Stochastic integration theory

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Medvegyev, Péter (VerfasserIn)
Format: Buch
Sprache:English
Veröffentlicht: Oxford [u.a.] Oxford University Press 2007
Ausgabe:1. publ.
Schriftenreihe:Oxford graduate texts in mathematics 14
Schlagworte:
Online-Zugang:Inhaltsverzeichnis
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nam a2200000zcb4500
001 BV022886212
003 DE-604
005 20080711
007 t|
008 071017s2007 xxu |||| 00||| eng d
010 |a 2007014192 
020 |a 9780199215256  |9 978-0-19-921525-6 
035 |a (OCoLC)122526875 
035 |a (DE-599)DNB 2007014192 
040 |a DE-604  |b ger  |e aacr 
041 0 |a eng 
044 |a xxu  |c US 
049 |a DE-703  |a DE-91G  |a DE-29T  |a DE-634  |a DE-384  |a DE-11  |a DE-188  |a DE-523 
050 0 |a QA274.22 
082 0 |a 519.2/2  |2 22 
084 |a QH 234  |0 (DE-625)141549:  |2 rvk 
084 |a SK 820  |0 (DE-625)143258:  |2 rvk 
084 |a MAT 605f  |2 stub 
084 |a MAT 606f  |2 stub 
100 1 |a Medvegyev, Péter  |e Verfasser  |4 aut 
245 1 0 |a Stochastic integration theory  |c Péter Medvegyev 
250 |a 1. publ. 
264 1 |a Oxford [u.a.]  |b Oxford University Press  |c 2007 
300 |a XIX, 608 S. 
336 |b txt  |2 rdacontent 
337 |b n  |2 rdamedia 
338 |b nc  |2 rdacarrier 
490 1 |a Oxford graduate texts in mathematics  |v 14 
500 |a Includes bibliographical references and index 
650 4 |a Martingales (Mathematics) 
650 4 |a Stochastic integrals 
650 4 |a Stochastic processes 
650 0 7 |a Stochastisches Integral  |0 (DE-588)4126478-2  |2 gnd  |9 rswk-swf 
689 0 0 |a Stochastisches Integral  |0 (DE-588)4126478-2  |D s 
689 0 |5 DE-604 
830 0 |a Oxford graduate texts in mathematics  |v 14  |w (DE-604)BV011416591  |9 14 
856 4 2 |m GBV Datenaustausch  |q application/pdf  |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016091122&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA  |3 Inhaltsverzeichnis 
943 1 |a oai:aleph.bib-bvb.de:BVB01-016091122 

Datensatz im Suchindex

DE-BY-TUM_call_number 0102 MAT 606 2008 A 1557
DE-BY-TUM_katkey 1621782
DE-BY-TUM_location 01
DE-BY-TUM_media_number 040010086078
040010152682
_version_ 1820899759283503104
adam_text STOCHASTIC INTEGRATION THEORY PETER MEDVEGYEV OXPORD UNIVERSITY PRESS CONTENTS PREFACE XIII 1 STOCHASTIC PROCESSES 1 1.1 RANDOM FUNCTIONS 1 1.1.1 TRAJECTORIES OF STOCHASTIC PROCESSES 2 1.1.2 JUMPS OF STOCHASTIC PROCESSES 3 1.1.3 WHEN ARE STOCHASTIC PROCESSES EQUAL? 6 1.2 MEASURABILITY OF STOCHASTIC PROCESSES 7 1.2.1 FILTRATION, ADAPTED, AND PROGRESSIVELY MEASURABLE PROCESSES 8 1.2.2 STOPPING TIMES 13 1.2.3 STOPPED VARIABLES, 1.2.4 PREDICTABLE PROCESSES 23 1.3 MARTINGALES 29 1.3.1 DOOB S INEQUALITIES 30 1.3.2 THE ENERGY EQUALITY 35 1.3.3 THE QUADRATIC VARIATION OF DISCRETE TIME MARTINGALES 37 1.3.4 THE DOWNCROSSINGS INEQUALITY 42 1.3.5 REGULARIZATION OF MARTINGALES 46 1.3.6 THE OPTIONAL SAMPLING THEOREM 49 1.3.7 APPLICATION: ELEMENTARY PROPERTIES OF LEVY PROCESSES 58 1.3.8 APPLICATION: THE FIRST PASSAGE TIMES OF THE WIENER PROCESSES 80 1.3.9 SOME REMARKS ON THE USUAL ASSUMPTIONS 91 1.4 LOCALIZATION 92 1.4.1 STABILITY UNDER TRUNCATION 93 1.4.2 LOCAL MARTINGALES 94 VII VIII CONTENTS 1.4.3 CONVERGENCE OF LOCAL MARTINGALES: UNIFORM CONVERGENCE ON COMPACTS IN PROBABILITY 104 1.4.4 LOCALLY BOUNDED PROCESSES 106 2 STOCHASTIC INTEGRATION WITH LOCALLY SQUARE-INTEGRABLE MARTINGALES 108 2.1 THE ITO-STIELTJES INTEGRALS 109 2.1.1 ITO-STIELTJES INTEGRALS WHEN THE INTEGRATORS HAVE FINITE VARIATION 111 2.1.2 ITO-STIELTJES INTEGRALS WHEN THE INTEGRATORS ARE LOCALLY SQUARE-INTEGRABLE MARTINGALES 117 2.1.3 ITO-STIELTJES INTEGRALS WHEN THE INTEGRATORS ARE SEMIMARTINGALES 124 2.1.4 PROPERTIES OF THE ITO-STIELTJES INTEGRAL 126 2.1.5 THE INTEGRAL PROCESS 126 2.1.6 INTEGRATION BY PARTS AND THE EXISTENCE OF THE QUADRATIC VARIATION 128 2.1.7 THE KUNITA-WATANABE INEQUALITY 134 2.2 THE QUADRATIC VARIATION OF CONTINUOUS LOCAL MARTINGALES 138 2.3 INTEGRATION WHEN INTEGRATORS ARE CONTINUOUS SEMIMARTINGALES 146 2.3.1 THE SPACE OF SQUARE-INTEGRABLE CONTINUOUS LOCAL MARTINGALES 147 2.3.2 INTEGRATION WITH RESPECT TO CONTINUOUS LOCAL MARTINGALES 151 2.3.3 INTEGRATION WITH RESPECT TO SEMIMARTINGALES 162 2.3.4 THE DOMINATED CONVERGENCE THEOREM FOR STOCHASTIC INTEGRALS 162 2.3.5 STOCHASTIC INTEGRATION AND THE ITO-STIELTJES INTEGRAL 164 2.4 INTEGRATION WHEN INTEGRATORS ARE LOCALLY SQUARE-INTEGRABLE MARTINGALES 167 2.4.1 THE QUADRATIC VARIATION OF LOCALLY SQUARE-INTEGRABLE MARTINGALES 167 2.4.2 INTEGRATION WHEN THE INTEGRATORS ARE LOCALLY SQUARE-INTEGRABLE MARTINGALES 171 2.4.3 STOCHASTIC INTEGRATION WHEN THE INTEGRATORS ARE SEMIMARTINGALES 176 CONTENTS IX THE STRUCTURE OF LOCAL MARTINGALES 179 3.1 PREDICTABLE PROJECTION 182 3.1.1 PREDICTABLE STOPPING TIMES 182 3.1.2 DECOMPOSITION OF THIN SETS 188 3.1.3 THE EXTENDED CONDITIONAL EXPECTATION 190 3.1.4 DEFINITION OF THE PREDICTABLE PROJECTION 192 3.1.5 THE UNIQUENESS OF THE PREDICTABLE PROJECTION, THE PREDICTABLE SECTION THEOREM 194 3.1.6 PROPERTIES OF THE PREDICTABLE PROJECTION 201 3.1.7 PREDICTABLE PROJECTION OF LOCAL MARTINGALES 204 3.1.8 EXISTENCE OF THE PREDICTABLE PROJECTION 206 3.2 PREDICTABLE COMPENSATORS 207 3.2.1 PREDICTABLE RADON-NIKODYM THEOREM 207 3.2.2 PREDICTABLE COMPENSATOR OF LOCALLY INTEGRABLE PROCESSES 213 3.2.3 PROPERTIES OF THE PREDICTABLE COMPENSATOR 217 3.3 THE FUNDAMENTAL THEOREM OF LOCAL MARTINGALES 219 3.4 QUADRATIC VARIATION 222 GENERAL THEORY OF STOCHASTIC INTEGRATION 225 4.1 PURELY DISCONTINUOUS LOCAL MARTINGALES 225 4.1.1 ORTHOGONALITY OF LOCAL MARTINGALES 227 4.1.2 DECOMPOSITION OF LOCAL MARTINGALES 232 4.1.3 DECOMPOSITION OF SEMIMARTINGALES 234 4.2 PURELY DISCONTINUOUS LOCAL MARTINGALES AND COMPENSATED JUMPS 235 4.2.1 CONSTRUCTION OF PURELY DISCONTINUOUS LOCAL MARTINGALES 240 4.2.2 QUADRATIC VARIATION OF PURELY DISCONTINUOUS LOCAL MARTINGALES 244 4.3 STOCHASTIC INTEGRATION WITH RESPECT TO LOCAL MARTINGALES 246 4.3.1 DEFINITION OF STOCHASTIC INTEGRATION 248 4.3.2 PROPERTIES OF STOCHASTIC INTEGRATION 250 4.4 STOCHASTIC INTEGRATION WITH RESPECT TO SEMIMARTINGALES 254 4.4.1 INTEGRATION WITH RESPECT TO SPECIAL SEMIMARTINGALES 257 X CONTENTS 4.4.2 LINEARITY OF THE STOCHASTIC INTEGRAL 261 4.4.3 THE ASSOCIATIVITY RULE 262 4.4.4 CHANGE OF MEASURE 264 4.5 THE PROOF OF DAVIS INEQUALITY 277 4.5.1 DISCRETE-TIME DAVIS INEQUALITY 279 4.5.2 BURKHOLDER S INEQUALITY 287 5 SOME OTHER THEOREMS 292 5.1 THE DOOB-MEYER DECOMPOSITION 292 5.1.1 THE PROOF OF THE THEOREM 292 5.1.2 DELLACHERIE S FORMULAS AND THE NATURAL PROCESSES 299 5.1.3 THE SUB- SUPER- AND THE QUASI-MARTINGALES ARE SEMIMARTINGALES 303 5.2 SEMIMARTINGALES AS GOOD INTEGRATORS 308 5.3 INTEGRATION OF ADAPTED PRODUCT MEASURABLE PROCESSES 314 5.4 THEOREM OF FUBINI FOR STOCHASTIC INTEGRALS 319 5.5 MARTINGALE REPRESENTATION 328 6 ITOE S FORMULA 351 6.1 ITOE S FORMULA FOR CONTINUOUS SEMIMARTINGALES 353 6.2 SOME APPLICATIONS OF THE FORMULA 359 6.2.1 ZEROS OF WIENER PROCESSES 359 6.2.2 CONTINUOUS LEVY PROCESSES 366 6.2.3 LEVY S CHARACTERIZATION OF WIENER PROCESSES 368 6.2.4 INTEGRAL REPRESENTATION THEOREMS FOR WIENER PROCESSES 373 6.2.5 BESSEL PROCESSES 375 6.3 CHANGE OF MEASURE FOR CONTINUOUS SEMIMARTINGALES 377 6.3.1 LOCALLY ABSOLUTELY CONTINUOUS CHANGE OF MEASURE 377 6.3.2 SEMIMARTINGALES AND CHANGE OF MEASURE 378 6.3.3 CHANGE OF MEASURE FOR CONTINUOUS SEMIMARTINGALES 380 6.3.4 GIRSANOV S FORMULA FOR WIENER PROCESSES 382 6.3.5 KAZAMAKI-NOVIKOV CRITERIA 386 CONTENTS XI 6.4 ITO S FORMULA FOR NON-CONTINUOUS SEMIMARTINGALES 394 6.4.1 ITO S FORMULA FOR PROCESSES WITH FINITE VARIATION 398 6.4.2 THE PROOF OF ITO S FORMULA 401 6.4.3 EXPONENTIAL SEMIMARTINGALES 411 6.5 ITO S FORMULA FOR CONVEX FUNCTIONS 417 6.5.1 DERIVATIVE OF CONVEX FUNCTIONS 418 6.5.2 DEFINITION OF LOCAL TIMES 422 6.5.3 MEYER-ITO FORMULA 429 6.5.4 LOCAL TIMES OF CONTINUOUS SEMIMARTINGALES 438 6.5.5 LOCAL TIME OF WIENER PROCESSES 445 6.5.6 RAY-KNIGHT THEOREM 450 6.5.7 THEOREM OF DVORETZKY ERDOES AND KAKUTANI 457 PROCESSES WITH INDEPENDENT INCREMENTS 460 7.1 LEVY PROCESSES 460 7.1.1 POISSON PROCESSES 461 7.1.2 COMPOUND POISSON PROCESSES GENERATED BY THE JUMPS 464 7.1.3 SPECTRAL MEASURE OF LEVY PROCESSES 472 7.1.4 DECOMPOSITION OF LEVY PROCESSES 480 7.1.5 LEVY-KHINTCHINE FORMULA FOR LEVY PROCESSES 486 7.1.6 CONSTRUCTION OF LEVY PROCESSES 489 7.1.7 UNIQUENESS OF THE REPRESENTATION 491 7.2 PREDICTABLE COMPENSATORS OF RANDOM MEASURES 496 7.2.1 MEASURABLE RANDOM MEASURES 497 7.2.2 EXISTENCE OF PREDICTABLE COMPENSATOR 501 7.3 CHARACTERISTICS OF SEMIMARTINGALES 508 7.4 LEVY-KHINTCHINE FORMULA FOR SEMIMARTINGALES WITH INDEPENDENT INCREMENTS 513 7.4.1 EXAMPLES: PROBABILITY OF JUMPS OF PROCESSES WITH INDEPENDENT INCREMENTS - 513 7.4.2 PREDICTABLE CUMULANTS 518 7.4.3 SEMIMARTINGALES WITH INDEPENDENT INCREMENTS 523 XII CONTENTS 7.4.4 CHARACTERISTICS OF SEMIMARTINGALES WITH INDEPENDENT INCREMENTS 7.4.5 THE PROOF OF THE FORMULA 7.5 DECOMPOSITION OF PROCESSES WITH INDEPENDENT INCREMENTS 530 534 538 APPENDIX A RESULTS FROM MEASURE THEORY A.L THE MONOTONE CLASS THEOREM A.2 PROJECTION AND THE MEASURABLE SELECTION THEOREMS A.3 CRAMER S THEOREM A.4 INTERPRETATION OF STOPPED CR-ALGEBRAS 547 547 547 550 551 555 B WIENER PROCESSES B.L BASIC PROPERTIES B.2 EXISTENCE OF WIENER PROCESSES B.3 QUADRATIC VARIATION OF WIENER PROCESSES 559 559 567 571 C POISSON PROCESSES NOTES AND COMMENTS REFERENCES INDEX 579 594 597 603
any_adam_object 1
author Medvegyev, Péter
author_facet Medvegyev, Péter
author_role aut
author_sort Medvegyev, Péter
author_variant p m pm
building Verbundindex
bvnumber BV022886212
callnumber-first Q - Science
callnumber-label QA274
callnumber-raw QA274.22
callnumber-search QA274.22
callnumber-sort QA 3274.22
callnumber-subject QA - Mathematics
classification_rvk QH 234
SK 820
classification_tum MAT 605f
MAT 606f
ctrlnum (OCoLC)122526875
(DE-599)DNB 2007014192
dewey-full 519.2/2
dewey-hundreds 500 - Natural sciences and mathematics
dewey-ones 519 - Probabilities and applied mathematics
dewey-raw 519.2/2
dewey-search 519.2/2
dewey-sort 3519.2 12
dewey-tens 510 - Mathematics
discipline Mathematik
Wirtschaftswissenschaften
edition 1. publ.
format Book
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01768nam a2200481zcb4500</leader><controlfield tag="001">BV022886212</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20080711 </controlfield><controlfield tag="007">t|</controlfield><controlfield tag="008">071017s2007 xxu |||| 00||| eng d</controlfield><datafield tag="010" ind1=" " ind2=" "><subfield code="a">2007014192</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780199215256</subfield><subfield code="9">978-0-19-921525-6</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)122526875</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DNB 2007014192</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">xxu</subfield><subfield code="c">US</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-703</subfield><subfield code="a">DE-91G</subfield><subfield code="a">DE-29T</subfield><subfield code="a">DE-634</subfield><subfield code="a">DE-384</subfield><subfield code="a">DE-11</subfield><subfield code="a">DE-188</subfield><subfield code="a">DE-523</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA274.22</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">519.2/2</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">QH 234</subfield><subfield code="0">(DE-625)141549:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 820</subfield><subfield code="0">(DE-625)143258:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 605f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 606f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Medvegyev, Péter</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Stochastic integration theory</subfield><subfield code="c">Péter Medvegyev</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">1. publ.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Oxford [u.a.]</subfield><subfield code="b">Oxford University Press</subfield><subfield code="c">2007</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XIX, 608 S.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Oxford graduate texts in mathematics</subfield><subfield code="v">14</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references and index</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Martingales (Mathematics)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Stochastic integrals</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Stochastic processes</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Stochastisches Integral</subfield><subfield code="0">(DE-588)4126478-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Stochastisches Integral</subfield><subfield code="0">(DE-588)4126478-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Oxford graduate texts in mathematics</subfield><subfield code="v">14</subfield><subfield code="w">(DE-604)BV011416591</subfield><subfield code="9">14</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">GBV Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&amp;doc_library=BVB01&amp;local_base=BVB01&amp;doc_number=016091122&amp;sequence=000001&amp;line_number=0001&amp;func_code=DB_RECORDS&amp;service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-016091122</subfield></datafield></record></collection>
id DE-604.BV022886212
illustrated Not Illustrated
indexdate 2024-12-23T20:41:49Z
institution BVB
isbn 9780199215256
language English
lccn 2007014192
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-016091122
oclc_num 122526875
open_access_boolean
owner DE-703
DE-91G
DE-BY-TUM
DE-29T
DE-634
DE-384
DE-11
DE-188
DE-523
owner_facet DE-703
DE-91G
DE-BY-TUM
DE-29T
DE-634
DE-384
DE-11
DE-188
DE-523
physical XIX, 608 S.
publishDate 2007
publishDateSearch 2007
publishDateSort 2007
publisher Oxford University Press
record_format marc
series Oxford graduate texts in mathematics
series2 Oxford graduate texts in mathematics
spellingShingle Medvegyev, Péter
Stochastic integration theory
Oxford graduate texts in mathematics
Martingales (Mathematics)
Stochastic integrals
Stochastic processes
Stochastisches Integral (DE-588)4126478-2 gnd
subject_GND (DE-588)4126478-2
title Stochastic integration theory
title_auth Stochastic integration theory
title_exact_search Stochastic integration theory
title_full Stochastic integration theory Péter Medvegyev
title_fullStr Stochastic integration theory Péter Medvegyev
title_full_unstemmed Stochastic integration theory Péter Medvegyev
title_short Stochastic integration theory
title_sort stochastic integration theory
topic Martingales (Mathematics)
Stochastic integrals
Stochastic processes
Stochastisches Integral (DE-588)4126478-2 gnd
topic_facet Martingales (Mathematics)
Stochastic integrals
Stochastic processes
Stochastisches Integral
url http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016091122&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA
volume_link (DE-604)BV011416591
work_keys_str_mv AT medvegyevpeter stochasticintegrationtheory