Algebra

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Lang, Serge 1927-2005 (VerfasserIn)
Format: Buch
Sprache:English
Veröffentlicht: New York [u.a.] Springer 2005
Ausgabe:Rev. 3. ed., [Nachdr.]
Schriftenreihe:Graduate texts in mathematics 211
Schlagworte:
Online-Zugang:Inhaltsverzeichnis
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nam a2200000 cb4500
001 BV022577547
003 DE-604
005 20080905
007 t|
008 070813s2005 gw d||| |||| 00||| eng d
020 |a 038795385X  |9 0-387-95385-X 
020 |a 9780387953854  |9 978-0-387-95385-4 
035 |a (OCoLC)310466378 
035 |a (DE-599)BVBBV022577547 
040 |a DE-604  |b ger  |e rakddb 
041 0 |a eng 
044 |a gw  |c DE 
049 |a DE-19  |a DE-20  |a DE-703  |a DE-384  |a DE-355  |a DE-634  |a DE-739 
050 0 |a QA154.3 
084 |a SK 200  |0 (DE-625)143223:  |2 rvk 
100 1 |a Lang, Serge  |d 1927-2005  |e Verfasser  |0 (DE-588)119305119  |4 aut 
245 1 0 |a Algebra  |c Serge Lang 
250 |a Rev. 3. ed., [Nachdr.] 
264 1 |a New York [u.a.]  |b Springer  |c 2005 
300 |a XV, 914 S.  |b graph. Darst. 
336 |b txt  |2 rdacontent 
337 |b n  |2 rdamedia 
338 |b nc  |2 rdacarrier 
490 1 |a Graduate texts in mathematics  |v 211 
500 |a Literaturverz. S. 895 - 901 
650 4 |a Algebra 
650 0 7 |a Algebra  |0 (DE-588)4001156-2  |2 gnd  |9 rswk-swf 
655 7 |8 1\p  |0 (DE-588)4143389-0  |a Aufgabensammlung  |2 gnd-content 
655 7 |8 2\p  |0 (DE-588)4123623-3  |a Lehrbuch  |2 gnd-content 
689 0 0 |a Algebra  |0 (DE-588)4001156-2  |D s 
689 0 |5 DE-604 
830 0 |a Graduate texts in mathematics  |v 211  |w (DE-604)BV000000067  |9 211 
856 4 2 |m Digitalisierung UB Augsburg  |q application/pdf  |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=015783786&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA  |3 Inhaltsverzeichnis 
883 1 |8 1\p  |a cgwrk  |d 20201028  |q DE-101  |u https://d-nb.info/provenance/plan#cgwrk 
883 1 |8 2\p  |a cgwrk  |d 20201028  |q DE-101  |u https://d-nb.info/provenance/plan#cgwrk 
943 1 |a oai:aleph.bib-bvb.de:BVB01-015783786 

Datensatz im Suchindex

_version_ 1819690716702441472
adam_text CONTENTS Part One The Basic Objects of Algebra Chapter I Groups 1. Monoids 3 2. Groups 7 3. Normal subgroups 13 4. Cyclic groups 23 5. Operations of a group on a set 25 6. Sylow subgroups 33 7. Direct sums and free abelian groups 36 8. Finitely generated abelian groups 42 9. The dual group 46 10. Inverse limit and completion 49 11. Categories and functors 53 12. Free groups 66 Chapter II Rings 1. Rings and homomorphisms 83 2. Commutative rings 92 3. Polynomials and group rings 97 4. Localization 107 5. Principal and factorial rings 111 Chapter III Modules 1. Basic definitions 117 2. The group of homomorphisms 122 3. Direct products and sums of modules 127 4. Free modules 135 5. Vector spaces 139 6. The dual space and dual module 142 7. Modules over principal rings 146 8. Euler-Poincaré maps 155 9. The snake lemma 157 10. Direct and inverse limits 159 83 117 xi XII CONTENTS Chapter IV Polynomials 173 1. Basic properties for polynomials in one variable 173 2. Polynomials over a factorial ring 180 3. Criteria for irreducibility 183 4. Hubert s theorem 186 5. Partial fractions 187 6. Symmetric polynomials 190 7. Mason-Stothers theorem and the abc conjecture 194 8. The resultant 199 9. Power series 205 Part Two Algebraic Equations Chapter V Algebraic Extensions 223 1. Finite and algebraic extensions 225 2. Algebraic closure 229 3. Splitting fields and normal extensions 236 4. Separable extensions 239 5. Finite fields 244 6. Inseparable extensions 247 Chapter VI Galois Theory 261 1. Galois extensions 26 1 2. Examples and applications 269 3. Roots of unity 276 4. Linear independence of characters 282 5. The norm and trace 284 6. Cyclic extensions 288 7. Solvable and radical extensions 291 8. Abelian Kummer theory 293 9. The equation Xn - a = 0 297 10. Galois cohomology 302 11. Non-abelian Kummer extensions 304 12. Algebraic independence of homomorphisms 308 13. The normal basis theorem 312 14. Infinite Galois extensions 313 15. The modular connection 315 Chapter VII Extensions of Rings 333 1. Integral ring extensions 333 2. Integral Galois extensions 340 3. Extension of homomorphisms 346 CONTENTS Xiií Chapter VIII Transcendental Extensions 355 1. Transcendence bases 355 2. Noether normalization theorem 357 3. Linearly disjoint extensions 360 4. Separable and regular extensions 363 5. Derivations 368 Chapter IX Algebraic Spaces 377 1. Hubert s Nullstellensatz 378 2. Algebraic sets, spaces and varieties 381 3. Projections and elimination 388 4. Resultant systems 401 5. Spec of a ring 405 Chapter X Noetherian Rings and Modules 413 1. Basic criteria 413 2. Associated primes 416 3. Primary decomposition 421 4. Nakayama s lemma 424 5. Filtered and graded modules 426 6. The Hubert polynomial 431 7. Indecomposable modules 439 Chapter XI Real Fields 449 1. Ordered fields 449 2. Real fields 451 3. Real zeros and homomorphisms 457 Chapter XII Absolute Values 465 1. Definitions, dependence, and independence 465 2. Completions 468 3. Finite extensions 476 4. Valuations 480 5. Completions and valuations 486 6. Discrete valuations 487 7. Zeros of polynomials in complete fields 491 Part Three Linear Algebra and Representations Chapter XIII Matrices and Linear Maps 503 1. Matrices 503 2. The rank of a matrix 506 xiv CONTENTS 3. Matrices and linear maps 507 4. Determinants 511 5. Duality 522 6. Matrices and bilinear forms 527 7. Sesquilinear duality 531 8. The simplicity of SL2 (F)/± 536 9. The group SLn(F), η > 3 540 Chapter XIV Representation of One Endomorphism 553 1. Representations 553 2. Decomposition over one endomorphism 556 3. The characteristic polynomial 561 Chapter XV Structure of Bilinear Forms 571 1. Preliminaries, orthogonal sums 571 2. Quadratic maps 574 3. Symmetric forms, orthogonal bases 575 4. Symmetric forms over ordered fields 577 5. Hermitian forms 579 6. The spectral theorem (hermitian case) 581 7. The spectral theorem (symmetric case) 584 8. Alternating forms 586 9. The Pfaffian 588 10. Witt s theorem 589 11. The Witt group 594 Chapter XVI The Tensor Product 601 1. Tensor product 601 2. Basic properties 607 3. Flat modules 612 4. Extension of the base 623 5. Some functorial isomorphisms 625 6. Tensor product of algebras 629 7. The tensor algebra of a module 632 8. Symmetric products 635 Chapter XVII Semisimplicity 641 1. Matrices and linear maps over non-commutative rings 641 2. Conditions defining semisimplicity 645 3. The density theorem 646 4. Semisimple rings 651 5. Simple rings 654 6. The Jacobson radical, base change, and tensor products 657 7. Balanced modules 660 CONTENTS XV Chapter XVIII Representations of Finite Groups 663 1. Representations and semisimplicity 663 2. Characters 667 3. 1 -dimensional representations 671 4. The space of class functions 673 5. Orthogonality relations 677 6. Induced characters 686 7. Induced representations 688 8. Positive decomposition of the regular character 699 9. Supersolvable groups 702 10. Brauer s theorem 704 11. Field of definition of a representation 710 12. Example: GL2 over a finite field 712 Chapter XIX The Alternating Product 731 1. Definition and basic properties 731 2. Fitting ideals 738 3. Universal derivations and the de Rham complex 746 4. The Clifford algebra 749 Part Four Homological Algebra Chapter XX General Homology Theory 761 1. Complexes 761 2. Homology sequence 767 3. Euler characteristic and the Grothendieck group 769 4. Injective modules 782 5. Homotopies of morphisms of complexes 787 6. Derived functors 790 7. Delta-functors 799 8. Bifunctors 806 9. Spectral sequences 814 Chapter XXI Finite Free Resolutions 835 1. Special complexes 835 2. Finite free resolutions 839 3. Unimodular polynomial vectors 846 4. The Koszul complex 850 Appendix 1 The Transcendence of e and π 867 Appendix 2 Some Set Theory 875 Bibliography 895 Index 903
any_adam_object 1
author Lang, Serge 1927-2005
author_GND (DE-588)119305119
author_facet Lang, Serge 1927-2005
author_role aut
author_sort Lang, Serge 1927-2005
author_variant s l sl
building Verbundindex
bvnumber BV022577547
callnumber-first Q - Science
callnumber-label QA154
callnumber-raw QA154.3
callnumber-search QA154.3
callnumber-sort QA 3154.3
callnumber-subject QA - Mathematics
classification_rvk SK 200
ctrlnum (OCoLC)310466378
(DE-599)BVBBV022577547
discipline Mathematik
edition Rev. 3. ed., [Nachdr.]
format Book
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01810nam a2200457 cb4500</leader><controlfield tag="001">BV022577547</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20080905 </controlfield><controlfield tag="007">t|</controlfield><controlfield tag="008">070813s2005 gw d||| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">038795385X</subfield><subfield code="9">0-387-95385-X</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780387953854</subfield><subfield code="9">978-0-387-95385-4</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)310466378</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV022577547</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">gw</subfield><subfield code="c">DE</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-19</subfield><subfield code="a">DE-20</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-384</subfield><subfield code="a">DE-355</subfield><subfield code="a">DE-634</subfield><subfield code="a">DE-739</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA154.3</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 200</subfield><subfield code="0">(DE-625)143223:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Lang, Serge</subfield><subfield code="d">1927-2005</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)119305119</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Algebra</subfield><subfield code="c">Serge Lang</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">Rev. 3. ed., [Nachdr.]</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New York [u.a.]</subfield><subfield code="b">Springer</subfield><subfield code="c">2005</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XV, 914 S.</subfield><subfield code="b">graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Graduate texts in mathematics</subfield><subfield code="v">211</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Literaturverz. S. 895 - 901</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Algebra</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Algebra</subfield><subfield code="0">(DE-588)4001156-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="8">1\p</subfield><subfield code="0">(DE-588)4143389-0</subfield><subfield code="a">Aufgabensammlung</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="8">2\p</subfield><subfield code="0">(DE-588)4123623-3</subfield><subfield code="a">Lehrbuch</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Algebra</subfield><subfield code="0">(DE-588)4001156-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Graduate texts in mathematics</subfield><subfield code="v">211</subfield><subfield code="w">(DE-604)BV000000067</subfield><subfield code="9">211</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Augsburg</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&amp;doc_library=BVB01&amp;local_base=BVB01&amp;doc_number=015783786&amp;sequence=000002&amp;line_number=0001&amp;func_code=DB_RECORDS&amp;service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-015783786</subfield></datafield></record></collection>
genre 1\p (DE-588)4143389-0 Aufgabensammlung gnd-content
2\p (DE-588)4123623-3 Lehrbuch gnd-content
genre_facet Aufgabensammlung
Lehrbuch
id DE-604.BV022577547
illustrated Illustrated
indexdate 2024-12-23T20:09:04Z
institution BVB
isbn 038795385X
9780387953854
language English
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-015783786
oclc_num 310466378
open_access_boolean
owner DE-19
DE-BY-UBM
DE-20
DE-703
DE-384
DE-355
DE-BY-UBR
DE-634
DE-739
owner_facet DE-19
DE-BY-UBM
DE-20
DE-703
DE-384
DE-355
DE-BY-UBR
DE-634
DE-739
physical XV, 914 S. graph. Darst.
publishDate 2005
publishDateSearch 2005
publishDateSort 2005
publisher Springer
record_format marc
series Graduate texts in mathematics
series2 Graduate texts in mathematics
spellingShingle Lang, Serge 1927-2005
Algebra
Graduate texts in mathematics
Algebra
Algebra (DE-588)4001156-2 gnd
subject_GND (DE-588)4001156-2
(DE-588)4143389-0
(DE-588)4123623-3
title Algebra
title_auth Algebra
title_exact_search Algebra
title_full Algebra Serge Lang
title_fullStr Algebra Serge Lang
title_full_unstemmed Algebra Serge Lang
title_short Algebra
title_sort algebra
topic Algebra
Algebra (DE-588)4001156-2 gnd
topic_facet Algebra
Aufgabensammlung
Lehrbuch
url http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=015783786&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA
volume_link (DE-604)BV000000067
work_keys_str_mv AT langserge algebra