Introduction to scanning tunneling microscopy

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Chen, C. Julian (VerfasserIn)
Format: Buch
Sprache:English
Veröffentlicht: Oxford [u.a.] Oxford Univ. Press 2008
Ausgabe:2. ed.
Schriftenreihe:Monographs on the physics and chemistry of materials 64
Schlagworte:
Online-Zugang:Inhaltsverzeichnis
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nam a2200000 cb4500
001 BV023049245
003 DE-604
005 20161124
007 t
008 071213s2008 ad|| |||| 00||| eng d
020 |a 9780199211500  |9 978-0-19-921150-0 
035 |a (OCoLC)137312938 
035 |a (DE-599)BVBBV023049245 
040 |a DE-604  |b ger  |e rakwb 
041 0 |a eng 
049 |a DE-355  |a DE-29T  |a DE-634  |a DE-91G  |a DE-11  |a DE-83 
050 0 |a QH212.S35 
082 0 |a 502.82  |2 22 
084 |a UH 6310  |0 (DE-625)159500:  |2 rvk 
084 |a UH 6320  |0 (DE-625)145762:  |2 rvk 
084 |a WC 3200  |0 (DE-625)148082:  |2 rvk 
084 |a PHY 135f  |2 stub 
100 1 |a Chen, C. Julian  |e Verfasser  |0 (DE-588)1080876596  |4 aut 
245 1 0 |a Introduction to scanning tunneling microscopy  |c C. Julian Chen 
250 |a 2. ed. 
264 1 |a Oxford [u.a.]  |b Oxford Univ. Press  |c 2008 
300 |a LXIII, 423 S.  |b Ill., graph. Darst. 
336 |b txt  |2 rdacontent 
337 |b n  |2 rdamedia 
338 |b nc  |2 rdacarrier 
490 1 |a Monographs on the physics and chemistry of materials  |v 64 
490 0 |a Oxford science publications 
650 4 |a Scanning tunneling microscopy 
650 0 7 |a Rastertunnelmikroskopie  |0 (DE-588)4252995-5  |2 gnd  |9 rswk-swf 
689 0 0 |a Rastertunnelmikroskopie  |0 (DE-588)4252995-5  |D s 
689 0 |5 DE-604 
830 0 |a Monographs on the physics and chemistry of materials  |v 64  |w (DE-604)BV000725086  |9 64 
856 4 2 |m Digitalisierung UB Regensburg  |q application/pdf  |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016252646&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA  |3 Inhaltsverzeichnis 
999 |a oai:aleph.bib-bvb.de:BVB01-016252646 

Datensatz im Suchindex

DE-BY-TUM_call_number 0049/PHY 135f 2009 A 4434(2)
0702/PHY 135f 2009 A 4406(2)
DE-BY-TUM_katkey 1694006
DE-BY-TUM_media_number 040071304048
040020761760
_version_ 1816712961737097216
adam_text Contents Preface to the Second Edition xxiii Preface to the First Edition xxvii Gallery xxxiii Chapter 1: Overview 1 1.1 The scanning tunneling microscope ............... 1 1.2 The concept of tunneling ..................... 3 1.2.1 Transmission coefficient ................. 3 1.2.2 Semiclassical approximation ............... 6 1.2.3 The Landauer theory ................... 6 1.2.4 Tunneling conductance .................. 10 1.3 Probing electronic structure at atomic scale .......... 12 1.3.1 Experimental observations ................ 15 1.3.2 Origin of atomic resolution in STM ........... 18 1.4 The atomic force microscope .................. 21 1.4.1 Atomic-scale imaging by AFM ............. 21 1.4.2 Role of covalent bonding in AFM imaging ....... 24 1.5 Illustrative applications ..................... 25 1.5.1 Catalysis research .................... 25 1.5.2 Atomic-scale imaging at the liquid-solid interface ... 29 1.5.3 Atom manipulation ................... 33 1.5.4 Imaging and manipulating DNA using AFM ..... 35 Part I Principles 41 Chapter 2: Tunneling Phenomenon 45 2.1 The metal-insulator-metal tunneling junction ......... 46 2.2 The Bardeen theory of tunneling ................ 48 2.2.1 One-dimensional case .................. 48 2.2.2 Tunneling spectroscopy ................. 52 2.2.3 Energy dependence of tunneling matrix elements ... 53 2.2.4 Asymmetry in tunneling spectrum ........... 54 2.2.5 Three-dimensional case ................. 57 2.2.6 Error estimation ..................... 59 2.2.7 Wavefunction correction ................. 60 2.2.8 The transfer-Hamiltonian formalism .......... 61 2.2.9 The tunneling matrix .................. 63 viii Contents 2.2.10 Relation to the Landauer theory ............64 2.3 Inelastic tunneling ........................64 2.3.1 Experimental facts ....................65 2.3.2 Frequency condition ...................66 2.3.3 Effect of finite temperature ...............67 2.4 Spin-polarized tunneling .....................69 2.4.1 General formalism ....................70 2.4.2 The spin-valve effect ...................72 2.4.3 Experimental observations ................76 Chapter 3: Tunneling Matrix Elements 77 3.1 Introduction ............................77 3.2 Tip wavefunctions ........................78 3.2.1 General form .......................78 3.2.2 Tip wavefunctions as Green s functions ........81 3.3 The derivative rule: individual cases ..............82 3.3.1 s-wave tip state ...................... 82 3.3.2 p-wave tip states ..................... 83 3.3.3 d-wave tip states ..................... 84 3.3.4 Complex tip states .................... 84 3.4 The derivative rule: general case ................85 3.5 An intuitive interpretation ....................91 Chapter 4: Atomic Forces 93 4.1 Van der Waals force .......................93 4.1.1 The van der Waals equation of state ..........93 4.1.2 The origin of van der Waals force ............94 4.1.3 Van der Waals force between a tip and a sample ... 96 4.2 Hard-core repulsion ........................98 4.3 The ionic bond ..........................98 4.4 The covalent bond: The concept ................100 4.4.1 Heisenberg s model of resonance ............101 4.4.2 The hydrogen molecule-ion ...............104 4.4.3 Three regimes of interaction ...............105 4.4.4 Van der Waals force ...................106 4.4.5 Resonance energy as tunneling matrix element .... 107 4.4.6 Evaluation of the modified Bardeen integral ...... Ill 4.4.7 Repulsive force ......................114 4.5 The covalent bond: Many-electron atoms ...........115 Contents ix 4.5.1 The homonuclear diatomic molecules ..........115 4.5.2 The perturbation approach ...............115 4.5.3 Evaluation of the Bardeen Integral ...........118 4.5.4 Comparison with experimental data ..........119 Chapter 5: Atomic Forces and Tunneling 123 5.1 The principle of equivalence ...................123 5.2 General theory ..........................126 5.2.1 The double-well problem .................126 5.2.2 Canonical transformation of the transfer Hamiltonian 128 5.2.3 Diagonizing the tunneling matrix ............130 5.3 Case of a metal tip and a metal sample ............131 5.3.1 Van der Waals force ...................132 5.3.2 Resonance energy between two metal electrodes .... 132 5.3.3 A measurable consequence ................135 5.3.4 Repulsive force ......................136 5.4 Experimental verifications ....................136 5.4.1 An early experiment ...................136 5.4.2 Experiments with frequency-modulation AFM .... 138 5.4.3 Experiments with static AFM ..............140 5.4.4 Non-contact atomic force spectroscopy .........143 5.5 Threshold resistance in atom manipulation ..........145 Chapter 6: Nanometer-Scale Imaging 149 6.1 Types of STM and AFM images ................149 6.2 The Tersoff-Hamann model ...................151 6.2.1 The concept ........................151 6.2.2 The original derivation ..................152 6.2.3 Profiles of surface reconstructions ............155 6.2.4 Extension to finite bias voltages ............158 6.2.5 Surface states: the concept ...............160 6.2.6 Surface states: STM observations ............162 6.2.7 Heterogeneous surfaces ..................166 6.3 Limitations of the Tersoff-Hamann model ...........166 Chapter 7: Atomic-Scale Imaging 169 7.1 Experimental facts ........................170 7.1.1 Universality of atomic resolution ............170 7.1.2 Corrugation inversion ..................170 7.1.3 Tip-state dependence ..................171 x Contents 7.1.4 Distance dependence of corrugation ..........173 7.2 Intuitive explanations ......................174 7.2.1 Sharpness of tip states ..................174 7.2.2 Phase effect ........................175 7.2.3 Arguments based on the reciprocity principle .....177 7.3 Analytic treatments .......................178 7.3.1 A one-dimensional case .................178 7.3.2 Surfaces with hexagonal symmetry ...........182 7.3.3 Corrugation inversion ..................186 7.3.4 Profiles of atomic states as seen by STM ........190 7.3.5 Independent-orbital approximation ...........194 7.4 First-principles studies: tip electronic states ..........198 7.4.1 W clusters as STM tip models .............198 7.4.2 Density-functional study of a W-Cu STM junction . . 199 7.4.3 Transition-metal pyramidal tips .............199 7.4.4 Transition-metal atoms adsorbed on W slabs .....200 7.5 First-principles studies: the images ...............202 7.5.1 Transition-metal surfaces ................202 7.5.2 Atomic corrugation and surface waves .........204 7.5.3 Atom-resolved AFM images ...............205 7.6 Spin-polarized STM .......................209 7.7 Chemical identification of surface atoms ............212 7.8 The principle of reciprocity ...................214 Chapter 8: Nanomechanical Effects 219 8.1 Mechanical stability of the tip-sample junction ........220 8.1.1 Experimental observations ................220 8.1.2 Condition of mechanical stability ............223 8.1.3 Relaxation and the apparent G ~ z relation ......229 8.2 Mechanical effects on observed corrugations ..........231 8.2.1 Soft surfaces .......................231 8.2.2 Hard surfaces .......................233 8.2.3 First-principles simulations ...............236 8.2.4 Advanced topics .....................237 8.2.5 The Pethica mechanism .................238 8.3 Force in tunneling-barrier measurements ............238 Contents xi Part II Instrumentation 241 Chapter 9: Piezoelectric Scanner 245 9.1 Piezoelectricity ..........................245 9.1.1 Piezoelectric effect ....................245 9.1.2 Inverse piezoelectric effect ................246 9.2 Piezoelectric materials in STM and AFM ...........249 9.2.1 Quartz ...........................249 9.2.2 Lead zirconate titanate ceramics ............250 9.3 Piezoelectric devices in STM and AFM ............254 9.3.1 Tripod scanner ......................254 9.3.2 Bimorph ..........................255 9.4 The tube scanner .........................257 9.4.1 Deflection .........................258 9.4.2 In situ testing and calibration ..............260 9.4.3 Resonant frequencies ...................263 9.4.4 Tilt compensation: the s-scanner ............264 9.4.5 Repolarizing a depolarized tube piezo .........265 9.5 The shear piezo ..........................265 Chapter 10: Vibration Isolation 269 10.1 Basic concepts ..........................269 10.2 Environmental vibration .....................273 10.2.1 Measurement method ..................274 10.2.2 Vibration isolation of the foundation ..........275 10.3 Vibrational immunity of STM ..................277 10.4 Suspension-spring systems ....................278 10.4.1 Analysis of two-stage systems ..............278 10.4.2 Choice of springs .....................280 10.4.3 Eddy-current damper ..................281 10.5 Pneumatic systems ........................282 Chapter 11: Electronics and Control 283 11.1 Current amplifier .........................283 11.1.1 Johnson noise and shot noise ..............284 11.1.2 Frequency response ....................286 11.1.3 Microphone effect ....................287 11.1.4 Logarithmic amplifier ..................288 11.2 Feedback circuit .........................289 xii Contents 11.2.1 Steady-state response ..................290 11.2.2 Transient response ....................292 11.3 Computer interface ........................297 11.3.1 Automatic approaching .................298 Chapter 12: Mechanical design 299 12.1 The louse .............................299 12.2 The pocket-size STM .......................300 12.3 The single-tube STM .......................301 12.4 The Besocke-type STM: the beetle ...............302 12.5 The walker ............................305 12.6 The kangaroo ...........................306 12.7 The Inchworm ..........................308 12.8 The match .............................309 Chapter 13: Tip Treatment 313 13.1 Introduction ............................313 13.2 Electrochemical tip etching ...................314 13.3 Ex situ tip treatments ......................317 13.3.1 Annealing .........................317 13.3.2 Field evaporation and controlled deposition ......318 13.3.3 Annealing with a field ..................319 13.3.4 Atomic metallic ion emission ..............320 13.3.5 Field-assisted reaction with nitrogen ..........322 13.4 In situ tip treatments ......................324 13.4.1 High-field treatment ...................324 13.4.2 Controlled collision ....................325 13.5 Tip treatment for spin-polarized STM .............326 13.5.1 Coating the tip with ferromagnetic materials .....326 13.5.2 Coating the tip with antiferromagnetic materials . . . 327 13.5.3 Controlled collision with magnetic surfaces ......327 13.6 Tip preparation for electrochemistry STM ...........328 Chapter 14: Scanning Tunneling Spectroscopy 331 14.1 Electronics for scanning tunneling spectroscopy ........331 14.2 Nature of the observed tunneling spectra ............332 14.3 Tip treatment for spectroscopy studies .............334 Contents xiii 14.3.1 Annealing .........................334 14.3.2 Controlled collision with a metal surface ........336 14.4 The Feenstra parameter .....................337 14.5 Determination of the tip DOS ..................338 14.5.1 Ex situ methods .....................338 14.5.2 In situ methods ......................340 14.6 Inelastic scanning tunneling spectroscopy ...........344 14.6.1 Instrumentation .....................344 14.6.2 Effect of finite modulation voltage ...........345 14.6.3 Experimental observations ................347 Chapter 15: Atomic Force Microscopy 349 15.1 Static mode and dynamic mode .................350 15.2 The cantilever ...........................351 15.2.1 Basic requirements ....................351 15.2.2 Fabrication ........................352 15.3 Static force detection .......................354 15.3.1 Optical beam deflection .................354 15.3.2 Optical interferometry ..................356 15.4 Tapping-mode AFM .......................357 15.4.1 Acoustic actuation in liquids ..............358 15.4.2 Magnetic actuation in liquids ..............359 15.5 Non-contact AFM ........................361 15.5.1 Case of small amplitude .................361 15.5.2 Case of finite amplitude .................364 15.5.3 Response function for frequency shift ..........365 15.5.4 Second harmonics ....................366 15.5.5 Average tunneling current ................368 15.5.6 Implementation ......................369 Appendix A: Green s Functions 371 Appendix B: Real Spherical Harmonics 373 Appendix C: Spherical Modified Bessel Functions 377 Appendix D: Plane Groups and Invariant Functions 381 D.I A brief summary of plane groups ................382 D.2 Invariant functions ........................385 xiv Contents Appendix E: Elementary Elasticity Theory 389 E.I Stress and strain .........................389 E.2 Small deflection of beams ....................391 E.3 Vibration of beams ........................394 E.4 Torsion ..............................395 E.5 Helical springs ..........................397 E.6 Contact stress: The Hertz formulas ...............398
adam_txt Contents Preface to the Second Edition xxiii Preface to the First Edition xxvii Gallery xxxiii Chapter 1: Overview 1 1.1 The scanning tunneling microscope . 1 1.2 The concept of tunneling . 3 1.2.1 Transmission coefficient . 3 1.2.2 Semiclassical approximation . 6 1.2.3 The Landauer theory . 6 1.2.4 Tunneling conductance . 10 1.3 Probing electronic structure at atomic scale . 12 1.3.1 Experimental observations . 15 1.3.2 Origin of atomic resolution in STM . 18 1.4 The atomic force microscope . 21 1.4.1 Atomic-scale imaging by AFM . 21 1.4.2 Role of covalent bonding in AFM imaging . 24 1.5 Illustrative applications . 25 1.5.1 Catalysis research . 25 1.5.2 Atomic-scale imaging at the liquid-solid interface . 29 1.5.3 Atom manipulation . 33 1.5.4 Imaging and manipulating DNA using AFM . 35 Part I Principles 41 Chapter 2: Tunneling Phenomenon 45 2.1 The metal-insulator-metal tunneling junction . 46 2.2 The Bardeen theory of tunneling . 48 2.2.1 One-dimensional case . 48 2.2.2 Tunneling spectroscopy . 52 2.2.3 Energy dependence of tunneling matrix elements . 53 2.2.4 Asymmetry in tunneling spectrum . 54 2.2.5 Three-dimensional case . 57 2.2.6 Error estimation . 59 2.2.7 Wavefunction correction . 60 2.2.8 The transfer-Hamiltonian formalism . 61 2.2.9 The tunneling matrix . 63 viii Contents 2.2.10 Relation to the Landauer theory .64 2.3 Inelastic tunneling .64 2.3.1 Experimental facts .65 2.3.2 Frequency condition .66 2.3.3 Effect of finite temperature .67 2.4 Spin-polarized tunneling .69 2.4.1 General formalism .70 2.4.2 The spin-valve effect .72 2.4.3 Experimental observations .76 Chapter 3: Tunneling Matrix Elements 77 3.1 Introduction .77 3.2 Tip wavefunctions .78 3.2.1 General form .78 3.2.2 Tip wavefunctions as Green's functions .81 3.3 The derivative rule: individual cases .82 3.3.1 s-wave tip state . 82 3.3.2 p-wave tip states . 83 3.3.3 d-wave tip states . 84 3.3.4 Complex tip states . 84 3.4 The derivative rule: general case .85 3.5 An intuitive interpretation .91 Chapter 4: Atomic Forces 93 4.1 Van der Waals force .93 4.1.1 The van der Waals equation of state .93 4.1.2 The origin of van der Waals force .94 4.1.3 Van der Waals force between a tip and a sample . 96 4.2 Hard-core repulsion .98 4.3 The ionic bond .98 4.4 The covalent bond: The concept .100 4.4.1 Heisenberg's model of resonance .101 4.4.2 The hydrogen molecule-ion .104 4.4.3 Three regimes of interaction .105 4.4.4 Van der Waals force .106 4.4.5 Resonance energy as tunneling matrix element . 107 4.4.6 Evaluation of the modified Bardeen integral . Ill 4.4.7 Repulsive force .114 4.5 The covalent bond: Many-electron atoms .115 Contents ix 4.5.1 The homonuclear diatomic molecules .115 4.5.2 The perturbation approach .115 4.5.3 Evaluation of the Bardeen Integral .118 4.5.4 Comparison with experimental data .119 Chapter 5: Atomic Forces and Tunneling 123 5.1 The principle of equivalence .123 5.2 General theory .126 5.2.1 The double-well problem .126 5.2.2 Canonical transformation of the transfer Hamiltonian 128 5.2.3 Diagonizing the tunneling matrix .130 5.3 Case of a metal tip and a metal sample .131 5.3.1 Van der Waals force .132 5.3.2 Resonance energy between two metal electrodes . 132 5.3.3 A measurable consequence .135 5.3.4 Repulsive force .136 5.4 Experimental verifications .136 5.4.1 An early experiment .136 5.4.2 Experiments with frequency-modulation AFM . 138 5.4.3 Experiments with static AFM .140 5.4.4 Non-contact atomic force spectroscopy .143 5.5 Threshold resistance in atom manipulation .145 Chapter 6: Nanometer-Scale Imaging 149 6.1 Types of STM and AFM images .149 6.2 The Tersoff-Hamann model .151 6.2.1 The concept .151 6.2.2 The original derivation .152 6.2.3 Profiles of surface reconstructions .155 6.2.4 Extension to finite bias voltages .158 6.2.5 Surface states: the concept .160 6.2.6 Surface states: STM observations .162 6.2.7 Heterogeneous surfaces .166 6.3 Limitations of the Tersoff-Hamann model .166 Chapter 7: Atomic-Scale Imaging 169 7.1 Experimental facts .170 7.1.1 Universality of atomic resolution .170 7.1.2 Corrugation inversion .170 7.1.3 Tip-state dependence .171 x Contents 7.1.4 Distance dependence of corrugation .173 7.2 Intuitive explanations .174 7.2.1 Sharpness of tip states .174 7.2.2 Phase effect .175 7.2.3 Arguments based on the reciprocity principle .177 7.3 Analytic treatments .178 7.3.1 A one-dimensional case .178 7.3.2 Surfaces with hexagonal symmetry .182 7.3.3 Corrugation inversion .186 7.3.4 Profiles of atomic states as seen by STM .190 7.3.5 Independent-orbital approximation .194 7.4 First-principles studies: tip electronic states .198 7.4.1 W clusters as STM tip models .198 7.4.2 Density-functional study of a W-Cu STM junction . . 199 7.4.3 Transition-metal pyramidal tips .199 7.4.4 Transition-metal atoms adsorbed on W slabs .200 7.5 First-principles studies: the images .202 7.5.1 Transition-metal surfaces .202 7.5.2 Atomic corrugation and surface waves .204 7.5.3 Atom-resolved AFM images .205 7.6 Spin-polarized STM .209 7.7 Chemical identification of surface atoms .212 7.8 The principle of reciprocity .214 Chapter 8: Nanomechanical Effects 219 8.1 Mechanical stability of the tip-sample junction .220 8.1.1 Experimental observations .220 8.1.2 Condition of mechanical stability .223 8.1.3 Relaxation and the apparent G ~ z relation .229 8.2 Mechanical effects on observed corrugations .231 8.2.1 Soft surfaces .231 8.2.2 Hard surfaces .233 8.2.3 First-principles simulations .236 8.2.4 Advanced topics .237 8.2.5 The Pethica mechanism .238 8.3 Force in tunneling-barrier measurements .238 Contents xi Part II Instrumentation 241 Chapter 9: Piezoelectric Scanner 245 9.1 Piezoelectricity .245 9.1.1 Piezoelectric effect .245 9.1.2 Inverse piezoelectric effect .246 9.2 Piezoelectric materials in STM and AFM .249 9.2.1 Quartz .249 9.2.2 Lead zirconate titanate ceramics .250 9.3 Piezoelectric devices in STM and AFM .254 9.3.1 Tripod scanner .254 9.3.2 Bimorph .255 9.4 The tube scanner .257 9.4.1 Deflection .258 9.4.2 In situ testing and calibration .260 9.4.3 Resonant frequencies .263 9.4.4 Tilt compensation: the s-scanner .264 9.4.5 Repolarizing a depolarized tube piezo .265 9.5 The shear piezo .265 Chapter 10: Vibration Isolation 269 10.1 Basic concepts .269 10.2 Environmental vibration .273 10.2.1 Measurement method .274 10.2.2 Vibration isolation of the foundation .275 10.3 Vibrational immunity of STM .277 10.4 Suspension-spring systems .278 10.4.1 Analysis of two-stage systems .278 10.4.2 Choice of springs .280 10.4.3 Eddy-current damper .281 10.5 Pneumatic systems .282 Chapter 11: Electronics and Control 283 11.1 Current amplifier .283 11.1.1 Johnson noise and shot noise .284 11.1.2 Frequency response .286 11.1.3 Microphone effect .287 11.1.4 Logarithmic amplifier .288 11.2 Feedback circuit .289 xii Contents 11.2.1 Steady-state response .290 11.2.2 Transient response .292 11.3 Computer interface .297 11.3.1 Automatic approaching .298 Chapter 12: Mechanical design 299 12.1 The louse .299 12.2 The pocket-size STM .300 12.3 The single-tube STM .301 12.4 The Besocke-type STM: the beetle .302 12.5 The walker .305 12.6 The kangaroo .306 12.7 The Inchworm .308 12.8 The match .309 Chapter 13: Tip Treatment 313 13.1 Introduction .313 13.2 Electrochemical tip etching .314 13.3 Ex situ tip treatments .317 13.3.1 Annealing .317 13.3.2 Field evaporation and controlled deposition .318 13.3.3 Annealing with a field .319 13.3.4 Atomic metallic ion emission .320 13.3.5 Field-assisted reaction with nitrogen .322 13.4 In situ tip treatments .324 13.4.1 High-field treatment .324 13.4.2 Controlled collision .325 13.5 Tip treatment for spin-polarized STM .326 13.5.1 Coating the tip with ferromagnetic materials .326 13.5.2 Coating the tip with antiferromagnetic materials . . . 327 13.5.3 Controlled collision with magnetic surfaces .327 13.6 Tip preparation for electrochemistry STM .328 Chapter 14: Scanning Tunneling Spectroscopy 331 14.1 Electronics for scanning tunneling spectroscopy .331 14.2 Nature of the observed tunneling spectra .332 14.3 Tip treatment for spectroscopy studies .334 Contents xiii 14.3.1 Annealing .334 14.3.2 Controlled collision with a metal surface .336 14.4 The Feenstra parameter .337 14.5 Determination of the tip DOS .338 14.5.1 Ex situ methods .338 14.5.2 In situ methods .340 14.6 Inelastic scanning tunneling spectroscopy .344 14.6.1 Instrumentation .344 14.6.2 Effect of finite modulation voltage .345 14.6.3 Experimental observations .347 Chapter 15: Atomic Force Microscopy 349 15.1 Static mode and dynamic mode .350 15.2 The cantilever .351 15.2.1 Basic requirements .351 15.2.2 Fabrication .352 15.3 Static force detection .354 15.3.1 Optical beam deflection .354 15.3.2 Optical interferometry .356 15.4 Tapping-mode AFM .357 15.4.1 Acoustic actuation in liquids .358 15.4.2 Magnetic actuation in liquids .359 15.5 Non-contact AFM .361 15.5.1 Case of small amplitude .361 15.5.2 Case of finite amplitude .364 15.5.3 Response function for frequency shift .365 15.5.4 Second harmonics .366 15.5.5 Average tunneling current .368 15.5.6 Implementation .369 Appendix A: Green's Functions 371 Appendix B: Real Spherical Harmonics 373 Appendix C: Spherical Modified Bessel Functions 377 Appendix D: Plane Groups and Invariant Functions 381 D.I A brief summary of plane groups .382 D.2 Invariant functions .385 xiv Contents Appendix E: Elementary Elasticity Theory 389 E.I Stress and strain .389 E.2 Small deflection of beams .391 E.3 Vibration of beams .394 E.4 Torsion .395 E.5 Helical springs .397 E.6 Contact stress: The Hertz formulas .398
any_adam_object 1
any_adam_object_boolean 1
author Chen, C. Julian
author_GND (DE-588)1080876596
author_facet Chen, C. Julian
author_role aut
author_sort Chen, C. Julian
author_variant c j c cj cjc
building Verbundindex
bvnumber BV023049245
callnumber-first Q - Science
callnumber-label QH212
callnumber-raw QH212.S35
callnumber-search QH212.S35
callnumber-sort QH 3212 S35
callnumber-subject QH - Natural History and Biology
classification_rvk UH 6310
UH 6320
WC 3200
classification_tum PHY 135f
ctrlnum (OCoLC)137312938
(DE-599)BVBBV023049245
dewey-full 502.82
dewey-hundreds 500 - Natural sciences and mathematics
dewey-ones 502 - Miscellany
dewey-raw 502.82
dewey-search 502.82
dewey-sort 3502.82
dewey-tens 500 - Natural sciences and mathematics
discipline Allgemeine Naturwissenschaft
Physik
Biologie
discipline_str_mv Allgemeine Naturwissenschaft
Physik
Biologie
edition 2. ed.
format Book
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01720nam a2200433 cb4500</leader><controlfield tag="001">BV023049245</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20161124 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">071213s2008 ad|| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780199211500</subfield><subfield code="9">978-0-19-921150-0</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)137312938</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV023049245</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-355</subfield><subfield code="a">DE-29T</subfield><subfield code="a">DE-634</subfield><subfield code="a">DE-91G</subfield><subfield code="a">DE-11</subfield><subfield code="a">DE-83</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QH212.S35</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">502.82</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UH 6310</subfield><subfield code="0">(DE-625)159500:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UH 6320</subfield><subfield code="0">(DE-625)145762:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">WC 3200</subfield><subfield code="0">(DE-625)148082:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">PHY 135f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Chen, C. Julian</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1080876596</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Introduction to scanning tunneling microscopy</subfield><subfield code="c">C. Julian Chen</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">2. ed.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Oxford [u.a.]</subfield><subfield code="b">Oxford Univ. Press</subfield><subfield code="c">2008</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">LXIII, 423 S.</subfield><subfield code="b">Ill., graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Monographs on the physics and chemistry of materials</subfield><subfield code="v">64</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Oxford science publications</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Scanning tunneling microscopy</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Rastertunnelmikroskopie</subfield><subfield code="0">(DE-588)4252995-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Rastertunnelmikroskopie</subfield><subfield code="0">(DE-588)4252995-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Monographs on the physics and chemistry of materials</subfield><subfield code="v">64</subfield><subfield code="w">(DE-604)BV000725086</subfield><subfield code="9">64</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Regensburg</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&amp;doc_library=BVB01&amp;local_base=BVB01&amp;doc_number=016252646&amp;sequence=000002&amp;line_number=0001&amp;func_code=DB_RECORDS&amp;service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-016252646</subfield></datafield></record></collection>
id DE-604.BV023049245
illustrated Illustrated
index_date 2024-07-02T19:23:57Z
indexdate 2024-11-25T17:26:05Z
institution BVB
isbn 9780199211500
language English
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-016252646
oclc_num 137312938
open_access_boolean
owner DE-355
DE-BY-UBR
DE-29T
DE-634
DE-91G
DE-BY-TUM
DE-11
DE-83
owner_facet DE-355
DE-BY-UBR
DE-29T
DE-634
DE-91G
DE-BY-TUM
DE-11
DE-83
physical LXIII, 423 S. Ill., graph. Darst.
publishDate 2008
publishDateSearch 2008
publishDateSort 2008
publisher Oxford Univ. Press
record_format marc
series Monographs on the physics and chemistry of materials
series2 Monographs on the physics and chemistry of materials
Oxford science publications
spellingShingle Chen, C. Julian
Introduction to scanning tunneling microscopy
Monographs on the physics and chemistry of materials
Scanning tunneling microscopy
Rastertunnelmikroskopie (DE-588)4252995-5 gnd
subject_GND (DE-588)4252995-5
title Introduction to scanning tunneling microscopy
title_auth Introduction to scanning tunneling microscopy
title_exact_search Introduction to scanning tunneling microscopy
title_exact_search_txtP Introduction to scanning tunneling microscopy
title_full Introduction to scanning tunneling microscopy C. Julian Chen
title_fullStr Introduction to scanning tunneling microscopy C. Julian Chen
title_full_unstemmed Introduction to scanning tunneling microscopy C. Julian Chen
title_short Introduction to scanning tunneling microscopy
title_sort introduction to scanning tunneling microscopy
topic Scanning tunneling microscopy
Rastertunnelmikroskopie (DE-588)4252995-5 gnd
topic_facet Scanning tunneling microscopy
Rastertunnelmikroskopie
url http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016252646&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA
volume_link (DE-604)BV000725086
work_keys_str_mv AT chencjulian introductiontoscanningtunnelingmicroscopy