Vibrations and waves in continuous mechanical systems

"Starting from an elementary level, Vibrations and Waves in Continuous Mechanical Systems helps develop a comprehensive understanding of the theory of these systems and the tools with which to analyse them, before progressing to more advanced topics." "Vibrations and Waves in Continuo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Hagedorn, Peter (VerfasserIn), DasGupta, Anirvan (VerfasserIn)
Format: Buch
Sprache:English
Veröffentlicht: Hoboken, NJ Wiley 2007
Chichester John Wiley
Schlagworte:
Online-Zugang:Inhaltsverzeichnis
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nam a2200000 c 4500
001 BV022575953
003 DE-604
005 20100611
007 t
008 070813s2007 d||| |||| 00||| eng d
015 |a GBA739034  |2 dnb 
020 |a 9780470517383  |c (hbk.) : £55.00  |9 978-0-470-51738-3 
035 |a (OCoLC)137221623 
035 |a (DE-599)HBZHT015138710 
040 |a DE-604  |b ger  |e aacr 
041 0 |a eng 
049 |a DE-703  |a DE-91G 
050 0 |a QA808.2 
082 0 |a 620.3  |2 22 
084 |a UF 5000  |0 (DE-625)145595:  |2 rvk 
084 |a MTA 550f  |2 stub 
100 1 |a Hagedorn, Peter  |e Verfasser  |4 aut 
245 1 0 |a Vibrations and waves in continuous mechanical systems  |c Peter Hagedorn ; Anirvan DasGupta 
264 1 |a Hoboken, NJ  |b Wiley  |c 2007 
264 1 |a Chichester  |b John Wiley 
300 |a XIII, 382 S.  |b graph. Darst. 
336 |b txt  |2 rdacontent 
337 |b n  |2 rdamedia 
338 |b nc  |2 rdacarrier 
520 1 |a "Starting from an elementary level, Vibrations and Waves in Continuous Mechanical Systems helps develop a comprehensive understanding of the theory of these systems and the tools with which to analyse them, before progressing to more advanced topics." "Vibrations and Waves in Continuous Mechanical Systems provides a first course on the vibrations of continuous systems that will he suitable for students of continuous system dynamics, at senior undergraduate and graduate levels, in mechanical, civil and aerospace engineering. It will also appeal to researchers developing theory and analysis within the field."--BOOK JACKET. 
650 4 |a Continuum mechanics 
650 4 |a Equations of motion 
650 4 |a Vibration 
650 0 7 |a Mechanische Schwingung  |0 (DE-588)4138305-9  |2 gnd  |9 rswk-swf 
655 7 |0 (DE-588)4123623-3  |a Lehrbuch  |2 gnd-content 
689 0 0 |a Mechanische Schwingung  |0 (DE-588)4138305-9  |D s 
689 0 |5 DE-604 
700 1 |a DasGupta, Anirvan  |e Verfasser  |4 aut 
856 4 2 |m HEBIS Datenaustausch Darmstadt  |q application/pdf  |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=015782222&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA  |3 Inhaltsverzeichnis 
999 |a oai:aleph.bib-bvb.de:BVB01-015782222 

Datensatz im Suchindex

DE-BY-TUM_call_number 0702/MTA 550f 2009 A 7547
DE-BY-TUM_katkey 1707254
DE-BY-TUM_media_number 040071307132
_version_ 1816713005492076544
adam_text VIBRATIONS AND WAVES IN CONTINUOUS MECHANICAL SYSTEMS PETER HAGEDORN TU DARMSTADT, GERMANY ANIRVAN DASGUPTA IIT KHARAGPUR, INDIA BICENTENNIAL JOHN WILEY & SONS, LTD CONTENTS PREFACE XI 1 VIBRATIONS OF STRINGS AND BARS 1 1.1 DYNAMICS OF STRINGS AND BARS: THE NEWTONIAN FORMULATION 1 1.1.1 TRANSVERSE DYNAMICS OF STRINGS 1 1.1.2 LONGITUDINAL DYNAMICS OF BARS 6 1.1.3 TORSIONAL DYNAMICS OF BARS 7 1.2 DYNAMICS OF STRINGS AND BARS: THE VARIATIONAL FORMULATION 9 1.2.1 TRANSVERSE DYNAMICS OF STRINGS 10 1.2.2 LONGITUDINAL DYNAMICS OF BARS 11 1.2.3 TORSIONAL DYNAMICS OF BARS 13 1.3 FREE VIBRATION PROBLEM: BERNOULLI S SOLUTION 14 1.4 MODAL ANALYSIS 18 1.4.1 THE EIGENVALUE PROBLEM *** 18 1.4.2 ORTHOGONALITY OF EIGENFUNCTIONS^ 24 1.4.3 THE EXPANSION THEOREM , 25 1.4.4 SYSTEMS WITH DISCRETE ELEMENTS 27 1.5 THE INITIAL VALUE PROBLEM: SOLUTION USING LAPLACE TRANSFORM 30 1.6 FORCED VIBRATION ANALYSIS 31 1.6.1 HARMONIC FORCING 32 1.6.2 GENERAL FORCING 36 1.7 APPROXIMATE METHODS FOR CONTINUOUS SYSTEMS ** 40 1.7.1 RAYLEIGH METHOD 41 1.7.2 RAYLEIGH-RITZ METHOD 43 1.7.3 RITZ METHOD 44 1.7.4 GALERKIN METHOD 47 1.8 CONTINUOUS SYSTEMS WITH DAMPING 50 1.8.1 SYSTEMS WITH DISTRIBUTED DAMPING 50 1.8.2 SYSTEMS WITH DISCRETE DAMPING 53 1.9 NON-HOMOGENEOUS BOUNDARY CONDITIONS 56 1.10 DYNAMICS OF AXIALLY TRANSLATING STRINGS 57 1.10.1 EQUATION OF MOTION 58 1.10.2 MODAL ANALYSIS AND DISCRETIZATION 58 CONTENTS 1.10.3 INTERACTION WITH DISCRETE ELEMENTS 61 EXERCISES 62 REFERENCES 67 ONE-DIMENSIONAL WAVE EQUATION: D ALEMBERT S SOLUTION 69 2.1 D ALEMBERT S SOLUTION OF THE WAVE EQUATION 69 2.1.1 THE INITIAL VALUE PROBLEM 72 2.1.2 THE INITIAL VALUE PROBLEM: SOLUTION USING FOURIER TRANSFORM 76 2.2 HARMONIC WAVES AND WAVE IMPEDANCE 77 2.3 ENERGETICS OF WAVE MOTION 79 2.4 SCATTERING OF WAVES 83 2.4.1 REFLECTION AT A BOUNDARY 83 2.4.2 SCATTERING AT A FINITE IMPEDANCE 87 2.5 APPLICATIONS OF THE WAVE SOLUTION 93 2.5.1 IMPULSIVE START OF A BAR 93 2.5.2 STEP-FORCING OF A BAR WITH BOUNDARY DAMPING 95 2.5.3 AXIAL COLLISION OF BARS 99 2.5.4 STRING ON A COMPLIANT FOUNDATION 102 2.5.5 AXIALLY TRANSLATING STRING 104 EXERCISES 107 REFERENCES 112 VIBRATIONS OF BEAMS 113 3.1 EQUATION OF MOTION - 113 3.1.1 THE NEWTONIAN FORMULATION 113 3.1.2 THE VARIATIONAL FORMULATION 116 3.1.3 VARIOUS BOUNDARY CONDITIONS FOR A BEAM 118 3.1.4 TAUT STRING AND TENSIONED BEAM 120 3.2 FREE VIBRATION PROBLEM S 121 3.2.1 MODAL ANALYSIS 121 3.2.2 THE INITIAL VALUE PROBLENT 132 3.3 FORCED VIBRATION ANALYSIS 133 3.3.1 EIGENFUNCTION EXPANSION METHOD 134 3.3.2 APPROXIMATE METHODS 135 3.4 NON-HOMOGENEOUS BOUNDARY CONDITIONS & 137 3.5 DISPERSION RELATION AND FLEXURAL WAVES IN A UNIFORM BEAM 138 3.5.1 ENERGY TRANSPORT 140 3.5.2 SCATTERING OF FLEXURAL WAVES 142 3.6 THE TIMOSHENKO BEAM 144 3.6.1 EQUATIONS OF MOTION 144 3.6.2 HARMONIC WAVES AND DISPERSION RELATION 147 3.7 DAMPED VIBRATION OF BEAMS 149 3.8 SPECIAL PROBLEMS IN VIBRATIONS OF BEAMS 151 3.8.1 INFLUENCE OF AXIAL FORCE ON DYNAMIC STABILITY 151 3.8.2 BEAM WITH ECCENTRIC MASS DISTRIBUTION 155 3.8.3 PROBLEMS INVOLVING THE MOTION OF MATERIAL POINTS OF A VIBRATING BEAM 159 CONTENTS VII 3.8.4 DYNAMICS OF ROTATING SHAFTS 163 3.8.5 DYNAMICS OF AXIALLY TRANSLATING BEAMS 165 3.8.6 DYNAMICS OF FLUID-CONVEYING PIPES 168 EXERCISES 171 REFERENCES 178 4 VIBRATIONS OF MEMBRANES 179 4.1 DYNAMICS OF A MEMBRANE 179 4.1.1 NEWTONIAN FORMULATION 179 4.1.2 VARIATIONAL FORMULATION 182 4.2 MODAL ANALYSIS 185 4.2.1 THE RECTANGULAR MEMBRANE 185 4.2.2 THE CIRCULAR MEMBRANE 190 4.3 FORCED VIBRATION ANALYSIS 197 4.4 APPLICATIONS: KETTLEDRUM AND CONDENSER MICROPHONE 197 4.4.1 MODAL ANALYSIS 197 4.4.2 FORCED VIBRATION ANALYSIS 201 4.5 WAVES IN MEMBRANES 202 4.5.1 WAVES IN CARTESIAN COORDINATES 202 4.5.2 WAVES IN POLAR COORDINATES 204 4.5.3 ENERGETICS OF MEMBRANE WAVES 207 4.5.4 INITIAL VALUE PROBLEM FOR INFINITE MEMBRANES 208 4.5.5 REFLECTION OF PLANE WAVES 209 EXERCISES 213 REFERENCES J 214 5 VIBRATIONS OF PLATES 217 5.1 DYNAMICS OF PLATES . 217 5.1.1 NEWTONIAN FORMULATION ^ 217 5.2 VIBRATIONS OF RECTANGULAR PLATES 222 5.2.1 FREE VIBRATIONS - 222 5.2.2 ORTHOGONALITY OF PLATE EIGENFUHCTIONS 228 5.2.3 FORCED VIBRATIONS 229 5.3 VIBRATIONS OF CIRCULAR PLATES 231 5.3.1 FREE VIBRATIONS 231 5.3.2 FORCED VIBRATIONS ^ 234 5.4 WAVES IN PLATES 236 5.5 PLATES WITH VARYING THICKNESS 238 EXERCISES 239 REFERENCES 241 6 BOUNDARY VALUE AND EIGENVALUE PROBLEMS IN VIBRATIONS 243 6.1 SELF-ADJOINT OPERATORS AND EIGENVALUE PROBLEMS FOR UNDAMPED FREE VIBRATIONS 243 6.1.1 GENERAL PROPERTIES AND EXPANSION THEOREM 243 6.1.2 GREEN S FUNCTIONS AND INTEGRAL FORMULATION OF EIGENVALUE PROBLEMS 252 6.1.3 BOUNDS FOR EIGENVALUES: RAYLEIGH S QUOTIENT AND OTHER METHODS 255 6.2 FORCED VIBRATIONS 259 VIII CONTENTS 6.2.1 EQUATIONS OF MOTION 259 6.2.2 GREEN S FUNCTION FOR INHOMOGENEOUS VIBRATION PROBLEMS 260 6.3 SOME DISCRETIZATION METHODS FOR FREE AND FORCED VIBRATIONS 261 6.3.1 EXPANSION IN FUNCTION SERIES 261 6.3.2 THE COLLOCATION METHOD 262 6.3.3 THE METHOD OF SUBDOMAINS 266 6.3.4 GALERKIN S METHOD 267 6.3.5 THE RAYLEIGH-RITZ METHOD 269 6.3.6 THE FINITE-ELEMENT METHOD 272 REFERENCES 288 7 WAVES IN FLUIDS 289 7.1 ACOUSTIC WAVES IN FLUIDS 289 7.1.1 THE ACOUSTIC WAVE EQUATION 289 7.1.2 PLANAR ACOUSTIC WAVES 294 7.1.3 ENERGETICS OF PLANAR ACOUSTIC WAVES 295 7.1.4 REFLECTION AND REFRACTION OF PLANAR ACOUSTIC WAVES 297 7.1.5 SPHERICAL WAVES 300 7.1.6 CYLINDRICAL WAVES 305 7.1.7 ACOUSTIC RADIATION FROM MEMBRANES AND PLATES 307 7.1.8 WAVES IN WAVE GUIDES 314 7.1.9 ACOUSTIC WAVES IN A SLIGHTLY VISCOUS FLUID 318 7.2 SURFACE WAVES IN INCOMPRESSIBLE LIQUIDS 320 7.2.1 DYNAMICS OF SURFACE WAVES 320 7.2.2 SLOSHING 6F LIQUIDS IN TANKS 323 7.2.3 SURFACE WAVES IN A CHANNEL 330 EXERCISES 334 REFERENCES * 337 8 WAVES IN ELASTIC CONTINUA ? . 339 8.1 EQUATIONS OF MOTION V 339 8.2 PLANE ELASTIC WAVES IN UNBOUNDED CONTINUA . 344 8.3 ENERGETICS OF ELASTIC WAVES 346 8.4 REFLECTION OF ELASTIC WAVES 348 8.4.1 REFLECTION FROM A FREE BOUNDARY 349 8.5 RAYLEIGH SURFACE WAVES 35 3 8.6 REFLECTION AND REFRACTION OF PLANAR ACOUSTIC WAVES 357 EXERCISES 359 REFERENCES 361 A THE VARIATIONAL FORMULATION OF DYNAMICS 363 REFERENCES 365 B HARMONIC WAVES AND DISPERSION RELATION 367 B.I FOURIER REPRESENTATION AND HARMONIC WAVES 367 B.2 PHASE VELOCITY AND GROUP VELOCITY 369 REFERENCES 372 CONTENTS C VARIATIONAL FORMULATION FOR DYNAMICS OF PLATES 373 REFERENCES 378 INDEX 379
adam_txt VIBRATIONS AND WAVES IN CONTINUOUS MECHANICAL SYSTEMS PETER HAGEDORN TU DARMSTADT, GERMANY ANIRVAN DASGUPTA IIT KHARAGPUR, INDIA BICENTENNIAL JOHN WILEY & SONS, LTD CONTENTS PREFACE XI 1 VIBRATIONS OF STRINGS AND BARS 1 1.1 DYNAMICS OF STRINGS AND BARS: THE NEWTONIAN FORMULATION 1 1.1.1 TRANSVERSE DYNAMICS OF STRINGS 1 1.1.2 LONGITUDINAL DYNAMICS OF BARS 6 1.1.3 TORSIONAL DYNAMICS OF BARS 7 1.2 DYNAMICS OF STRINGS AND BARS: THE VARIATIONAL FORMULATION 9 1.2.1 TRANSVERSE DYNAMICS OF STRINGS 10 1.2.2 LONGITUDINAL DYNAMICS OF BARS 11 1.2.3 TORSIONAL DYNAMICS OF BARS 13 1.3 FREE VIBRATION PROBLEM: BERNOULLI'S SOLUTION 14 1.4 MODAL ANALYSIS 18 1.4.1 THE EIGENVALUE PROBLEM *** 18 1.4.2 ORTHOGONALITY OF EIGENFUNCTIONS^ 24 1.4.3 THE EXPANSION THEOREM , ' 25 1.4.4 SYSTEMS WITH DISCRETE ELEMENTS 27 1.5 THE INITIAL VALUE PROBLEM: SOLUTION USING LAPLACE TRANSFORM 30 1.6 FORCED VIBRATION ANALYSIS 31 1.6.1 HARMONIC FORCING 32 1.6.2 GENERAL FORCING 36 1.7 APPROXIMATE METHODS FOR CONTINUOUS SYSTEMS ** 40 1.7.1 RAYLEIGH METHOD 41 1.7.2 RAYLEIGH-RITZ METHOD 43 1.7.3 RITZ METHOD 44 1.7.4 GALERKIN METHOD 47 1.8 CONTINUOUS SYSTEMS WITH DAMPING 50 1.8.1 SYSTEMS WITH DISTRIBUTED DAMPING 50 1.8.2 SYSTEMS WITH DISCRETE DAMPING 53 1.9 NON-HOMOGENEOUS BOUNDARY CONDITIONS 56 1.10 DYNAMICS OF AXIALLY TRANSLATING STRINGS 57 1.10.1 EQUATION OF MOTION 58 1.10.2 MODAL ANALYSIS AND DISCRETIZATION 58 CONTENTS 1.10.3 INTERACTION WITH DISCRETE ELEMENTS 61 EXERCISES 62 REFERENCES 67 ONE-DIMENSIONAL WAVE EQUATION: D'ALEMBERT'S SOLUTION 69 2.1 D'ALEMBERT'S SOLUTION OF THE WAVE EQUATION 69 2.1.1 THE INITIAL VALUE PROBLEM 72 2.1.2 THE INITIAL VALUE PROBLEM: SOLUTION USING FOURIER TRANSFORM 76 2.2 HARMONIC WAVES AND WAVE IMPEDANCE 77 2.3 ENERGETICS OF WAVE MOTION 79 2.4 SCATTERING OF WAVES 83 2.4.1 REFLECTION AT A BOUNDARY 83 2.4.2 SCATTERING AT A FINITE IMPEDANCE 87 2.5 APPLICATIONS OF THE WAVE SOLUTION 93 2.5.1 IMPULSIVE START OF A BAR 93 2.5.2 STEP-FORCING OF A BAR WITH BOUNDARY DAMPING 95 2.5.3 AXIAL COLLISION OF BARS 99 2.5.4 STRING ON A COMPLIANT FOUNDATION 102 2.5.5 AXIALLY TRANSLATING STRING 104 EXERCISES 107 REFERENCES 112 VIBRATIONS OF BEAMS 113 3.1 EQUATION OF MOTION - 113 3.1.1 THE NEWTONIAN FORMULATION 113 3.1.2 THE VARIATIONAL FORMULATION 116 3.1.3 VARIOUS BOUNDARY CONDITIONS FOR A BEAM 118 3.1.4 TAUT STRING AND TENSIONED BEAM ' 120 3.2 FREE VIBRATION PROBLEM S 121 3.2.1 MODAL ANALYSIS ' 121 3.2.2 THE INITIAL VALUE PROBLENT 132 3.3 FORCED VIBRATION ANALYSIS 133 3.3.1 EIGENFUNCTION EXPANSION METHOD 134 3.3.2 APPROXIMATE METHODS 135 3.4 NON-HOMOGENEOUS BOUNDARY CONDITIONS & 137 3.5 DISPERSION RELATION AND FLEXURAL WAVES IN A UNIFORM BEAM 138 3.5.1 ENERGY TRANSPORT 140 3.5.2 SCATTERING OF FLEXURAL WAVES 142 3.6 THE TIMOSHENKO BEAM 144 3.6.1 EQUATIONS OF MOTION 144 3.6.2 HARMONIC WAVES AND DISPERSION RELATION 147 3.7 DAMPED VIBRATION OF BEAMS 149 3.8 SPECIAL PROBLEMS IN VIBRATIONS OF BEAMS 151 3.8.1 INFLUENCE OF AXIAL FORCE ON DYNAMIC STABILITY 151 3.8.2 BEAM WITH ECCENTRIC MASS DISTRIBUTION 155 3.8.3 PROBLEMS INVOLVING THE MOTION OF MATERIAL POINTS OF A VIBRATING BEAM 159 CONTENTS VII 3.8.4 DYNAMICS OF ROTATING SHAFTS 163 3.8.5 DYNAMICS OF AXIALLY TRANSLATING BEAMS 165 3.8.6 DYNAMICS OF FLUID-CONVEYING PIPES 168 EXERCISES 171 REFERENCES 178 4 VIBRATIONS OF MEMBRANES 179 4.1 DYNAMICS OF A MEMBRANE 179 4.1.1 NEWTONIAN FORMULATION 179 4.1.2 VARIATIONAL FORMULATION 182 4.2 MODAL ANALYSIS 185 4.2.1 THE RECTANGULAR MEMBRANE 185 4.2.2 THE CIRCULAR MEMBRANE 190 4.3 FORCED VIBRATION ANALYSIS 197 4.4 APPLICATIONS: KETTLEDRUM AND CONDENSER MICROPHONE 197 4.4.1 MODAL ANALYSIS 197 4.4.2 FORCED VIBRATION ANALYSIS 201 4.5 WAVES IN MEMBRANES 202 4.5.1 WAVES IN CARTESIAN COORDINATES 202 4.5.2 WAVES IN POLAR COORDINATES 204 4.5.3 ENERGETICS OF MEMBRANE WAVES 207 4.5.4 INITIAL VALUE PROBLEM FOR INFINITE MEMBRANES 208 4.5.5 REFLECTION OF PLANE WAVES 209 EXERCISES 213 REFERENCES J 214 5 VIBRATIONS OF PLATES 217 5.1 DYNAMICS OF PLATES . 217 5.1.1 NEWTONIAN FORMULATION ^' 217 5.2 VIBRATIONS OF RECTANGULAR PLATES ' 222 5.2.1 FREE VIBRATIONS ' -' 222 5.2.2 ORTHOGONALITY OF PLATE EIGENFUHCTIONS 228 5.2.3 FORCED VIBRATIONS " 229 5.3 VIBRATIONS OF CIRCULAR PLATES 231 5.3.1 FREE VIBRATIONS 231 5.3.2 FORCED VIBRATIONS ^ 234 5.4 WAVES IN PLATES 236 5.5 PLATES WITH VARYING THICKNESS 238 EXERCISES 239 REFERENCES 241 6 BOUNDARY VALUE AND EIGENVALUE PROBLEMS IN VIBRATIONS 243 6.1 SELF-ADJOINT OPERATORS AND EIGENVALUE PROBLEMS FOR UNDAMPED FREE VIBRATIONS 243 6.1.1 GENERAL PROPERTIES AND EXPANSION THEOREM 243 6.1.2 GREEN'S FUNCTIONS AND INTEGRAL FORMULATION OF EIGENVALUE PROBLEMS 252 6.1.3 BOUNDS FOR EIGENVALUES: RAYLEIGH'S QUOTIENT AND OTHER METHODS 255 6.2 FORCED VIBRATIONS 259 VIII CONTENTS 6.2.1 EQUATIONS OF MOTION 259 6.2.2 GREEN'S FUNCTION FOR INHOMOGENEOUS VIBRATION PROBLEMS 260 6.3 SOME DISCRETIZATION METHODS FOR FREE AND FORCED VIBRATIONS 261 6.3.1 EXPANSION IN FUNCTION SERIES 261 6.3.2 THE COLLOCATION METHOD 262 6.3.3 THE METHOD OF SUBDOMAINS 266 6.3.4 GALERKIN'S METHOD 267 6.3.5 THE RAYLEIGH-RITZ METHOD 269 6.3.6 THE FINITE-ELEMENT METHOD 272 REFERENCES 288 7 WAVES IN FLUIDS 289 7.1 ACOUSTIC WAVES IN FLUIDS 289 7.1.1 THE ACOUSTIC WAVE EQUATION 289 7.1.2 PLANAR ACOUSTIC WAVES 294 7.1.3 ENERGETICS OF PLANAR ACOUSTIC WAVES 295 7.1.4 REFLECTION AND REFRACTION OF PLANAR ACOUSTIC WAVES 297 7.1.5 SPHERICAL WAVES 300 7.1.6 CYLINDRICAL WAVES 305 7.1.7 ACOUSTIC RADIATION FROM MEMBRANES AND PLATES 307 7.1.8 WAVES IN WAVE GUIDES 314 7.1.9 ACOUSTIC WAVES IN A SLIGHTLY VISCOUS FLUID 318 7.2 SURFACE WAVES IN INCOMPRESSIBLE LIQUIDS 320 7.2.1 DYNAMICS OF SURFACE WAVES 320 7.2.2 SLOSHING 6F LIQUIDS IN TANKS 323 7.2.3 SURFACE WAVES IN A CHANNEL 330 EXERCISES 334 REFERENCES ' * 337 8 WAVES IN ELASTIC CONTINUA ? '. 339 8.1 EQUATIONS OF MOTION V 339 8.2 PLANE ELASTIC WAVES IN UNBOUNDED CONTINUA . 344 8.3 ENERGETICS OF ELASTIC WAVES 346 8.4 REFLECTION OF ELASTIC WAVES 348 8.4.1 REFLECTION FROM A FREE BOUNDARY 349 8.5 RAYLEIGH SURFACE WAVES " 35 3 8.6 REFLECTION AND REFRACTION OF PLANAR ACOUSTIC WAVES 357 EXERCISES 359 REFERENCES 361 A THE VARIATIONAL FORMULATION OF DYNAMICS 363 REFERENCES 365 B HARMONIC WAVES AND DISPERSION RELATION 367 B.I FOURIER REPRESENTATION AND HARMONIC WAVES 367 B.2 PHASE VELOCITY AND GROUP VELOCITY 369 REFERENCES 372 CONTENTS C VARIATIONAL FORMULATION FOR DYNAMICS OF PLATES 373 REFERENCES 378 INDEX 379
any_adam_object 1
any_adam_object_boolean 1
author Hagedorn, Peter
DasGupta, Anirvan
author_facet Hagedorn, Peter
DasGupta, Anirvan
author_role aut
aut
author_sort Hagedorn, Peter
author_variant p h ph
a d ad
building Verbundindex
bvnumber BV022575953
callnumber-first Q - Science
callnumber-label QA808
callnumber-raw QA808.2
callnumber-search QA808.2
callnumber-sort QA 3808.2
callnumber-subject QA - Mathematics
classification_rvk UF 5000
classification_tum MTA 550f
ctrlnum (OCoLC)137221623
(DE-599)HBZHT015138710
dewey-full 620.3
dewey-hundreds 600 - Technology (Applied sciences)
dewey-ones 620 - Engineering and allied operations
dewey-raw 620.3
dewey-search 620.3
dewey-sort 3620.3
dewey-tens 620 - Engineering and allied operations
discipline Physik
discipline_str_mv Physik
format Book
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02232nam a2200445 c 4500</leader><controlfield tag="001">BV022575953</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20100611 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">070813s2007 d||| |||| 00||| eng d</controlfield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">GBA739034</subfield><subfield code="2">dnb</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780470517383</subfield><subfield code="c">(hbk.) : £55.00</subfield><subfield code="9">978-0-470-51738-3</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)137221623</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)HBZHT015138710</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-703</subfield><subfield code="a">DE-91G</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA808.2</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">620.3</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UF 5000</subfield><subfield code="0">(DE-625)145595:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MTA 550f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Hagedorn, Peter</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Vibrations and waves in continuous mechanical systems</subfield><subfield code="c">Peter Hagedorn ; Anirvan DasGupta</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Hoboken, NJ</subfield><subfield code="b">Wiley</subfield><subfield code="c">2007</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Chichester</subfield><subfield code="b">John Wiley</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XIII, 382 S.</subfield><subfield code="b">graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1="1" ind2=" "><subfield code="a">"Starting from an elementary level, Vibrations and Waves in Continuous Mechanical Systems helps develop a comprehensive understanding of the theory of these systems and the tools with which to analyse them, before progressing to more advanced topics." "Vibrations and Waves in Continuous Mechanical Systems provides a first course on the vibrations of continuous systems that will he suitable for students of continuous system dynamics, at senior undergraduate and graduate levels, in mechanical, civil and aerospace engineering. It will also appeal to researchers developing theory and analysis within the field."--BOOK JACKET.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Continuum mechanics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Equations of motion</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Vibration</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mechanische Schwingung</subfield><subfield code="0">(DE-588)4138305-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="0">(DE-588)4123623-3</subfield><subfield code="a">Lehrbuch</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Mechanische Schwingung</subfield><subfield code="0">(DE-588)4138305-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">DasGupta, Anirvan</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HEBIS Datenaustausch Darmstadt</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&amp;doc_library=BVB01&amp;local_base=BVB01&amp;doc_number=015782222&amp;sequence=000001&amp;line_number=0001&amp;func_code=DB_RECORDS&amp;service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-015782222</subfield></datafield></record></collection>
genre (DE-588)4123623-3 Lehrbuch gnd-content
genre_facet Lehrbuch
id DE-604.BV022575953
illustrated Illustrated
index_date 2024-07-02T18:15:02Z
indexdate 2024-11-25T17:26:05Z
institution BVB
isbn 9780470517383
language English
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-015782222
oclc_num 137221623
open_access_boolean
owner DE-703
DE-91G
DE-BY-TUM
owner_facet DE-703
DE-91G
DE-BY-TUM
physical XIII, 382 S. graph. Darst.
publishDate 2007
publishDateSearch 2007
publishDateSort 2007
publisher Wiley
John Wiley
record_format marc
spellingShingle Hagedorn, Peter
DasGupta, Anirvan
Vibrations and waves in continuous mechanical systems
Continuum mechanics
Equations of motion
Vibration
Mechanische Schwingung (DE-588)4138305-9 gnd
subject_GND (DE-588)4138305-9
(DE-588)4123623-3
title Vibrations and waves in continuous mechanical systems
title_auth Vibrations and waves in continuous mechanical systems
title_exact_search Vibrations and waves in continuous mechanical systems
title_exact_search_txtP Vibrations and waves in continuous mechanical systems
title_full Vibrations and waves in continuous mechanical systems Peter Hagedorn ; Anirvan DasGupta
title_fullStr Vibrations and waves in continuous mechanical systems Peter Hagedorn ; Anirvan DasGupta
title_full_unstemmed Vibrations and waves in continuous mechanical systems Peter Hagedorn ; Anirvan DasGupta
title_short Vibrations and waves in continuous mechanical systems
title_sort vibrations and waves in continuous mechanical systems
topic Continuum mechanics
Equations of motion
Vibration
Mechanische Schwingung (DE-588)4138305-9 gnd
topic_facet Continuum mechanics
Equations of motion
Vibration
Mechanische Schwingung
Lehrbuch
url http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=015782222&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA
work_keys_str_mv AT hagedornpeter vibrationsandwavesincontinuousmechanicalsystems
AT dasguptaanirvan vibrationsandwavesincontinuousmechanicalsystems