Representations of linear groups an introduction based on examples from physics and number theory

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Berndt, Rolf 1940- (VerfasserIn)
Format: Buch
Sprache:English
Veröffentlicht: Wiesbaden Vieweg 2007
Ausgabe:1. ed.
Schlagworte:
Online-Zugang:Inhaltstext
Inhaltsverzeichnis
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nam a2200000 c 4500
001 BV022616076
003 DE-604
005 20180514
007 t|
008 070820s2007 gw d||| |||| 00||| eng d
015 |a 07,N30,0948  |2 dnb 
016 7 |a 984802819  |2 DE-101 
020 |a 9783834803191  |c Pb. : ca. EUR 39.90  |9 978-3-8348-0319-1 
020 |a 3834803197  |c Pb. : ca. EUR 39.90  |9 3-8348-0319-7 
024 3 |a 9783834803191 
028 5 2 |a 128/40319 
035 |a (OCoLC)180750215 
035 |a (DE-599)DNB984802819 
040 |a DE-604  |b ger  |e rakddb 
041 0 |a eng 
044 |a gw  |c XA-DE-HE 
049 |a DE-29T  |a DE-703  |a DE-739  |a DE-20  |a DE-384  |a DE-92  |a DE-355  |a DE-634  |a DE-11  |a DE-188  |a DE-19 
050 0 |a QA176 
082 0 |a 512.55  |2 22 
084 |a SK 260  |0 (DE-625)143227:  |2 rvk 
084 |a 510  |2 sdnb 
100 1 |a Berndt, Rolf  |d 1940-  |e Verfasser  |0 (DE-588)140923950  |4 aut 
245 1 0 |a Representations of linear groups  |b an introduction based on examples from physics and number theory  |c Rolf Berndt 
250 |a 1. ed. 
264 1 |a Wiesbaden  |b Vieweg  |c 2007 
300 |a VIII, 270 S.  |b graph. Darst. 
336 |b txt  |2 rdacontent 
337 |b n  |2 rdamedia 
338 |b nc  |2 rdacarrier 
500 |a Auch als Internetausgabe 
650 4 |a Linear algebraic groups 
650 4 |a Matrix groups 
650 4 |a Representations of groups 
650 0 7 |a Lineare Gruppe  |0 (DE-588)4138778-8  |2 gnd  |9 rswk-swf 
650 0 7 |a Darstellungstheorie  |0 (DE-588)4148816-7  |2 gnd  |9 rswk-swf 
655 7 |0 (DE-588)4123623-3  |a Lehrbuch  |2 gnd-content 
689 0 0 |a Lineare Gruppe  |0 (DE-588)4138778-8  |D s 
689 0 1 |a Darstellungstheorie  |0 (DE-588)4148816-7  |D s 
689 0 |5 DE-604 
856 4 2 |q text/html  |u http://deposit.dnb.de/cgi-bin/dokserv?id=2980273&prov=M&dok_var=1&dok_ext=htm  |3 Inhaltstext 
856 4 2 |m Digitalisierung UB Augsburg  |q application/pdf  |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=015822212&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA  |3 Inhaltsverzeichnis 
943 1 |a oai:aleph.bib-bvb.de:BVB01-015822212 

Datensatz im Suchindex

DE-19_call_number 1601/SK 260 B524
DE-19_location 95
DE-BY-UBM_katkey 4821282
DE-BY-UBM_media_number 41623351970016
DE-BY-UBR_call_number 80/SK 260 B524
DE-BY-UBR_katkey 4395452
DE-BY-UBR_location 80
DE-BY-UBR_media_number 069035627410
_version_ 1823055316145668096
adam_text Contents Introduction ix 0 Prologue: Some Groups and their Actions 1 0.1 Several Matrix Groups ............................. 1 0.2 Group Actions ................................. 3 0.3 The Symmetric Group ............................. 5 1 Basic Algebraic Concepts 7 1.1 Linear Representations ............................. 7 1.2 Equivalent Representations .......................... 9 1.3 First Examples ................................ . 10 1.4 Basic Construction Principles ......................... 14 1.4.1 Sum of Representations ........................ 14 1.4.2 Tensor Product of Representations .................. 14 1.4.3 The Contragredient Representation .................. 15 1.4.4 The Factor Representation ...................... 16 1.5 Decompositions ................................. 16 1.6 Characters .................................... 21 2 Representations of Finite Groups 23 2.1 Characters as Orthonormal Systems ..................... 23 2.2 The Regular Representation .......................... 27 2.3 Characters as Orthonormal Bases ...................... 28 3 Continuous Representations 31 3.1 Topological and Linear Groups ........................ 31 3.2 The Continuity Condition ........................... 33 3.3 Invariant Measures ............................... 38 3.4 Examples .................................... 40 4 Representations of Compact Groups 43 4.1 Basic Facts ................................... 43 4.2 The Example G = SU{2) ............................ 48 4.3 The Example G = SO(3) ........................... 52 5 Representations of Abelian Groups 59 5.1 Characters and the Pont r j agin Dual ..................... 59 5.2 Continuous Decompositions .......................... 60 6 The Infinitesimal Method 63 6.1 Lie Algebras and their Representations .................... 63 6.2 The Lie Algebra of a Linear Group ...................... 67 6.3 Derived Representations ............................ 70 6.4 Unitarily Integrable Representations of sl(2,R) ............... 73 6.5 The Examples su(2) and heis(R) ................-....... 82 6.6 Some Structure Theory ............................ 84 6.6.1 Specifications of Groups and Lie Algebras .............. 85 6.6.2 Structure Theory for Complex Semisimple Lie Algebras ...... 89 6.6.3 Structure Theory for Compact Real Lie Algebras .......... 93 6.6.4 Structure Theory for Noncompact Real Lie Algebras ........ 95 6.6.5 Representations of Highest Weight .................. 97 6.7 The Example su(3) ............................... 104 7 Induced Representations 117 7.1 The Principle of Induction ........................... 117 7.1.1 Preliminary Approach ......................... 118 7.1.2 Mackey s Approach ........................... 120 7.1.3 Final Approach ............................. 125 7.1.4 Some Questions and two Easy Examples ............... 126 7.2 Unitary Representations of SL(2,R) . .................... 130 7.3 Unitary Representations of SL(2,C) and of the Lorentz Group ....... 143 7.4 Unitary Representations of Semidirect Products ............... 147 7.5 Unitary Representations of the Poincaré Group ............... 154 7.6 Induced Representations and Vector Bundles ................ 161 8 Geometric Quantization and the Orbit Method 173 8.1 The Hamiltonian Formalism and its Quantization .............. 173 8.2 Coadjoint Orbits and Representations .................... 178 8.2.1 Prequantization ............................. 178 8.2.2 Example: Construction of Line Bundles over M = Ρ l(C) ..... 181 8.2.3 Quantization .............................. 184 8.2.4 Coadjoint Orbits and Hamiltonian G-spaces ............. 186 8.2.5 Construction of an Irreducible Unitary Representation by an Orbit 196 8.3 The Examples SU(2) and SL(2, R) ...................... 197 8.4 The Example Heis(R) ............................. 202 8.5 Some Hints Concerning the Jacobi Group .................. 209 9 Epilogue: Outlook to Number Theory 215 9.1 Theta Functions and the Heisenberg Group ................. 216 9.2 Modular Forms and SL(2,R) ......................... 221 9.3 Theta Functions and the Jacobi Group .................... 236 9.4 Hecke s Theory of L-Functions Associated to Modular Forms ....... 239 9.5 Elements of Algebraic Number Theory and Hecke L-Functions ...... 246 9.6 Arithmetic L-Functions ............................ 250 9.7 Summary and Final Reflections ........................ 256 Bibliography 261 Index 266
any_adam_object 1
author Berndt, Rolf 1940-
author_GND (DE-588)140923950
author_facet Berndt, Rolf 1940-
author_role aut
author_sort Berndt, Rolf 1940-
author_variant r b rb
building Verbundindex
bvnumber BV022616076
callnumber-first Q - Science
callnumber-label QA176
callnumber-raw QA176
callnumber-search QA176
callnumber-sort QA 3176
callnumber-subject QA - Mathematics
classification_rvk SK 260
ctrlnum (OCoLC)180750215
(DE-599)DNB984802819
dewey-full 512.55
dewey-hundreds 500 - Natural sciences and mathematics
dewey-ones 512 - Algebra
dewey-raw 512.55
dewey-search 512.55
dewey-sort 3512.55
dewey-tens 510 - Mathematics
discipline Mathematik
edition 1. ed.
format Book
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02097nam a2200529 c 4500</leader><controlfield tag="001">BV022616076</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20180514 </controlfield><controlfield tag="007">t|</controlfield><controlfield tag="008">070820s2007 gw d||| |||| 00||| eng d</controlfield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">07,N30,0948</subfield><subfield code="2">dnb</subfield></datafield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">984802819</subfield><subfield code="2">DE-101</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783834803191</subfield><subfield code="c">Pb. : ca. EUR 39.90</subfield><subfield code="9">978-3-8348-0319-1</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">3834803197</subfield><subfield code="c">Pb. : ca. EUR 39.90</subfield><subfield code="9">3-8348-0319-7</subfield></datafield><datafield tag="024" ind1="3" ind2=" "><subfield code="a">9783834803191</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">128/40319</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)180750215</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DNB984802819</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">gw</subfield><subfield code="c">XA-DE-HE</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-29T</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-739</subfield><subfield code="a">DE-20</subfield><subfield code="a">DE-384</subfield><subfield code="a">DE-92</subfield><subfield code="a">DE-355</subfield><subfield code="a">DE-634</subfield><subfield code="a">DE-11</subfield><subfield code="a">DE-188</subfield><subfield code="a">DE-19</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA176</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">512.55</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 260</subfield><subfield code="0">(DE-625)143227:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">510</subfield><subfield code="2">sdnb</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Berndt, Rolf</subfield><subfield code="d">1940-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)140923950</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Representations of linear groups</subfield><subfield code="b">an introduction based on examples from physics and number theory</subfield><subfield code="c">Rolf Berndt</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">1. ed.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Wiesbaden</subfield><subfield code="b">Vieweg</subfield><subfield code="c">2007</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">VIII, 270 S.</subfield><subfield code="b">graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Auch als Internetausgabe</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Linear algebraic groups</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Matrix groups</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Representations of groups</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Lineare Gruppe</subfield><subfield code="0">(DE-588)4138778-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Darstellungstheorie</subfield><subfield code="0">(DE-588)4148816-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="0">(DE-588)4123623-3</subfield><subfield code="a">Lehrbuch</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Lineare Gruppe</subfield><subfield code="0">(DE-588)4138778-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Darstellungstheorie</subfield><subfield code="0">(DE-588)4148816-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="q">text/html</subfield><subfield code="u">http://deposit.dnb.de/cgi-bin/dokserv?id=2980273&amp;prov=M&amp;dok_var=1&amp;dok_ext=htm</subfield><subfield code="3">Inhaltstext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Augsburg</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&amp;doc_library=BVB01&amp;local_base=BVB01&amp;doc_number=015822212&amp;sequence=000002&amp;line_number=0001&amp;func_code=DB_RECORDS&amp;service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-015822212</subfield></datafield></record></collection>
genre (DE-588)4123623-3 Lehrbuch gnd-content
genre_facet Lehrbuch
id DE-604.BV022616076
illustrated Illustrated
indexdate 2025-02-03T17:41:49Z
institution BVB
isbn 9783834803191
3834803197
language English
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-015822212
oclc_num 180750215
open_access_boolean
owner DE-29T
DE-703
DE-739
DE-20
DE-384
DE-92
DE-355
DE-BY-UBR
DE-634
DE-11
DE-188
DE-19
DE-BY-UBM
owner_facet DE-29T
DE-703
DE-739
DE-20
DE-384
DE-92
DE-355
DE-BY-UBR
DE-634
DE-11
DE-188
DE-19
DE-BY-UBM
physical VIII, 270 S. graph. Darst.
publishDate 2007
publishDateSearch 2007
publishDateSort 2007
publisher Vieweg
record_format marc
spellingShingle Berndt, Rolf 1940-
Representations of linear groups an introduction based on examples from physics and number theory
Linear algebraic groups
Matrix groups
Representations of groups
Lineare Gruppe (DE-588)4138778-8 gnd
Darstellungstheorie (DE-588)4148816-7 gnd
subject_GND (DE-588)4138778-8
(DE-588)4148816-7
(DE-588)4123623-3
title Representations of linear groups an introduction based on examples from physics and number theory
title_auth Representations of linear groups an introduction based on examples from physics and number theory
title_exact_search Representations of linear groups an introduction based on examples from physics and number theory
title_full Representations of linear groups an introduction based on examples from physics and number theory Rolf Berndt
title_fullStr Representations of linear groups an introduction based on examples from physics and number theory Rolf Berndt
title_full_unstemmed Representations of linear groups an introduction based on examples from physics and number theory Rolf Berndt
title_short Representations of linear groups
title_sort representations of linear groups an introduction based on examples from physics and number theory
title_sub an introduction based on examples from physics and number theory
topic Linear algebraic groups
Matrix groups
Representations of groups
Lineare Gruppe (DE-588)4138778-8 gnd
Darstellungstheorie (DE-588)4148816-7 gnd
topic_facet Linear algebraic groups
Matrix groups
Representations of groups
Lineare Gruppe
Darstellungstheorie
Lehrbuch
url http://deposit.dnb.de/cgi-bin/dokserv?id=2980273&prov=M&dok_var=1&dok_ext=htm
http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=015822212&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA
work_keys_str_mv AT berndtrolf representationsoflineargroupsanintroductionbasedonexamplesfromphysicsandnumbertheory