Representations of linear groups an introduction based on examples from physics and number theory
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Wiesbaden
Vieweg
2007
|
Ausgabe: | 1. ed. |
Schlagworte: | |
Online-Zugang: | Inhaltstext Inhaltsverzeichnis |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV022616076 | ||
003 | DE-604 | ||
005 | 20180514 | ||
007 | t| | ||
008 | 070820s2007 gw d||| |||| 00||| eng d | ||
015 | |a 07,N30,0948 |2 dnb | ||
016 | 7 | |a 984802819 |2 DE-101 | |
020 | |a 9783834803191 |c Pb. : ca. EUR 39.90 |9 978-3-8348-0319-1 | ||
020 | |a 3834803197 |c Pb. : ca. EUR 39.90 |9 3-8348-0319-7 | ||
024 | 3 | |a 9783834803191 | |
028 | 5 | 2 | |a 128/40319 |
035 | |a (OCoLC)180750215 | ||
035 | |a (DE-599)DNB984802819 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 0 | |a eng | |
044 | |a gw |c XA-DE-HE | ||
049 | |a DE-29T |a DE-703 |a DE-739 |a DE-20 |a DE-384 |a DE-92 |a DE-355 |a DE-634 |a DE-11 |a DE-188 |a DE-19 | ||
050 | 0 | |a QA176 | |
082 | 0 | |a 512.55 |2 22 | |
084 | |a SK 260 |0 (DE-625)143227: |2 rvk | ||
084 | |a 510 |2 sdnb | ||
100 | 1 | |a Berndt, Rolf |d 1940- |e Verfasser |0 (DE-588)140923950 |4 aut | |
245 | 1 | 0 | |a Representations of linear groups |b an introduction based on examples from physics and number theory |c Rolf Berndt |
250 | |a 1. ed. | ||
264 | 1 | |a Wiesbaden |b Vieweg |c 2007 | |
300 | |a VIII, 270 S. |b graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
500 | |a Auch als Internetausgabe | ||
650 | 4 | |a Linear algebraic groups | |
650 | 4 | |a Matrix groups | |
650 | 4 | |a Representations of groups | |
650 | 0 | 7 | |a Lineare Gruppe |0 (DE-588)4138778-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Darstellungstheorie |0 (DE-588)4148816-7 |2 gnd |9 rswk-swf |
655 | 7 | |0 (DE-588)4123623-3 |a Lehrbuch |2 gnd-content | |
689 | 0 | 0 | |a Lineare Gruppe |0 (DE-588)4138778-8 |D s |
689 | 0 | 1 | |a Darstellungstheorie |0 (DE-588)4148816-7 |D s |
689 | 0 | |5 DE-604 | |
856 | 4 | 2 | |q text/html |u http://deposit.dnb.de/cgi-bin/dokserv?id=2980273&prov=M&dok_var=1&dok_ext=htm |3 Inhaltstext |
856 | 4 | 2 | |m Digitalisierung UB Augsburg |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=015822212&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-015822212 |
Datensatz im Suchindex
DE-19_call_number | 1601/SK 260 B524 |
---|---|
DE-19_location | 95 |
DE-BY-UBM_katkey | 4821282 |
DE-BY-UBM_media_number | 41623351970016 |
DE-BY-UBR_call_number | 80/SK 260 B524 |
DE-BY-UBR_katkey | 4395452 |
DE-BY-UBR_location | 80 |
DE-BY-UBR_media_number | 069035627410 |
_version_ | 1823055316145668096 |
adam_text | Contents
Introduction
ix
0
Prologue:
Some Groups and their Actions
1
0.1
Several Matrix Groups
............................. 1
0.2
Group Actions
................................. 3
0.3
The Symmetric Group
............................. 5
1
Basic Algebraic Concepts
7
1.1
Linear Representations
............................. 7
1.2
Equivalent Representations
.......................... 9
1.3
First Examples
................................ . 10
1.4
Basic Construction Principles
......................... 14
1.4.1
Sum of Representations
........................ 14
1.4.2
Tensor Product of Representations
.................. 14
1.4.3
The Contragredient Representation
.................. 15
1.4.4
The Factor Representation
...................... 16
1.5
Decompositions
................................. 16
1.6
Characters
.................................... 21
2
Representations of Finite Groups
23
2.1
Characters as Orthonormal Systems
..................... 23
2.2
The Regular Representation
.......................... 27
2.3
Characters as Orthonormal Bases
...................... 28
3
Continuous Representations
31
3.1
Topological and Linear Groups
........................ 31
3.2
The Continuity Condition
........................... 33
3.3
Invariant Measures
............................... 38
3.4
Examples
.................................... 40
4
Representations of Compact Groups
43
4.1
Basic Facts
................................... 43
4.2
The Example
G
=
SU{2)
............................ 48
4.3
The Example
G
=
SO(3)
........................... 52
5
Representations of Abelian Groups
59
5.1
Characters and the Pont
r j
agin Dual
..................... 59
5.2
Continuous Decompositions
.......................... 60
6
The Infinitesimal Method
63
6.1
Lie Algebras and their Representations
.................... 63
6.2
The Lie Algebra of a Linear Group
...................... 67
6.3
Derived Representations
............................ 70
6.4
Unitarily
Integrable
Representations of sl(2,R)
............... 73
6.5
The Examples su(2) and heis(R)
................-....... 82
6.6
Some Structure Theory
............................ 84
6.6.1
Specifications of Groups and Lie Algebras
.............. 85
6.6.2
Structure Theory for Complex
Semisimple
Lie Algebras
...... 89
6.6.3
Structure Theory for Compact Real Lie Algebras
.......... 93
6.6.4
Structure Theory for Noncompact Real Lie Algebras
........ 95
6.6.5
Representations of Highest Weight
.................. 97
6.7
The Example su(3)
............................... 104
7
Induced Representations
117
7.1
The Principle of Induction
........................... 117
7.1.1
Preliminary Approach
......................... 118
7.1.2
Mackey s Approach
........................... 120
7.1.3
Final Approach
............................. 125
7.1.4
Some Questions and two Easy Examples
............... 126
7.2
Unitary Representations of SL(2,R)
. .................... 130
7.3
Unitary Representations of SL(2,C) and of the
Lorentz
Group
....... 143
7.4
Unitary Representations of Semidirect Products
............... 147
7.5
Unitary Representations of the
Poincaré
Group
............... 154
7.6
Induced Representations and Vector Bundles
................ 161
8
Geometric Quantization and the Orbit Method
173
8.1
The Hamiltonian Formalism and its Quantization
.............. 173
8.2
Coadjoint Orbits and Representations
.................... 178
8.2.1
Prequantization
............................. 178
8.2.2
Example: Construction of Line Bundles over
M
=
Ρ
l(C)
..... 181
8.2.3
Quantization
.............................. 184
8.2.4
Coadjoint Orbits and Hamiltonian G-spaces
............. 186
8.2.5
Construction of an Irreducible Unitary Representation by an Orbit
196
8.3
The Examples SU(2) and SL(2, R)
...................... 197
8.4
The Example Heis(R)
............................. 202
8.5
Some Hints Concerning the Jacobi Group
.................. 209
9
Epilogue: Outlook to Number Theory
215
9.1
Theta Functions and the
Heisenberg
Group
................. 216
9.2
Modular Forms and SL(2,R)
......................... 221
9.3
Theta Functions and the Jacobi Group
.................... 236
9.4
Hecke s Theory of L-Functions Associated to Modular Forms
....... 239
9.5
Elements of Algebraic Number Theory and
Hecke
L-Functions
...... 246
9.6
Arithmetic L-Functions
............................ 250
9.7
Summary and Final Reflections
........................ 256
Bibliography
261
Index
266
|
any_adam_object | 1 |
author | Berndt, Rolf 1940- |
author_GND | (DE-588)140923950 |
author_facet | Berndt, Rolf 1940- |
author_role | aut |
author_sort | Berndt, Rolf 1940- |
author_variant | r b rb |
building | Verbundindex |
bvnumber | BV022616076 |
callnumber-first | Q - Science |
callnumber-label | QA176 |
callnumber-raw | QA176 |
callnumber-search | QA176 |
callnumber-sort | QA 3176 |
callnumber-subject | QA - Mathematics |
classification_rvk | SK 260 |
ctrlnum | (OCoLC)180750215 (DE-599)DNB984802819 |
dewey-full | 512.55 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 512 - Algebra |
dewey-raw | 512.55 |
dewey-search | 512.55 |
dewey-sort | 3512.55 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
edition | 1. ed. |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02097nam a2200529 c 4500</leader><controlfield tag="001">BV022616076</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20180514 </controlfield><controlfield tag="007">t|</controlfield><controlfield tag="008">070820s2007 gw d||| |||| 00||| eng d</controlfield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">07,N30,0948</subfield><subfield code="2">dnb</subfield></datafield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">984802819</subfield><subfield code="2">DE-101</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783834803191</subfield><subfield code="c">Pb. : ca. EUR 39.90</subfield><subfield code="9">978-3-8348-0319-1</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">3834803197</subfield><subfield code="c">Pb. : ca. EUR 39.90</subfield><subfield code="9">3-8348-0319-7</subfield></datafield><datafield tag="024" ind1="3" ind2=" "><subfield code="a">9783834803191</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">128/40319</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)180750215</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DNB984802819</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">gw</subfield><subfield code="c">XA-DE-HE</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-29T</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-739</subfield><subfield code="a">DE-20</subfield><subfield code="a">DE-384</subfield><subfield code="a">DE-92</subfield><subfield code="a">DE-355</subfield><subfield code="a">DE-634</subfield><subfield code="a">DE-11</subfield><subfield code="a">DE-188</subfield><subfield code="a">DE-19</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA176</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">512.55</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 260</subfield><subfield code="0">(DE-625)143227:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">510</subfield><subfield code="2">sdnb</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Berndt, Rolf</subfield><subfield code="d">1940-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)140923950</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Representations of linear groups</subfield><subfield code="b">an introduction based on examples from physics and number theory</subfield><subfield code="c">Rolf Berndt</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">1. ed.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Wiesbaden</subfield><subfield code="b">Vieweg</subfield><subfield code="c">2007</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">VIII, 270 S.</subfield><subfield code="b">graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Auch als Internetausgabe</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Linear algebraic groups</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Matrix groups</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Representations of groups</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Lineare Gruppe</subfield><subfield code="0">(DE-588)4138778-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Darstellungstheorie</subfield><subfield code="0">(DE-588)4148816-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="0">(DE-588)4123623-3</subfield><subfield code="a">Lehrbuch</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Lineare Gruppe</subfield><subfield code="0">(DE-588)4138778-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Darstellungstheorie</subfield><subfield code="0">(DE-588)4148816-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="q">text/html</subfield><subfield code="u">http://deposit.dnb.de/cgi-bin/dokserv?id=2980273&prov=M&dok_var=1&dok_ext=htm</subfield><subfield code="3">Inhaltstext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Augsburg</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=015822212&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-015822212</subfield></datafield></record></collection> |
genre | (DE-588)4123623-3 Lehrbuch gnd-content |
genre_facet | Lehrbuch |
id | DE-604.BV022616076 |
illustrated | Illustrated |
indexdate | 2025-02-03T17:41:49Z |
institution | BVB |
isbn | 9783834803191 3834803197 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-015822212 |
oclc_num | 180750215 |
open_access_boolean | |
owner | DE-29T DE-703 DE-739 DE-20 DE-384 DE-92 DE-355 DE-BY-UBR DE-634 DE-11 DE-188 DE-19 DE-BY-UBM |
owner_facet | DE-29T DE-703 DE-739 DE-20 DE-384 DE-92 DE-355 DE-BY-UBR DE-634 DE-11 DE-188 DE-19 DE-BY-UBM |
physical | VIII, 270 S. graph. Darst. |
publishDate | 2007 |
publishDateSearch | 2007 |
publishDateSort | 2007 |
publisher | Vieweg |
record_format | marc |
spellingShingle | Berndt, Rolf 1940- Representations of linear groups an introduction based on examples from physics and number theory Linear algebraic groups Matrix groups Representations of groups Lineare Gruppe (DE-588)4138778-8 gnd Darstellungstheorie (DE-588)4148816-7 gnd |
subject_GND | (DE-588)4138778-8 (DE-588)4148816-7 (DE-588)4123623-3 |
title | Representations of linear groups an introduction based on examples from physics and number theory |
title_auth | Representations of linear groups an introduction based on examples from physics and number theory |
title_exact_search | Representations of linear groups an introduction based on examples from physics and number theory |
title_full | Representations of linear groups an introduction based on examples from physics and number theory Rolf Berndt |
title_fullStr | Representations of linear groups an introduction based on examples from physics and number theory Rolf Berndt |
title_full_unstemmed | Representations of linear groups an introduction based on examples from physics and number theory Rolf Berndt |
title_short | Representations of linear groups |
title_sort | representations of linear groups an introduction based on examples from physics and number theory |
title_sub | an introduction based on examples from physics and number theory |
topic | Linear algebraic groups Matrix groups Representations of groups Lineare Gruppe (DE-588)4138778-8 gnd Darstellungstheorie (DE-588)4148816-7 gnd |
topic_facet | Linear algebraic groups Matrix groups Representations of groups Lineare Gruppe Darstellungstheorie Lehrbuch |
url | http://deposit.dnb.de/cgi-bin/dokserv?id=2980273&prov=M&dok_var=1&dok_ext=htm http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=015822212&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT berndtrolf representationsoflineargroupsanintroductionbasedonexamplesfromphysicsandnumbertheory |