Advanced data mining techniques

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Olson, David L. 1944- (VerfasserIn), Delen, Dursun (VerfasserIn)
Format: Buch
Sprache:English
Veröffentlicht: Berlin [u.a.] Springer 2008
Schlagworte:
Online-Zugang:Inhaltsverzeichnis
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nam a2200000 c 4500
001 BV023081838
003 DE-604
005 20201106
007 t
008 080115s2008 gw d||| |||| 00||| eng d
015 |a 07,N47,0511  |2 dnb 
016 7 |a 986189499  |2 DE-101 
020 |a 9783540769163  |c Pb. : ca. EUR 80.20 (freier Pr.), ca. sfr 130.50 (freier Pr.)  |9 978-3-540-76916-3 
020 |a 3540769161  |c Pb. : ca. EUR 80.20 (freier Pr.), ca. sfr 130.50 (freier Pr.)  |9 3-540-76916-1 
024 3 |a 9783540769163 
028 5 2 |a 12195442 
035 |a (OCoLC)191760124 
035 |a (DE-599)DNB986189499 
040 |a DE-604  |b ger  |e rakddb 
041 0 |a eng 
044 |a gw  |c XA-DE-BE 
049 |a DE-355  |a DE-92  |a DE-703  |a DE-573  |a DE-83  |a DE-2070s 
050 0 |a QA76.9.D343 
082 0 |a 006.312  |2 22 
084 |a ST 270  |0 (DE-625)143638:  |2 rvk 
084 |a ST 330  |0 (DE-625)143663:  |2 rvk 
084 |a ST 530  |0 (DE-625)143679:  |2 rvk 
084 |a 330  |2 sdnb 
100 1 |a Olson, David L.  |d 1944-  |e Verfasser  |0 (DE-588)1055798854  |4 aut 
245 1 0 |a Advanced data mining techniques  |c David L. Olson ; Dursun Delen 
264 1 |a Berlin [u.a.]  |b Springer  |c 2008 
300 |a XII, 180 S.  |b graph. Darst.  |c 235 mm x 155 mm 
336 |b txt  |2 rdacontent 
337 |b n  |2 rdamedia 
338 |b nc  |2 rdacarrier 
650 4 |a Exploration de données (Informatique) 
650 4 |a Data mining 
650 0 7 |a Data Mining  |0 (DE-588)4428654-5  |2 gnd  |9 rswk-swf 
689 0 0 |a Data Mining  |0 (DE-588)4428654-5  |D s 
689 0 |5 DE-604 
700 1 |a Delen, Dursun  |e Verfasser  |0 (DE-588)1136283463  |4 aut 
856 4 2 |m Digitalisierung UB Regensburg  |q application/pdf  |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016284848&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA  |3 Inhaltsverzeichnis 
999 |a oai:aleph.bib-bvb.de:BVB01-016284848 

Datensatz im Suchindex

_version_ 1804137329953079297
adam_text Contents Part I INTRODUCTION 1 Introduction ...............................................................................................3 What is Data Mining? ..........................................................................5 What is Needed to Do Data Mining .....................................................5 Business Data Mining ..........................................................................7 Data Mining Tools ...............................................................................8 Summary ..............................................................................................8 2 Data Mining Process .................................................................................9 CRISP-DM ..........................................................................................9 Business Understanding .............................................................11 Data Understanding ...................................................................11 Data Preparation ........................................................................12 Modeling ...................................................................................15 Evaluation ..................................................................................18 Deployment ................................................................................18 SEMMA .............................................................................................19 Steps in SEMMA Process ..........................................................20 Example Data Mining Process Application .......................................22 Comparison of CRISP & SEMMA ....................................................27 Handling Data ....................................................................................28 Summary ............................................................................................34 Part II DATA MINING METHODS AS TOOLS ____________________ 3 Memory-Based Reasoning Methods .......................................................39 Matching ............................................................................................40 Weighted Matching ....................................................................43 Distance Minimization .......................................................................44 Software .............................................................................................50 Summary ............................................................................................50 Appendix: Job Application Data Set ..................................................51 X Contents 4 Association Rules in Knowledge Discovery ...........................................53 Market-Basket Analysis .....................................................................55 Market Basket Analysis Benefits ...............................................56 Demonstration on Small Set of Data .........................................57 Real Market Basket Data ...................................................................59 The Counting Method Without Software ..................................62 Conclusions ........................................................................................68 5 Fuzzy Sets in Data Mining ......................................................................69 Fuzzy Sets and Decision Trees ..........................................................71 Fuzzy Sets and Ordinal Classification ...............................................75 Fuzzy Association Rules ....................................................................79 Demonstration Model ................................................................80 Computational Results ...............................................................84 Testing .......................................................................................84 Inferences ...................................................................................85 Conclusions ........................................................................................86 6 Rough Sets ..............................................................................................87 A Brief Theory of Rough Sets ...........................................................88 Information System ....................................................................88 Decision Table ...........................................................................89 Some Exemplary Applications of Rough Sets ...................................91 Rough Sets Software Tools ................................................................93 The Process of Conducting Rough Sets Analysis ..............................93 1 Data Pre-Processing ................................................................94 2 Data Partitioning .....................................................................95 3 Discretization ..........................................................................95 4 Reduct Generation ..................................................................97 5 Rule Generation and Rule Filtering ........................................99 6 Apply the Discretization Cuts to Test Dataset ......................100 7 Score the Test Dataset on Generated Rule set (and measuring the prediction accuracy) ......................................100 8 Deploying the Rules in a Production System .......................102 A Representative Example ...............................................................103 Conclusion .......................................................................................109 7 Support Vector Machines .....................................................................111 Formal Explanation of SVM ............................................................112 Primal Form .............................................................................114 Contents XI Dual Form ................................................................................114 Soft Margin ..............................................................................114 Non-linear Classification .................................................................115 Regression ................................................................................116 Implementation ........................................................................116 Kernel Trick .............................................................................117 Use of SVM - A Process-Based Approach .....................................118 Support Vector Machines versus Artificial Neural Networks .........121 Disadvantages of Support Vector Machines ....................................122 8 Genetic Algorithm Support to Data Mining .........................................125 Demonstration of Genetic Algorithm ..............................................126 Application of Genetic Algorithms in Data Mining ........................131 Summary ..........................................................................................132 Appendix: Loan Application Data Set .............................................133 9 Performance Evaluation for Predictive Modeling ................................137 Performance Metrics for Predictive Modeling ................................137 Estimation Methodology for Classification Models ........................140 Simple Split (Holdout) .....................................................................140 The ¿-Fold Cross Validation ............................................................141 Bootstrapping and Jackknifíng ........................................................143 Area Under the ROC Curve .............................................................144 Summary ..........................................................................................147 Part III APPLICATIONS ______________________________________ 10 Applications of Methods .....................................................................151 Memory-Based Application .............................................................151 Association Rule Application ..........................................................153 Fuzzy Data Mining ..........................................................................155 Rough Set Models ............................................................................155 Support Vector Machine Application ..............................................157 Genetic Algorithm Applications ......................................................158 Japanese Credit Screening .......................................................158 Product Quality Testing Design ...............................................159 Customer Targeting .................................................................159 Medical Analysis .....................................................................160 XII Contents Predicting the Financial Success of Hollywood Movies .................162 Problem and Data Description .................................................163 Comparative Analysis of the Data Mining Methods ...............165 Conclusions ......................................................................................167 Bibliography ............................................................................................169 Index ........................................................................................................177
adam_txt Contents Part I INTRODUCTION 1 Introduction .3 What is Data Mining? .5 What is Needed to Do Data Mining .5 Business Data Mining .7 Data Mining Tools .8 Summary .8 2 Data Mining Process .9 CRISP-DM .9 Business Understanding .11 Data Understanding .11 Data Preparation .12 Modeling .15 Evaluation .18 Deployment .18 SEMMA .19 Steps in SEMMA Process .20 Example Data Mining Process Application .22 Comparison of CRISP & SEMMA .27 Handling Data .28 Summary .34 Part II DATA MINING METHODS AS TOOLS _ 3 Memory-Based Reasoning Methods .39 Matching .40 Weighted Matching .43 Distance Minimization .44 Software .50 Summary .50 Appendix: Job Application Data Set .51 X Contents 4 Association Rules in Knowledge Discovery .53 Market-Basket Analysis .55 Market Basket Analysis Benefits .56 Demonstration on Small Set of Data .57 Real Market Basket Data .59 The Counting Method Without Software .62 Conclusions .68 5 Fuzzy Sets in Data Mining .69 Fuzzy Sets and Decision Trees .71 Fuzzy Sets and Ordinal Classification .75 Fuzzy Association Rules .79 Demonstration Model .80 Computational Results .84 Testing .84 Inferences .85 Conclusions .86 6 Rough Sets .87 A Brief Theory of Rough Sets .88 Information System .88 Decision Table .89 Some Exemplary Applications of Rough Sets .91 Rough Sets Software Tools .93 The Process of Conducting Rough Sets Analysis .93 1 Data Pre-Processing .94 2 Data Partitioning .95 3 Discretization .95 4 Reduct Generation .97 5 Rule Generation and Rule Filtering .99 6 Apply the Discretization Cuts to Test Dataset .100 7 Score the Test Dataset on Generated Rule set (and measuring the prediction accuracy) .100 8 Deploying the Rules in a Production System .102 A Representative Example .103 Conclusion .109 7 Support Vector Machines .111 Formal Explanation of SVM .112 Primal Form .114 Contents XI Dual Form .114 Soft Margin .114 Non-linear Classification .115 Regression .116 Implementation .116 Kernel Trick .117 Use of SVM - A Process-Based Approach .118 Support Vector Machines versus Artificial Neural Networks .121 Disadvantages of Support Vector Machines .122 8 Genetic Algorithm Support to Data Mining .125 Demonstration of Genetic Algorithm .126 Application of Genetic Algorithms in Data Mining .131 Summary .132 Appendix: Loan Application Data Set .133 9 Performance Evaluation for Predictive Modeling .137 Performance Metrics for Predictive Modeling .137 Estimation Methodology for Classification Models .140 Simple Split (Holdout) .140 The ¿-Fold Cross Validation .141 Bootstrapping and Jackknifíng .143 Area Under the ROC Curve .144 Summary .147 Part III APPLICATIONS _ 10 Applications of Methods .151 Memory-Based Application .151 Association Rule Application .153 Fuzzy Data Mining .155 Rough Set Models .155 Support Vector Machine Application .157 Genetic Algorithm Applications .158 Japanese Credit Screening .158 Product Quality Testing Design .159 Customer Targeting .159 Medical Analysis .160 XII Contents Predicting the Financial Success of Hollywood Movies .162 Problem and Data Description .163 Comparative Analysis of the Data Mining Methods .165 Conclusions .167 Bibliography .169 Index .177
any_adam_object 1
any_adam_object_boolean 1
author Olson, David L. 1944-
Delen, Dursun
author_GND (DE-588)1055798854
(DE-588)1136283463
author_facet Olson, David L. 1944-
Delen, Dursun
author_role aut
aut
author_sort Olson, David L. 1944-
author_variant d l o dl dlo
d d dd
building Verbundindex
bvnumber BV023081838
callnumber-first Q - Science
callnumber-label QA76
callnumber-raw QA76.9.D343
callnumber-search QA76.9.D343
callnumber-sort QA 276.9 D343
callnumber-subject QA - Mathematics
classification_rvk ST 270
ST 330
ST 530
ctrlnum (OCoLC)191760124
(DE-599)DNB986189499
dewey-full 006.312
dewey-hundreds 000 - Computer science, information, general works
dewey-ones 006 - Special computer methods
dewey-raw 006.312
dewey-search 006.312
dewey-sort 16.312
dewey-tens 000 - Computer science, information, general works
discipline Informatik
Wirtschaftswissenschaften
discipline_str_mv Informatik
Wirtschaftswissenschaften
format Book
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01883nam a2200481 c 4500</leader><controlfield tag="001">BV023081838</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20201106 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">080115s2008 gw d||| |||| 00||| eng d</controlfield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">07,N47,0511</subfield><subfield code="2">dnb</subfield></datafield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">986189499</subfield><subfield code="2">DE-101</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783540769163</subfield><subfield code="c">Pb. : ca. EUR 80.20 (freier Pr.), ca. sfr 130.50 (freier Pr.)</subfield><subfield code="9">978-3-540-76916-3</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">3540769161</subfield><subfield code="c">Pb. : ca. EUR 80.20 (freier Pr.), ca. sfr 130.50 (freier Pr.)</subfield><subfield code="9">3-540-76916-1</subfield></datafield><datafield tag="024" ind1="3" ind2=" "><subfield code="a">9783540769163</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">12195442</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)191760124</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DNB986189499</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">gw</subfield><subfield code="c">XA-DE-BE</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-355</subfield><subfield code="a">DE-92</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-573</subfield><subfield code="a">DE-83</subfield><subfield code="a">DE-2070s</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA76.9.D343</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">006.312</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ST 270</subfield><subfield code="0">(DE-625)143638:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ST 330</subfield><subfield code="0">(DE-625)143663:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ST 530</subfield><subfield code="0">(DE-625)143679:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">330</subfield><subfield code="2">sdnb</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Olson, David L.</subfield><subfield code="d">1944-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1055798854</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Advanced data mining techniques</subfield><subfield code="c">David L. Olson ; Dursun Delen</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin [u.a.]</subfield><subfield code="b">Springer</subfield><subfield code="c">2008</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XII, 180 S.</subfield><subfield code="b">graph. Darst.</subfield><subfield code="c">235 mm x 155 mm</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Exploration de données (Informatique)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Data mining</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Data Mining</subfield><subfield code="0">(DE-588)4428654-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Data Mining</subfield><subfield code="0">(DE-588)4428654-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Delen, Dursun</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1136283463</subfield><subfield code="4">aut</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Regensburg</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&amp;doc_library=BVB01&amp;local_base=BVB01&amp;doc_number=016284848&amp;sequence=000002&amp;line_number=0001&amp;func_code=DB_RECORDS&amp;service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-016284848</subfield></datafield></record></collection>
id DE-604.BV023081838
illustrated Illustrated
index_date 2024-07-02T19:37:29Z
indexdate 2024-07-09T21:10:34Z
institution BVB
isbn 9783540769163
3540769161
language English
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-016284848
oclc_num 191760124
open_access_boolean
owner DE-355
DE-BY-UBR
DE-92
DE-703
DE-573
DE-83
DE-2070s
owner_facet DE-355
DE-BY-UBR
DE-92
DE-703
DE-573
DE-83
DE-2070s
physical XII, 180 S. graph. Darst. 235 mm x 155 mm
publishDate 2008
publishDateSearch 2008
publishDateSort 2008
publisher Springer
record_format marc
spelling Olson, David L. 1944- Verfasser (DE-588)1055798854 aut
Advanced data mining techniques David L. Olson ; Dursun Delen
Berlin [u.a.] Springer 2008
XII, 180 S. graph. Darst. 235 mm x 155 mm
txt rdacontent
n rdamedia
nc rdacarrier
Exploration de données (Informatique)
Data mining
Data Mining (DE-588)4428654-5 gnd rswk-swf
Data Mining (DE-588)4428654-5 s
DE-604
Delen, Dursun Verfasser (DE-588)1136283463 aut
Digitalisierung UB Regensburg application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016284848&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis
spellingShingle Olson, David L. 1944-
Delen, Dursun
Advanced data mining techniques
Exploration de données (Informatique)
Data mining
Data Mining (DE-588)4428654-5 gnd
subject_GND (DE-588)4428654-5
title Advanced data mining techniques
title_auth Advanced data mining techniques
title_exact_search Advanced data mining techniques
title_exact_search_txtP Advanced data mining techniques
title_full Advanced data mining techniques David L. Olson ; Dursun Delen
title_fullStr Advanced data mining techniques David L. Olson ; Dursun Delen
title_full_unstemmed Advanced data mining techniques David L. Olson ; Dursun Delen
title_short Advanced data mining techniques
title_sort advanced data mining techniques
topic Exploration de données (Informatique)
Data mining
Data Mining (DE-588)4428654-5 gnd
topic_facet Exploration de données (Informatique)
Data mining
Data Mining
url http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016284848&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA
work_keys_str_mv AT olsondavidl advanceddataminingtechniques
AT delendursun advanceddataminingtechniques