The Hodge theory of projective manifolds

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: De Cataldo, Mark Andrea (VerfasserIn)
Format: Buch
Sprache:English
Veröffentlicht: London Imperial College Pr. 2007
Schlagworte:
Online-Zugang:Inhaltsverzeichnis
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nam a2200000 c 4500
001 BV023073523
003 DE-604
005 20080318
007 t
008 080110s2007 |||| 00||| eng d
020 |a 9781860948008  |9 978-1-86094-800-8 
020 |a 1860948006  |9 1-86094-800-6 
035 |a (OCoLC)154672004 
035 |a (DE-599)BVBBV023073523 
040 |a DE-604  |b ger  |e rakwb 
041 0 |a eng 
049 |a DE-384  |a DE-703  |a DE-11 
050 0 |a QA613 
082 0 |a 516.36  |2 22 
084 |a SK 240  |0 (DE-625)143226:  |2 rvk 
100 1 |a De Cataldo, Mark Andrea  |e Verfasser  |4 aut 
245 1 0 |a The Hodge theory of projective manifolds  |c Mark Andrea De Cataldo 
264 1 |a London  |b Imperial College Pr.  |c 2007 
300 |a X, 102 S. 
336 |b txt  |2 rdacontent 
337 |b n  |2 rdamedia 
338 |b nc  |2 rdacarrier 
650 4 |a Manifolds (Mathematics)  |v Congresses 
650 0 7 |a Projektive Mannigfaltigkeit  |0 (DE-588)4175888-2  |2 gnd  |9 rswk-swf 
650 0 7 |a Hodge-Theorie  |0 (DE-588)4135967-7  |2 gnd  |9 rswk-swf 
655 7 |0 (DE-588)1071861417  |a Konferenzschrift  |2 gnd-content 
689 0 0 |a Hodge-Theorie  |0 (DE-588)4135967-7  |D s 
689 0 1 |a Projektive Mannigfaltigkeit  |0 (DE-588)4175888-2  |D s 
689 0 |5 DE-604 
856 4 2 |m Digitalisierung UB Augsburg  |q application/pdf  |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016276645&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA  |3 Inhaltsverzeichnis 
999 |a oai:aleph.bib-bvb.de:BVB01-016276645 

Datensatz im Suchindex

_version_ 1804137317918572544
adam_text Contents Preface vii 1. Calculus on smooth manifolds 1 1.1 The Euclidean structure on the exterior algebra ...... 1 1.2 The star isomorphism on Л(У) ............... 2 1.3 The tangent and cotangent bundles of a smooth manifold 4 1.4 The de Rham cohomology groups .............. б 1.5 Riemannian metrics ..................... 11 1.6 Partitions of unity ...................... 12 1.7 Orientation and integration ................. 12 2. The Hodge theory of a smooth, oriented, compact Riemannian manifold 19 2.1 The adjoint of d : d*..................... 19 2.2 The Laplace-Beltrami operator of an oriented Riemannian manifold ............................ 21 2.3 Harmonic forms and the Hodge Isomorphism Theorem . . 22 3. Complex manifolds 27 3.1 Conjugations ......................... 27 3.2 Tangent bundles on a complex manifold .......... 28 3.3 Cotangent bundles on complex manifolds ......... 31 3.4 The standard orientation of a complex manifold ...... 33 3.5 The quasi complex structure ................ 34 3.6 Complex-valued forms .................... 37 3.7 Dolbeault and Bott-Chern cohomology . . ......... 40 4. Hermitean linear algebra 43 4.1 The exterior algebra on V¿ ................. 43 4.2 Bases ............................. 44 4.3 Hermitean metrics ...................... 45 4.4 The inner product and the * operator on the complexified exterior algebra Ac(V^) ................... 48 4.5 The Weil operator ...................... 50 5. The Hodge theory of Hermitean manifolds 51 5.1 Hermitean metrics on complex manifolds .......... 51 5.2 The Hodge theory of a compact Hermitean manifold ... 53 6. Kahler manifolds 57 6.1 The Kahler condition ..................... 57 6.2 The fundamental identities of Kahler geometry ...... 61 6.3 The Hodge Decomposition for compact Kahler manifolds 66 6.4 Some consequences ...................... 69 7. The Hard Lefschetz Theorem and the Hodge-Riemann Bilinear Relations 71 7.1 Hodge structures ....................... 72 7.2 The cup product with the Chern class of a hyperplane bundle 74 7.3 The Hard Lefschetz Theorem and the Hodge-Riemann Bi¬ linear Relations ........................ 76 7.4 The Weak Lefschetz Theorem ................ 80 8. Mixed Hodge structures, semi-simplicity and approximability 83 8.1 The mixed Hodge structure on the cohomology of complex algebraic varieties ....................... 83 8.2 The Semi-simplicity Theorem ................ 85 8.3 The Leray spectral sequence .................. 87 8.4 The Global Invariant Cycle Theorem .............88 8.5 The Lefschetz Theorems and semi-simplicity ........ 89 8.6 Approximability for the space of primitive vectors .... 93 Bibliography 99 Index 101
adam_txt Contents Preface vii 1. Calculus on smooth manifolds 1 1.1 The Euclidean structure on the exterior algebra . 1 1.2 The star isomorphism on Л(У) . 2 1.3 The tangent and cotangent bundles of a smooth manifold 4 1.4 The de Rham cohomology groups . б 1.5 Riemannian metrics . 11 1.6 Partitions of unity . 12 1.7 Orientation and integration . 12 2. The Hodge theory of a smooth, oriented, compact Riemannian manifold 19 2.1 The adjoint of d : d*. 19 2.2 The Laplace-Beltrami operator of an oriented Riemannian manifold . 21 2.3 Harmonic forms and the Hodge Isomorphism Theorem . . 22 3. Complex manifolds 27 3.1 Conjugations . 27 3.2 Tangent bundles on a complex manifold . 28 3.3 Cotangent bundles on complex manifolds . 31 3.4 The standard orientation of a complex manifold . 33 3.5 The quasi complex structure . 34 3.6 Complex-valued forms . 37 3.7 Dolbeault and Bott-Chern cohomology . . . 40 4. Hermitean linear algebra 43 4.1 The exterior algebra on V¿ . 43 4.2 Bases . 44 4.3 Hermitean metrics . 45 4.4 The inner product and the * operator on the complexified exterior algebra Ac(V^) . 48 4.5 The Weil operator . 50 5. The Hodge theory of Hermitean manifolds 51 5.1 Hermitean metrics on complex manifolds . 51 5.2 The Hodge theory of a compact Hermitean manifold . 53 6. Kahler manifolds 57 6.1 The Kahler condition . 57 6.2 The fundamental identities of Kahler geometry . 61 6.3 The Hodge Decomposition for compact Kahler manifolds 66 6.4 Some consequences . 69 7. The Hard Lefschetz Theorem and the Hodge-Riemann Bilinear Relations 71 7.1 Hodge structures . 72 7.2 The cup product with the Chern class of a hyperplane bundle 74 7.3 The Hard Lefschetz Theorem and the Hodge-Riemann Bi¬ linear Relations . 76 7.4 The Weak Lefschetz Theorem . 80 8. Mixed Hodge structures, semi-simplicity and approximability 83 8.1 The mixed Hodge structure on the cohomology of complex algebraic varieties . 83 8.2 The Semi-simplicity Theorem . 85 8.3 The Leray spectral sequence . 87 8.4 The Global Invariant Cycle Theorem .88 8.5 The Lefschetz Theorems and semi-simplicity . 89 8.6 Approximability for the space of primitive vectors . 93 Bibliography 99 Index 101
any_adam_object 1
any_adam_object_boolean 1
author De Cataldo, Mark Andrea
author_facet De Cataldo, Mark Andrea
author_role aut
author_sort De Cataldo, Mark Andrea
author_variant c m a d cma cmad
building Verbundindex
bvnumber BV023073523
callnumber-first Q - Science
callnumber-label QA613
callnumber-raw QA613
callnumber-search QA613
callnumber-sort QA 3613
callnumber-subject QA - Mathematics
classification_rvk SK 240
ctrlnum (OCoLC)154672004
(DE-599)BVBBV023073523
dewey-full 516.36
dewey-hundreds 500 - Natural sciences and mathematics
dewey-ones 516 - Geometry
dewey-raw 516.36
dewey-search 516.36
dewey-sort 3516.36
dewey-tens 510 - Mathematics
discipline Mathematik
discipline_str_mv Mathematik
format Book
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01532nam a2200397 c 4500</leader><controlfield tag="001">BV023073523</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20080318 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">080110s2007 |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781860948008</subfield><subfield code="9">978-1-86094-800-8</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1860948006</subfield><subfield code="9">1-86094-800-6</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)154672004</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV023073523</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-11</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA613</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">516.36</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 240</subfield><subfield code="0">(DE-625)143226:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">De Cataldo, Mark Andrea</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">The Hodge theory of projective manifolds</subfield><subfield code="c">Mark Andrea De Cataldo</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">London</subfield><subfield code="b">Imperial College Pr.</subfield><subfield code="c">2007</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">X, 102 S.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Manifolds (Mathematics)</subfield><subfield code="v">Congresses</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Projektive Mannigfaltigkeit</subfield><subfield code="0">(DE-588)4175888-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Hodge-Theorie</subfield><subfield code="0">(DE-588)4135967-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="0">(DE-588)1071861417</subfield><subfield code="a">Konferenzschrift</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Hodge-Theorie</subfield><subfield code="0">(DE-588)4135967-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Projektive Mannigfaltigkeit</subfield><subfield code="0">(DE-588)4175888-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Augsburg</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&amp;doc_library=BVB01&amp;local_base=BVB01&amp;doc_number=016276645&amp;sequence=000002&amp;line_number=0001&amp;func_code=DB_RECORDS&amp;service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-016276645</subfield></datafield></record></collection>
genre (DE-588)1071861417 Konferenzschrift gnd-content
genre_facet Konferenzschrift
id DE-604.BV023073523
illustrated Not Illustrated
index_date 2024-07-02T19:34:00Z
indexdate 2024-07-09T21:10:23Z
institution BVB
isbn 9781860948008
1860948006
language English
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-016276645
oclc_num 154672004
open_access_boolean
owner DE-384
DE-703
DE-11
owner_facet DE-384
DE-703
DE-11
physical X, 102 S.
publishDate 2007
publishDateSearch 2007
publishDateSort 2007
publisher Imperial College Pr.
record_format marc
spelling De Cataldo, Mark Andrea Verfasser aut
The Hodge theory of projective manifolds Mark Andrea De Cataldo
London Imperial College Pr. 2007
X, 102 S.
txt rdacontent
n rdamedia
nc rdacarrier
Manifolds (Mathematics) Congresses
Projektive Mannigfaltigkeit (DE-588)4175888-2 gnd rswk-swf
Hodge-Theorie (DE-588)4135967-7 gnd rswk-swf
(DE-588)1071861417 Konferenzschrift gnd-content
Hodge-Theorie (DE-588)4135967-7 s
Projektive Mannigfaltigkeit (DE-588)4175888-2 s
DE-604
Digitalisierung UB Augsburg application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016276645&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis
spellingShingle De Cataldo, Mark Andrea
The Hodge theory of projective manifolds
Manifolds (Mathematics) Congresses
Projektive Mannigfaltigkeit (DE-588)4175888-2 gnd
Hodge-Theorie (DE-588)4135967-7 gnd
subject_GND (DE-588)4175888-2
(DE-588)4135967-7
(DE-588)1071861417
title The Hodge theory of projective manifolds
title_auth The Hodge theory of projective manifolds
title_exact_search The Hodge theory of projective manifolds
title_exact_search_txtP ˜Theœ Hodge theory of projective manifolds
title_full The Hodge theory of projective manifolds Mark Andrea De Cataldo
title_fullStr The Hodge theory of projective manifolds Mark Andrea De Cataldo
title_full_unstemmed The Hodge theory of projective manifolds Mark Andrea De Cataldo
title_short The Hodge theory of projective manifolds
title_sort the hodge theory of projective manifolds
topic Manifolds (Mathematics) Congresses
Projektive Mannigfaltigkeit (DE-588)4175888-2 gnd
Hodge-Theorie (DE-588)4135967-7 gnd
topic_facet Manifolds (Mathematics) Congresses
Projektive Mannigfaltigkeit
Hodge-Theorie
Konferenzschrift
url http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016276645&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA
work_keys_str_mv AT decataldomarkandrea thehodgetheoryofprojectivemanifolds