Introduction to machine learning and bioinformatics

Gespeichert in:
Bibliographische Detailangaben
Format: Buch
Sprache:English
Veröffentlicht: Boca Raton [u.a.] Chapman & Hall/CRC Press 2008
Schriftenreihe:Computer science and data analysis series
A Chapman & Hall book
Schlagworte:
Online-Zugang:Inhaltsverzeichnis
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nam a2200000 c 4500
001 BV022934016
003 DE-604
005 20130326
007 t
008 071023s2008 ad|| |||| 00||| eng d
020 |a 9781584886822  |9 978-1-58488-682-2 
035 |a (OCoLC)213080196 
035 |a (DE-599)BVBBV022934016 
040 |a DE-604  |b ger  |e rakwb 
041 0 |a eng 
049 |a DE-703  |a DE-29T  |a DE-83 
050 0 |a QH324.2 
082 0 |a 572.80285  |2 22 
084 |a ST 301  |0 (DE-625)143651:  |2 rvk 
084 |a 92B99  |2 msc 
084 |a 68T05  |2 msc 
245 1 0 |a Introduction to machine learning and bioinformatics  |c Sushmita Mitra ... 
264 1 |a Boca Raton [u.a.]  |b Chapman & Hall/CRC Press  |c 2008 
300 |a 366 S.  |b Ill., graph. Darst. 
336 |b txt  |2 rdacontent 
337 |b n  |2 rdamedia 
338 |b nc  |2 rdacarrier 
490 0 |a Computer science and data analysis series 
490 0 |a A Chapman & Hall book 
650 4 |a Apprentissage automatique 
650 4 |a Bio-informatique 
650 4 |a Artificial Intelligence 
650 4 |a Bioinformatics 
650 4 |a Computational Biology 
650 4 |a Machine learning 
650 0 7 |a Maschinelles Lernen  |0 (DE-588)4193754-5  |2 gnd  |9 rswk-swf 
650 0 7 |a Bioinformatik  |0 (DE-588)4611085-9  |2 gnd  |9 rswk-swf 
689 0 0 |a Maschinelles Lernen  |0 (DE-588)4193754-5  |D s 
689 0 1 |a Bioinformatik  |0 (DE-588)4611085-9  |D s 
689 0 |5 DE-604 
700 1 |a Mitra, Sushmita  |e Sonstige  |4 oth 
856 4 2 |m Digitalisierung UB Bayreuth  |q application/pdf  |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016138794&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA  |3 Inhaltsverzeichnis 
999 |a oai:aleph.bib-bvb.de:BVB01-016138794 

Datensatz im Suchindex

_version_ 1804137167179481088
adam_text Contents 1 Introduction 1 2 The Biology of a Living Organism 5 2.1 Cells 5 2.2 DNA and Genes 8 2.3 Proteins 12 2.4 Metabolism 15 2.5 Biological Regulation Systems: When They Go Awry 17 2.6 Measurement Technologies 19 References 24 3 Probabilistic and Model-Based Learning 25 3.1 Introduction: Probabilistic Learning 25 3.2 Basics of Probability 27 3.3 Random Variables and Probability Distributions 40 3.4 Basics of Information Theory 56 3.5 Basics of Stochastic Processes 58 3.6 Hidden Markov Models 62 3.7 Frequentisi Statistical Inference 66 3.8 Some Computational Issues ^6 3.9 Bayesian Inference °9 3.10 Exercises 97 References 10° 4 Classification Techniques 101 4.1 Introduction and Problem Formulation 101 4.2 The Framework 103 4.3 Classification Methods 108 4.4 Applications of Classification Techniques to Bioinformatics Problems 124 4.5 Exercises 124 References 125 5 Unsupervised Learning Techniques 129 5.1 Introduction 129 5.2 Principal Components Analysis 129 5.3 Multidimensional Scaling 136 5.4 Other Dimension Reduction Techniques 139 5.5 Cluster Analysis Techniques 141 5.6 Exercises 151 References 153 6 Computational Intelligence in Bioinformatics 155 6.1 Introduction 155 6.2 Fuzzy Sets (FS) 156 6.3 Artificial Neural Networks (ANN) 161 6.4 Evolutionary Computing (EC) 167 6.5 Rough Sets (RS) 171 6.6 Hybridization 173 6.7 Application to Bioinformatics 175 6.8 Conclusion 199 6.9 Exercises 200 References 201 7 Connections between Machine Learning and Bioinformatics 211 7.1 Sequence Analysis 211 7.2 Analysis of High-Throughput Gene Expression Data 218 7.3 Network Inference 223 7.4 Exercises 230 References 231 8 Machine Learning in Structural Biology: Interpreting 3D Protein Images 237 8.1 Introduction 237 8.2 Background 237 8.3 arp/warp 247 8.4 resolve 252 8.5 Textal 258 8.6 acmi 264 8.7 Conclusion 273 8.8 Acknowledgments 275 References 275 9 Soft Computing in Biclustering 277 9.1 Introduction 277 9.2 Biclustering 278 9.3 Multi-Objective Biclustering 283 9.4 Fuzzy Possibilistic Biclustering 287 9.5 Experimental Results 291 9.6 Conclusions and Discussion 297 References 298 10 Bayesian Machine-Learning Methods for Tumor Classification Using Gene Expression Data 303 10.1 Introduction 303 10.2 Classification Using RKHS 306 10.3 Hierarchical Classification Model 308 10.4 Likelihoods of RKHS Models 310 10.5 The Bayesian Analysis 312 10.6 Prediction and Model Choice 314 10.7 Some Examples 315 10.8 Concluding Remarks 321 10.9 Acknowledgments 322 References 322 11 Modeling and Analysis of Quantitative Proteomics Data Obtained from iTRAQ Experiments 327 11.1 Introduction 327 11.2 Statistical Modeling of iTRAQ Data 328 11.3 Data Illustration 330 11.4 Discussion and Concluding Remarks 332 11.5 Acknowledgments 334 References 334 12 Statistical Methods for Classifying Mass Spectrometry Database Search Results 339 12.1 Introduction 339 12.2 Background on Proteomics 341 12.3 Classification Methods 342 12.4 Data and Implementation 347 12.5 Results and Discussion 350 12.6 Conclusions 356 12.7 Acknowledgments 357 References 357 Index 361
adam_txt Contents 1 Introduction 1 2 The Biology of a Living Organism 5 2.1 Cells 5 2.2 DNA and Genes 8 2.3 Proteins 12 2.4 Metabolism 15 2.5 Biological Regulation Systems: When They Go Awry 17 2.6 Measurement Technologies 19 References 24 3 Probabilistic and Model-Based Learning 25 3.1 Introduction: Probabilistic Learning 25 3.2 Basics of Probability 27 3.3 Random Variables and Probability Distributions 40 3.4 Basics of Information Theory 56 3.5 Basics of Stochastic Processes 58 3.6 Hidden Markov Models 62 3.7 Frequentisi Statistical Inference 66 3.8 Some Computational Issues ^6 3.9 Bayesian Inference °9 3.10 Exercises 97 References 10° 4 Classification Techniques 101 4.1 Introduction and Problem Formulation 101 4.2 The Framework 103 4.3 Classification Methods 108 4.4 Applications of Classification Techniques to Bioinformatics Problems 124 4.5 Exercises 124 References 125 5 Unsupervised Learning Techniques 129 5.1 Introduction 129 5.2 Principal Components Analysis 129 5.3 Multidimensional Scaling 136 5.4 Other Dimension Reduction Techniques 139 5.5 Cluster Analysis Techniques 141 5.6 Exercises 151 References 153 6 Computational Intelligence in Bioinformatics 155 6.1 Introduction 155 6.2 Fuzzy Sets (FS) 156 6.3 Artificial Neural Networks (ANN) 161 6.4 Evolutionary Computing (EC) 167 6.5 Rough Sets (RS) 171 6.6 Hybridization 173 6.7 Application to Bioinformatics 175 6.8 Conclusion 199 6.9 Exercises 200 References 201 7 Connections between Machine Learning and Bioinformatics 211 7.1 Sequence Analysis 211 7.2 Analysis of High-Throughput Gene Expression Data 218 7.3 Network Inference 223 7.4 Exercises 230 References 231 8 Machine Learning in Structural Biology: Interpreting 3D Protein Images 237 8.1 Introduction 237 8.2 Background 237 8.3 arp/warp 247 8.4 resolve 252 8.5 Textal 258 8.6 acmi 264 8.7 Conclusion 273 8.8 Acknowledgments 275 References 275 9 Soft Computing in Biclustering 277 9.1 Introduction 277 9.2 Biclustering 278 9.3 Multi-Objective Biclustering 283 9.4 Fuzzy Possibilistic Biclustering 287 9.5 Experimental Results 291 9.6 Conclusions and Discussion 297 References 298 10 Bayesian Machine-Learning Methods for Tumor Classification Using Gene Expression Data 303 10.1 Introduction 303 10.2 Classification Using RKHS 306 10.3 Hierarchical Classification Model 308 10.4 Likelihoods of RKHS Models 310 10.5 The Bayesian Analysis 312 10.6 Prediction and Model Choice 314 10.7 Some Examples 315 10.8 Concluding Remarks 321 10.9 Acknowledgments 322 References 322 11 Modeling and Analysis of Quantitative Proteomics Data Obtained from iTRAQ Experiments 327 11.1 Introduction 327 11.2 Statistical Modeling of iTRAQ Data 328 11.3 Data Illustration 330 11.4 Discussion and Concluding Remarks 332 11.5 Acknowledgments 334 References 334 12 Statistical Methods for Classifying Mass Spectrometry Database Search Results 339 12.1 Introduction 339 12.2 Background on Proteomics 341 12.3 Classification Methods 342 12.4 Data and Implementation 347 12.5 Results and Discussion 350 12.6 Conclusions 356 12.7 Acknowledgments 357 References 357 Index 361
any_adam_object 1
any_adam_object_boolean 1
building Verbundindex
bvnumber BV022934016
callnumber-first Q - Science
callnumber-label QH324
callnumber-raw QH324.2
callnumber-search QH324.2
callnumber-sort QH 3324.2
callnumber-subject QH - Natural History and Biology
classification_rvk ST 301
ctrlnum (OCoLC)213080196
(DE-599)BVBBV022934016
dewey-full 572.80285
dewey-hundreds 500 - Natural sciences and mathematics
dewey-ones 572 - Biochemistry
dewey-raw 572.80285
dewey-search 572.80285
dewey-sort 3572.80285
dewey-tens 570 - Biology
discipline Biologie
Informatik
discipline_str_mv Biologie
Informatik
format Book
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01759nam a2200481 c 4500</leader><controlfield tag="001">BV022934016</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20130326 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">071023s2008 ad|| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781584886822</subfield><subfield code="9">978-1-58488-682-2</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)213080196</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV022934016</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-703</subfield><subfield code="a">DE-29T</subfield><subfield code="a">DE-83</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QH324.2</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">572.80285</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ST 301</subfield><subfield code="0">(DE-625)143651:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">92B99</subfield><subfield code="2">msc</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">68T05</subfield><subfield code="2">msc</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Introduction to machine learning and bioinformatics</subfield><subfield code="c">Sushmita Mitra ...</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Boca Raton [u.a.]</subfield><subfield code="b">Chapman &amp; Hall/CRC Press</subfield><subfield code="c">2008</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">366 S.</subfield><subfield code="b">Ill., graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Computer science and data analysis series</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">A Chapman &amp; Hall book</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Apprentissage automatique</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Bio-informatique</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Artificial Intelligence</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Bioinformatics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Computational Biology</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Machine learning</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Maschinelles Lernen</subfield><subfield code="0">(DE-588)4193754-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Bioinformatik</subfield><subfield code="0">(DE-588)4611085-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Maschinelles Lernen</subfield><subfield code="0">(DE-588)4193754-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Bioinformatik</subfield><subfield code="0">(DE-588)4611085-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Mitra, Sushmita</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Bayreuth</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&amp;doc_library=BVB01&amp;local_base=BVB01&amp;doc_number=016138794&amp;sequence=000002&amp;line_number=0001&amp;func_code=DB_RECORDS&amp;service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-016138794</subfield></datafield></record></collection>
id DE-604.BV022934016
illustrated Illustrated
index_date 2024-07-02T18:55:36Z
indexdate 2024-07-09T21:07:59Z
institution BVB
isbn 9781584886822
language English
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-016138794
oclc_num 213080196
open_access_boolean
owner DE-703
DE-29T
DE-83
owner_facet DE-703
DE-29T
DE-83
physical 366 S. Ill., graph. Darst.
publishDate 2008
publishDateSearch 2008
publishDateSort 2008
publisher Chapman & Hall/CRC Press
record_format marc
series2 Computer science and data analysis series
A Chapman & Hall book
spelling Introduction to machine learning and bioinformatics Sushmita Mitra ...
Boca Raton [u.a.] Chapman & Hall/CRC Press 2008
366 S. Ill., graph. Darst.
txt rdacontent
n rdamedia
nc rdacarrier
Computer science and data analysis series
A Chapman & Hall book
Apprentissage automatique
Bio-informatique
Artificial Intelligence
Bioinformatics
Computational Biology
Machine learning
Maschinelles Lernen (DE-588)4193754-5 gnd rswk-swf
Bioinformatik (DE-588)4611085-9 gnd rswk-swf
Maschinelles Lernen (DE-588)4193754-5 s
Bioinformatik (DE-588)4611085-9 s
DE-604
Mitra, Sushmita Sonstige oth
Digitalisierung UB Bayreuth application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016138794&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis
spellingShingle Introduction to machine learning and bioinformatics
Apprentissage automatique
Bio-informatique
Artificial Intelligence
Bioinformatics
Computational Biology
Machine learning
Maschinelles Lernen (DE-588)4193754-5 gnd
Bioinformatik (DE-588)4611085-9 gnd
subject_GND (DE-588)4193754-5
(DE-588)4611085-9
title Introduction to machine learning and bioinformatics
title_auth Introduction to machine learning and bioinformatics
title_exact_search Introduction to machine learning and bioinformatics
title_exact_search_txtP Introduction to machine learning and bioinformatics
title_full Introduction to machine learning and bioinformatics Sushmita Mitra ...
title_fullStr Introduction to machine learning and bioinformatics Sushmita Mitra ...
title_full_unstemmed Introduction to machine learning and bioinformatics Sushmita Mitra ...
title_short Introduction to machine learning and bioinformatics
title_sort introduction to machine learning and bioinformatics
topic Apprentissage automatique
Bio-informatique
Artificial Intelligence
Bioinformatics
Computational Biology
Machine learning
Maschinelles Lernen (DE-588)4193754-5 gnd
Bioinformatik (DE-588)4611085-9 gnd
topic_facet Apprentissage automatique
Bio-informatique
Artificial Intelligence
Bioinformatics
Computational Biology
Machine learning
Maschinelles Lernen
Bioinformatik
url http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016138794&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA
work_keys_str_mv AT mitrasushmita introductiontomachinelearningandbioinformatics