Data mining for business intelligence concepts, techniques, and applications in Microsoft Office Excel with XLMiner

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Shmueli, Galit (VerfasserIn), Patel, Nitin R. (VerfasserIn), Bruce, Peter C. (VerfasserIn)
Format: Buch
Sprache:English
Veröffentlicht: Hoboken, NJ Wiley 2007
Schlagworte:
Online-Zugang:Inhaltsverzeichnis
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nam a2200000zc 4500
001 BV023095259
003 DE-604
005 20080715
007 t
008 080123s2007 xxuad|| |||| 00||| eng d
010 |a 2006049016 
020 |a 0470084855  |c cloth  |9 0-470-08485-5 
020 |a 9780470084854  |9 978-0-470-08485-4 
035 |a (OCoLC)70673309 
035 |a (DE-599)BVBBV023095259 
040 |a DE-604  |b ger  |e aacr 
041 0 |a eng 
044 |a xxu  |c US 
049 |a DE-384  |a DE-945  |a DE-11 
050 0 |a HF5548.2 
082 0 |a 005.54 
084 |a QH 500  |0 (DE-625)141607:  |2 rvk 
084 |a ST 530  |0 (DE-625)143679:  |2 rvk 
100 1 |a Shmueli, Galit  |e Verfasser  |4 aut 
245 1 0 |a Data mining for business intelligence  |b concepts, techniques, and applications in Microsoft Office Excel with XLMiner  |c Galit Shmueli ; Nitin R. Patel ; Peter C. Bruce 
264 1 |a Hoboken, NJ  |b Wiley  |c 2007 
300 |a XVIII, 279 S.  |b Ill., graph. Darst.  |c 26 cm 
336 |b txt  |2 rdacontent 
337 |b n  |2 rdamedia 
338 |b nc  |2 rdacarrier 
500 |a Includes bibliographical references (p. 271-272) and index 
630 0 4 |a Microsoft Excel (Computer file) 
650 7 |a Datamining  |2 gtt 
650 7 |a Dataprocessing  |2 gtt 
650 7 |a Statistiek  |2 gtt 
650 4 |a Datenverarbeitung 
650 4 |a Statistik 
650 4 |a Wirtschaft 
650 4 |a Business  |x Data processing 
650 4 |a Data mining 
650 0 7 |a Wissensmanagement  |0 (DE-588)4561842-2  |2 gnd  |9 rswk-swf 
650 0 7 |a Data Mining  |0 (DE-588)4428654-5  |2 gnd  |9 rswk-swf 
689 0 0 |a Data Mining  |0 (DE-588)4428654-5  |D s 
689 0 1 |a Wissensmanagement  |0 (DE-588)4561842-2  |D s 
689 0 |5 DE-604 
700 1 |a Patel, Nitin R.  |e Verfasser  |4 aut 
700 1 |a Bruce, Peter C.  |e Verfasser  |4 aut 
856 4 2 |m HBZ Datenaustausch  |q application/pdf  |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016298069&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA  |3 Inhaltsverzeichnis 
999 |a oai:aleph.bib-bvb.de:BVB01-016298069 

Datensatz im Suchindex

_version_ 1804137350308036608
adam_text CONTENTS Foreword xiii Preface xv Acknowledgments xvii 1 Introduction 1 1.1 What Is Data Mining? 1 1.2 Where Is Data Mining Used? 2 1.3 The Origins of Data Mining 2 1.4 The Rapid Growth of Data Mining 3 1.5 Why Are There So Many Different Methods? 4 1.6 Terminology and Notation 4 1.7 Road Maps to This Book 6 2 Overview of the Data Mining Process 9 2.1 Introduction 9 2.2 Core Ideas in Data Mining 9 2.3 Supervised and Unsupervised Learning 11 2.4 The Steps in Data Mining 11 2.5 Preliminary Steps 13 2.6 Building a Model: Example with Linear Regression 21 vii Viii CONTENTS 2.7 Using Excel for Data Mining 27 Problems 31 3 Data Exploration and Dimension Reduction 35 3.1 Introduction 35 3.2 Practical Considerations 35 Example 1: House Prices in Boston 36 3.3 Data Summaries 37 3.4 Data Visualization 38 3.5 Correlation Analysis 40 3.6 Reducing the Number of Categories in Categorical Variables 41 3.7 Principal Components Analysis 41 Example 2: Breakfast Cereals 42 Principal Components 45 Normalizing the Data 46 Using Principal Components for Classification and Prediction 49 Problems 51 4 Evaluating Classification and Predictive Performance 53 4.1 Introduction 53 4.2 Judging Classification Performance 53 Accuracy Measures 53 Cutoff for Classification 56 Performance in Unequal Importance of Classes 60 Asymmetric Misclassification Costs 61 Oversampling and Asymmetric Costs 66 Classification Using a Triage Strategy 72 4.3 Evaluating Predictive Performance 72 Problems 74 5 Multiple Linear Regression 75 5.1 Introduction 75 5.2 Explanatory vs. Predictive Modeling 76 5.3 Estimating the Regression Equation and Prediction 76 Example: Predicting the Price of Used Toyota Corolla Automobiles 77 5.4 Variable Selection in Linear Regression 81 Reducing the Number of Predictors 81 How to Reduce the Number of Predictors 82 Problems 86 6 Three Simple Classification Methods 91 CONTENTS IX 6.1 Introduction 91 Example 1: Predicting Fraudulent Financial Reporting 91 Example 2: Predicting Delayed Flights 92 6.2 The Naive Rule 92 6.3 Naive Bayes 93 Conditional Probabilities and Pivot Tables 94 A Practical Difficulty 94 A Solution: Naive Bayes 95 Advantages and Shortcomings of the naive Bayes Classifier 100 6.4 A;-Nearest Neighbors 103 Example 3: Riding Mowers 104 Choosing k 105 fc-NN for a Quantitative Response 106 Advantages and Shortcomings of k-NN Algorithms 106 Problems 108 7 Classification and Regression Trees 111 7.1 Introduction 111 7.2 Classification Trees 113 7.3 Recursive Partitioning 113 7.4 Example 1: Riding Mowers 113 Measures of Impurity 115 7.5 Evaluating the Performance of a Classification Tree 120 Example 2: Acceptance of Personal Loan 120 7.6 Avoiding Overfitting 121 Stopping Tree Growth: CHAID 121 Pruning the Tree 125 7.7 Classification Rules from Trees 130 7.8 Regression Trees 130 Prediction 130 Measuring Impurity 131 Evaluating Performance 132 7.9 Advantages, Weaknesses, and Extensions 132 Problems 134 8 Logistic Regression 137 8.1 Introduction 137 8.2 The Logistic Regression Model 138 Example: Acceptance of Personal Loan 139 Model with a Single Predictor 141 X CONTENTS Estimating the Logistic Model from Data: Computing Parameter Estimates 143 Interpreting Results in Terms of Odds 144 8.3 Why Linear Regression Is Inappropriate for a Categorical Response 146 8.4 Evaluating Classification Performance 148 Variable Selection 148 8.5 Evaluating Goodness of Fit 150 8.6 Example of Complete Analysis: Predicting Delayed Flights 153 Data Preprocessing 154 Model Fitting and Estimation 155 Model Interpretation 155 Model Performance 155 Goodness of fit 157 Variable Selection 158 8.7 Logistic Regression for More Than Two Classes 160 Ordinal Classes 160 Nominal Classes 161 Problems 163 9 Neural Nets 167 9.1 Introduction 167 9.2 Concept and Structure of a Neural Network 168 9.3 Fitting a Network to Data 168 Example 1: Tiny Dataset 169 Computing Output of Nodes 170 Preprocessing the Data 172 Training the Model 172 Example 2: Classifying Accident Severity 176 Avoiding overfitting 177 Using the Output for Prediction and Classification 181 9.4 Required User Input 181 9.5 Exploring the Relationship Between Predictors and Response 182 9.6 Advantages and Weaknesses of Neural Networks 182 Problems 184 10 Discriminant Analysis 187 10.1 Introduction 187 10.2 Example 1: Riding Mowers 187 10.3 Example 2: Personal Loan Acceptance 188 10.4 Distance of an Observation from a Class 188 10.5 Fisher s Linear Classification Functions 191 CONTENTS Xi 10.6 Classification Performance of Discriminant Analysis 194 10.7 Prior Probabilities 195 10.8 Unequal Misclassification Costs 195 10.9 Classifying More Than Two Classes 196 Example 3: Medical Dispatch to Accident Scenes 196 10.10 Advantages and Weaknesses 197 Problems 200 11 Association Rules 203 11.1 Introduction 203 11.2 Discovering Association Rules in Transaction Databases 203 11.3 Example 1: Synthetic Data on Purchases of Phone Faceplates 204 11.4 Generating Candidate Rules 204 The Apriori Algorithm 205 11.5 Selecting Strong Rules 206 Support and Confidence 206 Lift Ratio 207 Data Format 207 The Process of Rule Selection 209 Interpreting the Results 210 Statistical Significance of Rules 211 11.6 Example 2: Rules for Similar Book Purchases 212 11.7 Summary 212 Problems 215 12 Cluster Analysis 219 12.1 Introduction 219 12.2 Example: Public Utilities 220 12.3 Measuring Distance Between Two Records 222 Euclidean Distance 223 Normalizing Numerical Measurements 223 Other Distance Measures for Numerical Data 223 Distance Measures for Categorical Data 226 Distance Measures for Mixed Data 226 12.4 Measuring Distance Between Two Clusters 227 12.5 Hierarchical (Agglomerative) Clustering 228 Minimum Distance (Single Linkage) 229 Maximum Distance (Complete Linkage) 229 Group Average (Average Linkage) 230 Dendrograms: Displaying Clustering Process and Results 230 Validating Clusters 231 Xii CONTENTS Limitations of Hierarchical Clustering 232 12.6 Nonhierarchical Clustering: The fc-Means Algorithm 233 Initial Partition into k Clusters 234 Problems 237 13 Cases 241 13.1 Charles Book Club 241 13.2 German Credit 250 13.3 Tayko Software Cataloger 254 13.4 Segmenting Consumers of Bath Soap 258 13.5 Direct-Mail Fundraising 262 13.6 Catalog Cross-Selling 265 13.7 Predicting Bankruptcy 267 References 271 Index 273
adam_txt CONTENTS Foreword xiii Preface xv Acknowledgments xvii 1 Introduction 1 1.1 What Is Data Mining? 1 1.2 Where Is Data Mining Used? 2 1.3 The Origins of Data Mining 2 1.4 The Rapid Growth of Data Mining 3 1.5 Why Are There So Many Different Methods? 4 1.6 Terminology and Notation 4 1.7 Road Maps to This Book 6 2 Overview of the Data Mining Process 9 2.1 Introduction 9 2.2 Core Ideas in Data Mining 9 2.3 Supervised and Unsupervised Learning 11 2.4 The Steps in Data Mining 11 2.5 Preliminary Steps 13 2.6 Building a Model: Example with Linear Regression 21 vii Viii CONTENTS 2.7 Using Excel for Data Mining 27 Problems 31 3 Data Exploration and Dimension Reduction 35 3.1 Introduction 35 3.2 Practical Considerations 35 Example 1: House Prices in Boston 36 3.3 Data Summaries 37 3.4 Data Visualization 38 3.5 Correlation Analysis 40 3.6 Reducing the Number of Categories in Categorical Variables 41 3.7 Principal Components Analysis 41 Example 2: Breakfast Cereals 42 Principal Components 45 Normalizing the Data 46 Using Principal Components for Classification and Prediction 49 Problems 51 4 Evaluating Classification and Predictive Performance 53 4.1 Introduction 53 4.2 Judging Classification Performance 53 Accuracy Measures 53 Cutoff for Classification 56 Performance in Unequal Importance of Classes 60 Asymmetric Misclassification Costs 61 Oversampling and Asymmetric Costs 66 Classification Using a Triage Strategy 72 4.3 Evaluating Predictive Performance 72 Problems 74 5 Multiple Linear Regression 75 5.1 Introduction 75 5.2 Explanatory vs. Predictive Modeling 76 5.3 Estimating the Regression Equation and Prediction 76 Example: Predicting the Price of Used Toyota Corolla Automobiles 77 5.4 Variable Selection in Linear Regression 81 Reducing the Number of Predictors 81 How to Reduce the Number of Predictors 82 Problems 86 6 Three Simple Classification Methods 91 CONTENTS IX 6.1 Introduction 91 Example 1: Predicting Fraudulent Financial Reporting 91 Example 2: Predicting Delayed Flights 92 6.2 The Naive Rule 92 6.3 Naive Bayes 93 Conditional Probabilities and Pivot Tables 94 A Practical Difficulty 94 A Solution: Naive Bayes 95 Advantages and Shortcomings of the naive Bayes Classifier 100 6.4 A;-Nearest Neighbors 103 Example 3: Riding Mowers 104 Choosing k 105 fc-NN for a Quantitative Response 106 Advantages and Shortcomings of k-NN Algorithms 106 Problems 108 7 Classification and Regression Trees 111 7.1 Introduction 111 7.2 Classification Trees 113 7.3 Recursive Partitioning 113 7.4 Example 1: Riding Mowers 113 Measures of Impurity 115 7.5 Evaluating the Performance of a Classification Tree 120 Example 2: Acceptance of Personal Loan 120 7.6 Avoiding Overfitting 121 Stopping Tree Growth: CHAID 121 Pruning the Tree 125 7.7 Classification Rules from Trees 130 7.8 Regression Trees 130 Prediction 130 Measuring Impurity 131 Evaluating Performance 132 7.9 Advantages, Weaknesses, and Extensions 132 Problems 134 8 Logistic Regression 137 8.1 Introduction 137 8.2 The Logistic Regression Model 138 Example: Acceptance of Personal Loan 139 Model with a Single Predictor 141 X CONTENTS Estimating the Logistic Model from Data: Computing Parameter Estimates 143 Interpreting Results in Terms of Odds 144 8.3 Why Linear Regression Is Inappropriate for a Categorical Response 146 8.4 Evaluating Classification Performance 148 Variable Selection 148 8.5 Evaluating Goodness of Fit 150 8.6 Example of Complete Analysis: Predicting Delayed Flights 153 Data Preprocessing 154 Model Fitting and Estimation 155 Model Interpretation 155 Model Performance 155 Goodness of fit 157 Variable Selection 158 8.7 Logistic Regression for More Than Two Classes 160 Ordinal Classes 160 Nominal Classes 161 Problems 163 9 Neural Nets 167 9.1 Introduction 167 9.2 Concept and Structure of a Neural Network 168 9.3 Fitting a Network to Data 168 Example 1: Tiny Dataset 169 Computing Output of Nodes 170 Preprocessing the Data 172 Training the Model 172 Example 2: Classifying Accident Severity 176 Avoiding overfitting 177 Using the Output for Prediction and Classification 181 9.4 Required User Input 181 9.5 Exploring the Relationship Between Predictors and Response 182 9.6 Advantages and Weaknesses of Neural Networks 182 Problems 184 10 Discriminant Analysis 187 10.1 Introduction 187 10.2 Example 1: Riding Mowers 187 10.3 Example 2: Personal Loan Acceptance 188 10.4 Distance of an Observation from a Class 188 10.5 Fisher's Linear Classification Functions 191 CONTENTS Xi 10.6 Classification Performance of Discriminant Analysis 194 10.7 Prior Probabilities 195 10.8 Unequal Misclassification Costs 195 10.9 Classifying More Than Two Classes 196 Example 3: Medical Dispatch to Accident Scenes 196 10.10 Advantages and Weaknesses 197 Problems 200 11 Association Rules 203 11.1 Introduction 203 11.2 Discovering Association Rules in Transaction Databases 203 11.3 Example 1: Synthetic Data on Purchases of Phone Faceplates 204 11.4 Generating Candidate Rules 204 The Apriori Algorithm 205 11.5 Selecting Strong Rules 206 Support and Confidence 206 Lift Ratio 207 Data Format 207 The Process of Rule Selection 209 Interpreting the Results 210 Statistical Significance of Rules 211 11.6 Example 2: Rules for Similar Book Purchases 212 11.7 Summary 212 Problems 215 12 Cluster Analysis 219 12.1 Introduction 219 12.2 Example: Public Utilities 220 12.3 Measuring Distance Between Two Records 222 Euclidean Distance 223 Normalizing Numerical Measurements 223 Other Distance Measures for Numerical Data 223 Distance Measures for Categorical Data 226 Distance Measures for Mixed Data 226 12.4 Measuring Distance Between Two Clusters 227 12.5 Hierarchical (Agglomerative) Clustering 228 Minimum Distance (Single Linkage) 229 Maximum Distance (Complete Linkage) 229 Group Average (Average Linkage) 230 Dendrograms: Displaying Clustering Process and Results 230 Validating Clusters 231 Xii CONTENTS Limitations of Hierarchical Clustering 232 12.6 Nonhierarchical Clustering: The fc-Means Algorithm 233 Initial Partition into k Clusters 234 Problems 237 13 Cases 241 13.1 Charles Book Club 241 13.2 German Credit 250 13.3 Tayko Software Cataloger 254 13.4 Segmenting Consumers of Bath Soap 258 13.5 Direct-Mail Fundraising 262 13.6 Catalog Cross-Selling 265 13.7 Predicting Bankruptcy 267 References 271 Index 273
any_adam_object 1
any_adam_object_boolean 1
author Shmueli, Galit
Patel, Nitin R.
Bruce, Peter C.
author_facet Shmueli, Galit
Patel, Nitin R.
Bruce, Peter C.
author_role aut
aut
aut
author_sort Shmueli, Galit
author_variant g s gs
n r p nr nrp
p c b pc pcb
building Verbundindex
bvnumber BV023095259
callnumber-first H - Social Science
callnumber-label HF5548
callnumber-raw HF5548.2
callnumber-search HF5548.2
callnumber-sort HF 45548.2
callnumber-subject HF - Commerce
classification_rvk QH 500
ST 530
ctrlnum (OCoLC)70673309
(DE-599)BVBBV023095259
dewey-full 005.54
dewey-hundreds 000 - Computer science, information, general works
dewey-ones 005 - Computer programming, programs, data, security
dewey-raw 005.54
dewey-search 005.54
dewey-sort 15.54
dewey-tens 000 - Computer science, information, general works
discipline Informatik
Wirtschaftswissenschaften
discipline_str_mv Informatik
Wirtschaftswissenschaften
format Book
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02067nam a2200553zc 4500</leader><controlfield tag="001">BV023095259</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20080715 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">080123s2007 xxuad|| |||| 00||| eng d</controlfield><datafield tag="010" ind1=" " ind2=" "><subfield code="a">2006049016</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0470084855</subfield><subfield code="c">cloth</subfield><subfield code="9">0-470-08485-5</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780470084854</subfield><subfield code="9">978-0-470-08485-4</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)70673309</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV023095259</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">xxu</subfield><subfield code="c">US</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-945</subfield><subfield code="a">DE-11</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">HF5548.2</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">005.54</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">QH 500</subfield><subfield code="0">(DE-625)141607:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ST 530</subfield><subfield code="0">(DE-625)143679:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Shmueli, Galit</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Data mining for business intelligence</subfield><subfield code="b">concepts, techniques, and applications in Microsoft Office Excel with XLMiner</subfield><subfield code="c">Galit Shmueli ; Nitin R. Patel ; Peter C. Bruce</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Hoboken, NJ</subfield><subfield code="b">Wiley</subfield><subfield code="c">2007</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XVIII, 279 S.</subfield><subfield code="b">Ill., graph. Darst.</subfield><subfield code="c">26 cm</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references (p. 271-272) and index</subfield></datafield><datafield tag="630" ind1="0" ind2="4"><subfield code="a">Microsoft Excel (Computer file)</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Datamining</subfield><subfield code="2">gtt</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Dataprocessing</subfield><subfield code="2">gtt</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Statistiek</subfield><subfield code="2">gtt</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Datenverarbeitung</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Statistik</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Wirtschaft</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Business</subfield><subfield code="x">Data processing</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Data mining</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Wissensmanagement</subfield><subfield code="0">(DE-588)4561842-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Data Mining</subfield><subfield code="0">(DE-588)4428654-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Data Mining</subfield><subfield code="0">(DE-588)4428654-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Wissensmanagement</subfield><subfield code="0">(DE-588)4561842-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Patel, Nitin R.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Bruce, Peter C.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HBZ Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&amp;doc_library=BVB01&amp;local_base=BVB01&amp;doc_number=016298069&amp;sequence=000002&amp;line_number=0001&amp;func_code=DB_RECORDS&amp;service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-016298069</subfield></datafield></record></collection>
id DE-604.BV023095259
illustrated Illustrated
index_date 2024-07-02T19:42:43Z
indexdate 2024-07-09T21:10:54Z
institution BVB
isbn 0470084855
9780470084854
language English
lccn 2006049016
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-016298069
oclc_num 70673309
open_access_boolean
owner DE-384
DE-945
DE-11
owner_facet DE-384
DE-945
DE-11
physical XVIII, 279 S. Ill., graph. Darst. 26 cm
publishDate 2007
publishDateSearch 2007
publishDateSort 2007
publisher Wiley
record_format marc
spelling Shmueli, Galit Verfasser aut
Data mining for business intelligence concepts, techniques, and applications in Microsoft Office Excel with XLMiner Galit Shmueli ; Nitin R. Patel ; Peter C. Bruce
Hoboken, NJ Wiley 2007
XVIII, 279 S. Ill., graph. Darst. 26 cm
txt rdacontent
n rdamedia
nc rdacarrier
Includes bibliographical references (p. 271-272) and index
Microsoft Excel (Computer file)
Datamining gtt
Dataprocessing gtt
Statistiek gtt
Datenverarbeitung
Statistik
Wirtschaft
Business Data processing
Data mining
Wissensmanagement (DE-588)4561842-2 gnd rswk-swf
Data Mining (DE-588)4428654-5 gnd rswk-swf
Data Mining (DE-588)4428654-5 s
Wissensmanagement (DE-588)4561842-2 s
DE-604
Patel, Nitin R. Verfasser aut
Bruce, Peter C. Verfasser aut
HBZ Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016298069&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis
spellingShingle Shmueli, Galit
Patel, Nitin R.
Bruce, Peter C.
Data mining for business intelligence concepts, techniques, and applications in Microsoft Office Excel with XLMiner
Microsoft Excel (Computer file)
Datamining gtt
Dataprocessing gtt
Statistiek gtt
Datenverarbeitung
Statistik
Wirtschaft
Business Data processing
Data mining
Wissensmanagement (DE-588)4561842-2 gnd
Data Mining (DE-588)4428654-5 gnd
subject_GND (DE-588)4561842-2
(DE-588)4428654-5
title Data mining for business intelligence concepts, techniques, and applications in Microsoft Office Excel with XLMiner
title_auth Data mining for business intelligence concepts, techniques, and applications in Microsoft Office Excel with XLMiner
title_exact_search Data mining for business intelligence concepts, techniques, and applications in Microsoft Office Excel with XLMiner
title_exact_search_txtP Data mining for business intelligence concepts, techniques, and applications in Microsoft Office Excel with XLMiner
title_full Data mining for business intelligence concepts, techniques, and applications in Microsoft Office Excel with XLMiner Galit Shmueli ; Nitin R. Patel ; Peter C. Bruce
title_fullStr Data mining for business intelligence concepts, techniques, and applications in Microsoft Office Excel with XLMiner Galit Shmueli ; Nitin R. Patel ; Peter C. Bruce
title_full_unstemmed Data mining for business intelligence concepts, techniques, and applications in Microsoft Office Excel with XLMiner Galit Shmueli ; Nitin R. Patel ; Peter C. Bruce
title_short Data mining for business intelligence
title_sort data mining for business intelligence concepts techniques and applications in microsoft office excel with xlminer
title_sub concepts, techniques, and applications in Microsoft Office Excel with XLMiner
topic Microsoft Excel (Computer file)
Datamining gtt
Dataprocessing gtt
Statistiek gtt
Datenverarbeitung
Statistik
Wirtschaft
Business Data processing
Data mining
Wissensmanagement (DE-588)4561842-2 gnd
Data Mining (DE-588)4428654-5 gnd
topic_facet Microsoft Excel (Computer file)
Datamining
Dataprocessing
Statistiek
Datenverarbeitung
Statistik
Wirtschaft
Business Data processing
Data mining
Wissensmanagement
Data Mining
url http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016298069&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA
work_keys_str_mv AT shmueligalit dataminingforbusinessintelligenceconceptstechniquesandapplicationsinmicrosoftofficeexcelwithxlminer
AT patelnitinr dataminingforbusinessintelligenceconceptstechniquesandapplicationsinmicrosoftofficeexcelwithxlminer
AT brucepeterc dataminingforbusinessintelligenceconceptstechniquesandapplicationsinmicrosoftofficeexcelwithxlminer