MODELS . . . . . . . . . . 185 6.3.6 FINITE MIXTURE VERSUS
HURDLE MODELS . . . . . . . . . . . . . . . . 186 6.3.7 CORRELATED
HURDLE MODELS . . . . . . . . . . . . . . . . . . . . . . . . . . 187
6.4 ZERO-INFLATED COUNT DATA MODELS . . . . . . . . . . . . . . . . . .
. . . . . . . . 188 6.4.1 INTRODUCTION . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . 188 6.4.2 ZERO-INFLATED
POISSON MODEL . . . . . . . . . . . . . . . . . . . . . . . . 189 6.4.3
ZERO-INFLATED NEGATIVE BINOMIAL MODEL . . . . . . . . . . . . . . . 191
6.4.4 MARGINAL EFFETS . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . 191 6.5 COMPOUND COUNT DATA MODELS . . . . . . . . .
. . . . . . . . . . . . . . . . . . 192 6.5.1 MULTI-EPISODE MODELS . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . 193 6.5.2
UNDERREPORTING . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . 193 6.5.3 COUNT AMOUNT MODEL . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . 196 6.5.4 ENDOGENOUS UNDERREPORTING . . . .
. . . . . . . . . . . . . . . . . . . . 197 6.6 QUANTILE REGRESSION FOR
COUNT DATA . . . . . . . . . . . . . . . . . . . . . . . 199 7
CORRELATED COUNT DATA . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . 203 7.1 MULTIVARIATE COUNT DATA . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . 203 7.1.1 MULTIVARIATE
POISSON DISTRIBUTION. . . . . . . . . . . . . . . . . . . . 205 7.1.2
MULTIVARIATE NEGATIVE BINOMIAL MODEL . . . . . . . . . . . . . . . 210
7.1.3 MULTIVARIATE POISSON-GAMMA MIXTURE MODEL. . . . . . . . . . 212
7.1.4 MULTIVARIATE POISSON-LOG-NORMAL MODEL . . . . . . . . . . . . . .
213 7.1.5 LATENT POISSON-NORMAL MODEL . . . . . . . . . . . . . . . . .
. . . . . . 216 CONTENTS XI 7.1.6 MOMENT-BASED METHODS. . . . . . . . .
. . . . . . . . . . . . . . . . . . . 217 7.1.7 COPULA FUNCTIONS. . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219 7.2
PANEL DATA MODELS . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . 220 7.2.1 FIXED EFFECTS POISSON MODEL . . . . . .
. . . . . . . . . . . . . . . . . . 222 7.2.2 MOMENT-BASED ESTIMATION OF
THE FIXED EFFECTS MODEL . . 225 7.2.3 FIXED EFFECTS NEGATIVE BINOMIAL
MODEL. . . . . . . . . . . . . . . 227 7.2.4 RANDOM EFFECTS COUNT DATA
MODELS . . . . . . . . . . . . . . . . . 228 7.2.5 DYNAMIC PANEL COUNT
DATA MODELS . . . . . . . . . . . . . . . . . . 230 7.3 TIME-SERIES
COUNT DATA MODELS . . . . . . . . . . . . . . . . . . . . . . . . . . .
232 8 BAYESIAN ANALYSIS OF COUNT DATA . . . . . . . . . . . . . . . . .
. . . . . . . . . 241 8.1 BAYESIAN ANALYSIS OF THE POISSON MODEL . . . .
. . . . . . . . . . . . . . . . 242 8.2 A POISSON MODEL WITH
UNDERREPORTING . . . . . . . . . . . . . . . . . . . . . 245 8.3
ESTIMATION OF THE MULTIVARIATE POISSON-LOG-NORMAL MODEL BY MCMC . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . 247 8.4 ESTIMATION OF A RANDOM COEFFICIENTS MODEL BY MCMC .
. . . . . . 248 9 APPLICATIONS . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . 251 9.1 ACCIDENTS. .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . 251 9.2 CRIME . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252 9.3 TRIP
FREQUENCY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . 252 9.4 HEALTH ECONOMICS . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . 254 9.5 DEMOGRAPHY .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . 257 9.6 MARKETING AND MANAGEMENT . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . 260 9.7 LABOR MOBILITY . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261
9.7.1 ECONOMICS MODELS OF LABOR MOBILITY. . . . . . . . . . . . . . . .
. 262 9.7.2 PREVIOUS LITERATURE . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . 263 9.7.3 DATA AND DESCRIPTIVE STATISTICS. . . .
. . . . . . . . . . . . . . . . . . 265 9.7.4 REGRESSION RESULTS. . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269 9.7.5
MODEL PERFORMANCE . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . 272 9.7.6 MARGINAL PROBABILITY EFFECTS . . . . . . . . . . . .
. . . . . . . . . . . . 274 9.7.7 STRUCTURAL INFERENCES . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . 278 A PROBABILITY
GENERATING FUNCTIONS . . . . . . . . . . . . . . . . . . . . . . . . . .
281 B GAUSS-HERMITE QUADRATURE . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . 285 C SOFTWARE . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 289 D
TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . 291 REFERENCES . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . 299 AUTHOR*S INDEX . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 321 SUBJECT
INDEX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . 327
|
any_adam_object | 1 |
author | Winkelmann, Rainer 1963- |
author_GND | (DE-588)131412434 |
author_facet | Winkelmann, Rainer 1963- |
author_role | aut |
author_sort | Winkelmann, Rainer 1963- |
author_variant | r w rw |
building | Verbundindex |
bvnumber | BV023148656 |
callnumber-first | H - Social Science |
callnumber-label | HB139 |
callnumber-raw | HB139 |
callnumber-search | HB139 |
callnumber-sort | HB 3139 |
callnumber-subject | HB - Economic Theory and Demography |
classification_rvk | QH 237 QH 252 QH 300 QV 230 |
classification_tum | WIR 361f WIR 017f |
ctrlnum | (OCoLC)246632720 (DE-599)DNB987201514 |
dewey-full | 330.015195 |
dewey-hundreds | 300 - Social sciences |
dewey-ones | 330 - Economics |
dewey-raw | 330.015195 |
dewey-search | 330.015195 |
dewey-sort | 3330.015195 |
dewey-tens | 330 - Economics |
discipline | Mathematik Wirtschaftswissenschaften |
edition | 5. ed. |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02983nam a2200745 c 4500</leader><controlfield tag="001">BV023148656</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20131119 </controlfield><controlfield tag="007">t|</controlfield><controlfield tag="008">080214s2008 gw d||| |||| 00||| eng d</controlfield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">08,N06,0745</subfield><subfield code="2">dnb</subfield></datafield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">987201514</subfield><subfield code="2">DE-101</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783540776482</subfield><subfield code="c">Gb. : EUR 106.95 (freier Pr.), sfr 174.00 (freier Pr.)</subfield><subfield code="9">978-3-540-77648-2</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">3540776486</subfield><subfield code="c">Gb. : EUR 106.95 (freier Pr.), sfr 174.00 (freier Pr.)</subfield><subfield code="9">3-540-77648-6</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783540783893</subfield><subfield code="9">978-3-540-78389-3</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783642096402</subfield><subfield code="9">978-3-642-09640-2</subfield></datafield><datafield tag="024" ind1="3" ind2=" "><subfield code="a">9783540776482</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">12215225</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)246632720</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DNB987201514</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">gw</subfield><subfield code="c">XA-DE-BE</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-355</subfield><subfield code="a">DE-20</subfield><subfield code="a">DE-N2</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-M382</subfield><subfield code="a">DE-945</subfield><subfield code="a">DE-188</subfield><subfield code="a">DE-91G</subfield><subfield code="a">DE-384</subfield><subfield code="a">DE-83</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">HB139</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">330.015195</subfield><subfield code="2">22</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">330.015195</subfield><subfield code="2">22/ger</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">QH 237</subfield><subfield code="0">(DE-625)141552:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">QH 252</subfield><subfield code="0">(DE-625)141562:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">QH 300</subfield><subfield code="0">(DE-625)141566:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">QV 230</subfield><subfield code="0">(DE-625)142145:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">WIR 361f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">WIR 017f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">510</subfield><subfield code="2">sdnb</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Winkelmann, Rainer</subfield><subfield code="d">1963-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)131412434</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Econometric analysis of count data</subfield><subfield code="c">Rainer Winkelmann</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">5. ed.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin [u.a.]</subfield><subfield code="b">Springer</subfield><subfield code="c">2008</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XIV, 333 S.</subfield><subfield code="b">graph. Darst.</subfield><subfield code="c">235 mm x 155 mm</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Ökonometrisches Modell</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Econometrics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Labor mobility</subfield><subfield code="x">Econometric models</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Time-series analysis</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Ökonometrie</subfield><subfield code="0">(DE-588)4132280-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Arbeitsmobilität</subfield><subfield code="0">(DE-588)4068809-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Ereignisdatenanalyse</subfield><subfield code="0">(DE-588)4132103-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Zeitreihenanalyse</subfield><subfield code="0">(DE-588)4067486-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Ökonometrisches Modell</subfield><subfield code="0">(DE-588)4043212-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Ereignisdatenanalyse</subfield><subfield code="0">(DE-588)4132103-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Ökonometrisches Modell</subfield><subfield code="0">(DE-588)4043212-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Arbeitsmobilität</subfield><subfield code="0">(DE-588)4068809-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Ereignisdatenanalyse</subfield><subfield code="0">(DE-588)4132103-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Ökonometrie</subfield><subfield code="0">(DE-588)4132280-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="3" ind2="0"><subfield code="a">Zeitreihenanalyse</subfield><subfield code="0">(DE-588)4067486-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="3" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">SWB Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016332219&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-016332219</subfield></datafield></record></collection> |
id | DE-604.BV023148656 |
illustrated | Illustrated |
indexdate | 2025-02-03T17:14:18Z |
institution | BVB |
isbn | 9783540776482 3540776486 9783540783893 9783642096402 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-016332219 |
oclc_num | 246632720 |
open_access_boolean | |
owner | DE-355 DE-BY-UBR DE-20 DE-N2 DE-703 DE-19 DE-BY-UBM DE-M382 DE-945 DE-188 DE-91G DE-BY-TUM DE-384 DE-83 |
owner_facet | DE-355 DE-BY-UBR DE-20 DE-N2 DE-703 DE-19 DE-BY-UBM DE-M382 DE-945 DE-188 DE-91G DE-BY-TUM DE-384 DE-83 |
physical | XIV, 333 S. graph. Darst. 235 mm x 155 mm |
publishDate | 2008 |
publishDateSearch | 2008 |
publishDateSort | 2008 |
publisher | Springer |
record_format | marc |
spellingShingle | Winkelmann, Rainer 1963- Econometric analysis of count data Ökonometrisches Modell Econometrics Labor mobility Econometric models Time-series analysis Ökonometrie (DE-588)4132280-0 gnd Arbeitsmobilität (DE-588)4068809-4 gnd Ereignisdatenanalyse (DE-588)4132103-0 gnd Zeitreihenanalyse (DE-588)4067486-1 gnd Ökonometrisches Modell (DE-588)4043212-9 gnd |
subject_GND | (DE-588)4132280-0 (DE-588)4068809-4 (DE-588)4132103-0 (DE-588)4067486-1 (DE-588)4043212-9 |
title | Econometric analysis of count data |
title_auth | Econometric analysis of count data |
title_exact_search | Econometric analysis of count data |
title_full | Econometric analysis of count data Rainer Winkelmann |
title_fullStr | Econometric analysis of count data Rainer Winkelmann |
title_full_unstemmed | Econometric analysis of count data Rainer Winkelmann |
title_short | Econometric analysis of count data |
title_sort | econometric analysis of count data |
topic | Ökonometrisches Modell Econometrics Labor mobility Econometric models Time-series analysis Ökonometrie (DE-588)4132280-0 gnd Arbeitsmobilität (DE-588)4068809-4 gnd Ereignisdatenanalyse (DE-588)4132103-0 gnd Zeitreihenanalyse (DE-588)4067486-1 gnd Ökonometrisches Modell (DE-588)4043212-9 gnd |
topic_facet | Ökonometrisches Modell Econometrics Labor mobility Econometric models Time-series analysis Ökonometrie Arbeitsmobilität Ereignisdatenanalyse Zeitreihenanalyse |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016332219&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT winkelmannrainer econometricanalysisofcountdata |