The Bayesian choice from decision-theoretic foundations to computational implementation

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Robert, Christian P. 1961- (VerfasserIn)
Format: Buch
Sprache:English
French
Veröffentlicht: New York, NY Springer 2007
Ausgabe:2. ed.
Schriftenreihe:Springer texts in statistics
Schlagworte:
Online-Zugang:Inhaltsverzeichnis
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nam a2200000zc 4500
001 BV023045855
003 DE-604
005 20221213
007 t|
008 071211s2007 xxud||| |||| 00||| eng d
010 |a 2007926596 
020 |a 9780387715988  |c pbk  |9 978-0-387-71598-8 
035 |a (OCoLC)153582066 
035 |a (DE-599)BVBBV023045855 
040 |a DE-604  |b ger  |e aacr 
041 1 |a eng  |h fre 
044 |a xxu  |c XD-US 
049 |a DE-29T  |a DE-11  |a DE-19  |a DE-91G  |a DE-703  |a DE-188  |a DE-521  |a DE-355 
050 0 |a QA279.5 
082 0 |a 519.5/42 
084 |a CM 4000  |0 (DE-625)18951:  |2 rvk 
084 |a SK 830  |0 (DE-625)143259:  |2 rvk 
100 1 |a Robert, Christian P.  |d 1961-  |e Verfasser  |0 (DE-588)115436448  |4 aut 
240 1 0 |a Analyse statistique bayésienne 
245 1 0 |a The Bayesian choice  |b from decision-theoretic foundations to computational implementation  |c Christian P. Robert 
250 |a 2. ed. 
264 1 |a New York, NY  |b Springer  |c 2007 
300 |a XXIV, 602 S.  |b graph. Darst. 
336 |b txt  |2 rdacontent 
337 |b n  |2 rdamedia 
338 |b nc  |2 rdacarrier 
490 0 |a Springer texts in statistics 
650 7 |a Inferência bayesiana (inferência estatística)  |2 larpcal 
650 7 |a Teoria da decisão (estatísticas e dados numéricos)  |2 larpcal 
650 4 |a Bayesian statistical decision theory 
650 0 7 |a Bayes-Entscheidungstheorie  |0 (DE-588)4144220-9  |2 gnd  |9 rswk-swf 
650 0 7 |a CD-ROM  |0 (DE-588)4139307-7  |2 gnd  |9 rswk-swf 
650 0 7 |a Bayes-Verfahren  |0 (DE-588)4204326-8  |2 gnd  |9 rswk-swf 
655 7 |0 (DE-588)4123623-3  |a Lehrbuch  |2 gnd-content 
689 0 0 |a Bayes-Entscheidungstheorie  |0 (DE-588)4144220-9  |D s 
689 0 1 |a CD-ROM  |0 (DE-588)4139307-7  |D s 
689 0 |8 1\p  |5 DE-604 
689 1 0 |a Bayes-Entscheidungstheorie  |0 (DE-588)4144220-9  |D s 
689 1 1 |a Bayes-Verfahren  |0 (DE-588)4204326-8  |D s 
689 1 |8 2\p  |5 DE-604 
776 0 8 |i Erscheint auch als  |n Online-Ausgabe  |z 978-0-387-71599-5 
856 4 2 |m HBZ Datenaustausch  |q application/pdf  |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016249310&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA  |3 Inhaltsverzeichnis 
883 1 |8 1\p  |a cgwrk  |d 20201028  |q DE-101  |u https://d-nb.info/provenance/plan#cgwrk 
883 1 |8 2\p  |a cgwrk  |d 20201028  |q DE-101  |u https://d-nb.info/provenance/plan#cgwrk 
943 1 |a oai:aleph.bib-bvb.de:BVB01-016249310 

Datensatz im Suchindex

DE-19_call_number 0100/CC 5640 R639(2)
0599/QH 233 R639(2)+4
0599/QH 233 R639(2)
0599/QH 233 R639(2)+2
0599/QH 233 R639(2)+5
0001/8 13-1254
1004/QH 233 R639(2) +2
DE-19_location 10
70
0
DE-BY-TUM_call_number 0040 2016 A 5233
0048 MAT 622f 2001 A 1674(2)
DE-BY-TUM_katkey 1777256
DE-BY-TUM_location LSB
DE-BY-TUM_media_number 040008250197
040010215019
DE-BY-UBM_katkey 4325830
DE-BY-UBM_media_number 41617810950018
41617810930014
41617810970012
41615228240012
41624608830013
41620656810016
41617810940016
_version_ 1823054593904345088
adam_text Titel: The Bayesian choice Autor: Robert, Christian P. Jahr: 2007 Contents Preface to the Paperback Edition vii Preface to the Second Edition ix Preface to the First Edition xiii List of Tables xxiii List of Figures xxv 1 Introduction 1 1.1 Statistical problems and statistical models 1 1.2 The Bayesian paradigm as a duality principle 8 1.3 Likelihood Principle and Sufficiency Principle 13 1.3.1 Sufficiency 13 1.3.2 The Likelihood Principle 15 1.3.3 Derivation of the Likelihood Principle 18 1.3.4 Implementation of the Likelihood Principle 19 1.3.5 Maximum likelihood estimation 20 1.4 Prior and posterior distributions 22 1.5 Improper prior distributions 26 1.6 The Bayesian choice 31 1.7 Exercises 31 1.8 Notes 45 2 Decision-Theoretic Foundations 51 2.1 Evaluating estimators 51 2.2 Existence of a utility function 54 2.3 Utility and loss 60 2.4 Two optimalities: minimaxity and admissibility 65 2.4.1 Randomized estimators 65 2.4.2 Minimaxity 66 2.4.3 Existence of minimax rules and maximin strategy 69 2.4.4 Admissibility 74 2.5 Usual loss functions 77 2.5.1 The quadratic loss 77 2.5.2 The absolute error loss 79 2.5.3 The 0 - 1 loss 80 2.5.4 Intrinsic losses 81 2.6 Criticisms and alternatives 83 2.7 Exercises 85 2.8 Notes 96 From Prior Information to Prior Distributions 105 3.1 The difficulty in selecting a prior distribution 105 3.2 Subjective determination and approximations 106 3.2.1 Existence 106 3.2.2 Approximations to the prior distribution 108 3.2.3 Maximum entropy priors 109 3.2.4 Parametric approximations 111 3.2.5 Other techniques 113 3.3 Conjugate priors 113 3.3.1 Introduction 113 3.3.2 Justifications 114 3.3.3 Exponential families 115 3.3.4 Conjugate distributions for exponential families 120 3.4 Criticisms and extensions 123 3.5 Noninformative prior distributions 127 3.5.1 Laplace s prior 127 3.5.2 Invariant priors 128 3.5.3 The Jeffreys prior 129 3.5.4 Reference priors 133 3.5.5 Matching priors 137 3.5.6 Other approaches 140 3.6 Posterior validation and robustness 141 3.7 Exercises 144 3.8 Notes 158 Bayesian Point Estimation 165 4.1 Bayesian inference 165 4.1.1 Introduction 165 4.1.2 MAP estimator 166 4.1.3 Likelihood Principle 167 4.1.4 Restricted parameter space 168 4.1.5 Precision of the Bayes estimators 170 4.1.6 Prediction 171 4.1.7 Back to Decision Theory 173 4.2 Bayesian Decision Theory 173 4.2.1 Bayes estimators 173 4.2.2 Conjugate priors 175 4.2.3 Loss estimation 178 4.3 Sampling models 180 4.3.1 Laplace succession rule 180 4.3.2 The tramcar problem 181 4.3.3 Capture-recapture models 182 4.4 The particular case of the normal model 186 4.4.1 Introduction 186 4.4.2 Estimation of variance 187 4.4.3 Linear models and G-priors 190 4.5 Dynamic models 193 4.5.1 Introduction 193 4.5.2 The AR model 196 4.5.3 The MA model 198 4.5.4 The ARMA model 201 4.6 Exercises 201 4.7 Notes 216 Tests and Confidence Regions 223 5.1 Introduction 223 5.2 A first approach to testing theory 224 5.2.1 Decision-theoretic testing 224 5.2.2 The Bayes factor 227 5.2.3 Modification of the prior 229 5.2.4 Point-null hypotheses 230 5.2.5 Improper priors 232 5.2.6 Pseudo-Bayes factors 236 5.3 Comparisons with the classical approach 242 5.3.1 UMP and UMPU tests 242 5.3.2 Least favorable prior distributions 245 5.3.3 Criticisms 247 5.3.4 Thep-values 249 5.3.5 Least favorable Bayesian answers 250 5.3.6 The one-sided case 254 5.4 A second decision-theoretic approach 256 5.5 Confidence regions 259 5.5.1 Credible intervals 260 5.5.2 Classical confidence intervals 263 5.5.3 Decision-theoretic evaluation of confidence sets 264 5.6 Exercises 267 5.7 Notes 279 Bayesian Calculations 285 6.1 Implementation difficulties 285 6.2 Classical approximation methods 293 6.2.1 Numerical integration 293 6.2.2 Monte Carlo methods 294 6.2.3 Laplace analytic approximation 298 6.3 Markov chain Monte Carlo methods 301 6.3.1 MCMC in practice 302 6.3.2 Metropolis-Hastings algorithms 6.3.3 The Gibbs sampler 6.3.4 Rao-Blackwellization 6.3.5 The general Gibbs sampler 6.3.6 The slice sampler 6.3.7 The impact on Bayesian Statistics 6.4 An application to mixture estimation 6.5 Exercises 6.6 Notes 303 307 309 311 315 317 318 321 334 Model Choice 343 7.1 Introduction 343 7.1.1 Choice between models 344 7.1.2 Model choice: motives and uses 347 7.2 Standard framework 348 7.2.1 Prior modeling for model choice 348 7.2.2 Bayes factors 350 7.2.3 Schwartz s criterion 352 7.2.4 Bayesian deviance 354 7.3 Monte Carlo and MCMC approximations 356 7.3.1 Importance sampling 356 7.3.2 Bridge sampling 358 7.3.3 MCMC methods 359 7.3.4 Reversible jump MCMC 363 7.4 Model averaging 366 7.5 Model projections 369 7.6 Goodness-of-fit 374 7.7 Exercises 377 7.8 Notes 386 Admissibility and Complete Classes 391 8.1 Introduction 391 8.2 Admissibility of Bayes estimators 391 8.2.1 General characterizations 391 8.2.2 Boundary conditions 393 8.2.3 Inadmissible generalized Bayes estimators 395 8.2.4 Differential representations 396 8.2.5 Recurrence conditions 398 8.3 Necessary and sufficient admissibility conditions 400 8.3.1 Continuous risks 401 8.3.2 Blyth s sufficient condition 402 8.3.3 Stein s necessary and sufficient condition 407 8.3.4 Another limit theorem 407 8.4 Complete classes 409 8.5 Necessary admissibility conditions 412 8.6 Exercises 416 8.7 Notes 425 9 Invariance, Haar Measures, and Equivariant Estimators 427 9.1 Invariance principles 427 9.2 The particular case of location parameters 429 9.3 Invariant decision problems 431 9.4 Best equivariant noninformative distributions 436 9.5 The Hunt-Stein theorem 441 9.6 The role of invariance in Bayesian Statistics 445 9.7 Exercises 446 9.8 Notes 454 10 Hierarchical and Empirical Bayes Extensions 457 10.1 Incompletely Specified Priors 457 10.2 Hierarchical Bayes analysis 460 10.2.1 Hierarchical models 460 10.2.2 Justifications 462 10.2.3 Conditional decompositions 465 10.2.4 Computational issues 468 10.2.5 Hierarchical extensions for the normal model 470 10.3 Optimality of hierarchical Bayes estimators 474 10.4 The empirical Bayes alternative 478 10.4.1 Nonparametric empirical Bayes 479 10.4.2 Parametric empirical Bayes 481 10.5 Empirical Bayes justifications of the Stein effect 484 10.5.1 Point estimation 485 10.5.2 Variance evaluation 487 10.5.3 Confidence regions 488 10.5.4 Comments 490 10.6 Exercises 490 10.7 Notes 502 11 A Defense of the Bayesian Choice 507 A Probability Distributions 519 A.I Normal distribution, Afp{0,E) 519 A.2 Gamma distribution, £7(a,/3) 519 A.3 Beta distribution, Be(a, ß) 519 A.4 Student s t-distribution, Tp (u,9, E) 520 A.5 Fisher s F-distribution, T(y, g) 520 A.6 Inverse gamma distribution, IQ{a, ß) 520 A.7 Noncentral chi-squared distribution, xlW 520 A.8 Dirichlet distribution, Vk{a ,...,ak) 521 A.9 Pareto distribution, Va(a,x0) 521 A.10 Binomial distribution, B(n,p). 521 A.ll Multinomial distribution, Mk(n;pi,.. .,Pk) 521 A.12 Poisson distribution, 7 (A) 521 A.13 Negative Binomial distribution, ßfeg(n, p) 522 A.14Hypergeometric distribution, Hyp(N;n;p) 522 B Usual Pseudo-random Generators 523 B.I Normal distribution, 7V(0,1) 523 B.2 Exponential distribution, £xp(X) 523 B.3 Student s i-distribution, T(v, 0,1) 524 B.4 Gamma distribution, G(a, 1) 524 B.5 Binomial distribution, B(n, p) 525 B.6 Poisson distribution, V{ ) 525 C Notations 527 C.I Mathematical 527 C.2 Probabilistic 528 C.3 Distributional 528 C.4 Decisional 529 C.5 Statistical 529 C.6 Markov chains 530 References 531 Author Index 579 Subject Index 587
any_adam_object 1
author Robert, Christian P. 1961-
author_GND (DE-588)115436448
author_facet Robert, Christian P. 1961-
author_role aut
author_sort Robert, Christian P. 1961-
author_variant c p r cp cpr
building Verbundindex
bvnumber BV023045855
callnumber-first Q - Science
callnumber-label QA279
callnumber-raw QA279.5
callnumber-search QA279.5
callnumber-sort QA 3279.5
callnumber-subject QA - Mathematics
classification_rvk CM 4000
SK 830
ctrlnum (OCoLC)153582066
(DE-599)BVBBV023045855
dewey-full 519.5/42
dewey-hundreds 500 - Natural sciences and mathematics
dewey-ones 519 - Probabilities and applied mathematics
dewey-raw 519.5/42
dewey-search 519.5/42
dewey-sort 3519.5 242
dewey-tens 510 - Mathematics
discipline Psychologie
Mathematik
edition 2. ed.
format Book
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02414nam a2200565zc 4500</leader><controlfield tag="001">BV023045855</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20221213 </controlfield><controlfield tag="007">t|</controlfield><controlfield tag="008">071211s2007 xxud||| |||| 00||| eng d</controlfield><datafield tag="010" ind1=" " ind2=" "><subfield code="a">2007926596</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780387715988</subfield><subfield code="c">pbk</subfield><subfield code="9">978-0-387-71598-8</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)153582066</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV023045855</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="1" ind2=" "><subfield code="a">eng</subfield><subfield code="h">fre</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">xxu</subfield><subfield code="c">XD-US</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-29T</subfield><subfield code="a">DE-11</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-91G</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-188</subfield><subfield code="a">DE-521</subfield><subfield code="a">DE-355</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA279.5</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">519.5/42</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">CM 4000</subfield><subfield code="0">(DE-625)18951:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 830</subfield><subfield code="0">(DE-625)143259:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Robert, Christian P.</subfield><subfield code="d">1961-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)115436448</subfield><subfield code="4">aut</subfield></datafield><datafield tag="240" ind1="1" ind2="0"><subfield code="a">Analyse statistique bayésienne</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">The Bayesian choice</subfield><subfield code="b">from decision-theoretic foundations to computational implementation</subfield><subfield code="c">Christian P. Robert</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">2. ed.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New York, NY</subfield><subfield code="b">Springer</subfield><subfield code="c">2007</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XXIV, 602 S.</subfield><subfield code="b">graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Springer texts in statistics</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Inferência bayesiana (inferência estatística)</subfield><subfield code="2">larpcal</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Teoria da decisão (estatísticas e dados numéricos)</subfield><subfield code="2">larpcal</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Bayesian statistical decision theory</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Bayes-Entscheidungstheorie</subfield><subfield code="0">(DE-588)4144220-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">CD-ROM</subfield><subfield code="0">(DE-588)4139307-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Bayes-Verfahren</subfield><subfield code="0">(DE-588)4204326-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="0">(DE-588)4123623-3</subfield><subfield code="a">Lehrbuch</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Bayes-Entscheidungstheorie</subfield><subfield code="0">(DE-588)4144220-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">CD-ROM</subfield><subfield code="0">(DE-588)4139307-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Bayes-Entscheidungstheorie</subfield><subfield code="0">(DE-588)4144220-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Bayes-Verfahren</subfield><subfield code="0">(DE-588)4204326-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe</subfield><subfield code="z">978-0-387-71599-5</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HBZ Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&amp;doc_library=BVB01&amp;local_base=BVB01&amp;doc_number=016249310&amp;sequence=000002&amp;line_number=0001&amp;func_code=DB_RECORDS&amp;service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-016249310</subfield></datafield></record></collection>
genre (DE-588)4123623-3 Lehrbuch gnd-content
genre_facet Lehrbuch
id DE-604.BV023045855
illustrated Illustrated
indexdate 2025-02-03T17:28:01Z
institution BVB
isbn 9780387715988
language English
French
lccn 2007926596
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-016249310
oclc_num 153582066
open_access_boolean
owner DE-29T
DE-11
DE-19
DE-BY-UBM
DE-91G
DE-BY-TUM
DE-703
DE-188
DE-521
DE-355
DE-BY-UBR
owner_facet DE-29T
DE-11
DE-19
DE-BY-UBM
DE-91G
DE-BY-TUM
DE-703
DE-188
DE-521
DE-355
DE-BY-UBR
physical XXIV, 602 S. graph. Darst.
publishDate 2007
publishDateSearch 2007
publishDateSort 2007
publisher Springer
record_format marc
series2 Springer texts in statistics
spellingShingle Robert, Christian P. 1961-
The Bayesian choice from decision-theoretic foundations to computational implementation
Inferência bayesiana (inferência estatística) larpcal
Teoria da decisão (estatísticas e dados numéricos) larpcal
Bayesian statistical decision theory
Bayes-Entscheidungstheorie (DE-588)4144220-9 gnd
CD-ROM (DE-588)4139307-7 gnd
Bayes-Verfahren (DE-588)4204326-8 gnd
subject_GND (DE-588)4144220-9
(DE-588)4139307-7
(DE-588)4204326-8
(DE-588)4123623-3
title The Bayesian choice from decision-theoretic foundations to computational implementation
title_alt Analyse statistique bayésienne
title_auth The Bayesian choice from decision-theoretic foundations to computational implementation
title_exact_search The Bayesian choice from decision-theoretic foundations to computational implementation
title_full The Bayesian choice from decision-theoretic foundations to computational implementation Christian P. Robert
title_fullStr The Bayesian choice from decision-theoretic foundations to computational implementation Christian P. Robert
title_full_unstemmed The Bayesian choice from decision-theoretic foundations to computational implementation Christian P. Robert
title_short The Bayesian choice
title_sort the bayesian choice from decision theoretic foundations to computational implementation
title_sub from decision-theoretic foundations to computational implementation
topic Inferência bayesiana (inferência estatística) larpcal
Teoria da decisão (estatísticas e dados numéricos) larpcal
Bayesian statistical decision theory
Bayes-Entscheidungstheorie (DE-588)4144220-9 gnd
CD-ROM (DE-588)4139307-7 gnd
Bayes-Verfahren (DE-588)4204326-8 gnd
topic_facet Inferência bayesiana (inferência estatística)
Teoria da decisão (estatísticas e dados numéricos)
Bayesian statistical decision theory
Bayes-Entscheidungstheorie
CD-ROM
Bayes-Verfahren
Lehrbuch
url http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016249310&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA
work_keys_str_mv AT robertchristianp analysestatistiquebayesienne
AT robertchristianp thebayesianchoicefromdecisiontheoreticfoundationstocomputationalimplementation