Vibrations and waves in continuous mechanical systems
"Starting from an elementary level, Vibrations and Waves in Continuous Mechanical Systems helps develop a comprehensive understanding of the theory of these systems and the tools with which to analyse them, before progressing to more advanced topics." "Vibrations and Waves in Continuo...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Hoboken, NJ
Wiley
2007
Chichester John Wiley |
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV022575953 | ||
003 | DE-604 | ||
005 | 20100611 | ||
007 | t | ||
008 | 070813s2007 d||| |||| 00||| eng d | ||
015 | |a GBA739034 |2 dnb | ||
020 | |a 9780470517383 |c (hbk.) : £55.00 |9 978-0-470-51738-3 | ||
035 | |a (OCoLC)137221623 | ||
035 | |a (DE-599)HBZHT015138710 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-703 |a DE-91G | ||
050 | 0 | |a QA808.2 | |
082 | 0 | |a 620.3 |2 22 | |
084 | |a UF 5000 |0 (DE-625)145595: |2 rvk | ||
084 | |a MTA 550f |2 stub | ||
100 | 1 | |a Hagedorn, Peter |e Verfasser |4 aut | |
245 | 1 | 0 | |a Vibrations and waves in continuous mechanical systems |c Peter Hagedorn ; Anirvan DasGupta |
264 | 1 | |a Hoboken, NJ |b Wiley |c 2007 | |
264 | 1 | |a Chichester |b John Wiley | |
300 | |a XIII, 382 S. |b graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
520 | 1 | |a "Starting from an elementary level, Vibrations and Waves in Continuous Mechanical Systems helps develop a comprehensive understanding of the theory of these systems and the tools with which to analyse them, before progressing to more advanced topics." "Vibrations and Waves in Continuous Mechanical Systems provides a first course on the vibrations of continuous systems that will he suitable for students of continuous system dynamics, at senior undergraduate and graduate levels, in mechanical, civil and aerospace engineering. It will also appeal to researchers developing theory and analysis within the field."--BOOK JACKET. | |
650 | 4 | |a Continuum mechanics | |
650 | 4 | |a Equations of motion | |
650 | 4 | |a Vibration | |
650 | 0 | 7 | |a Mechanische Schwingung |0 (DE-588)4138305-9 |2 gnd |9 rswk-swf |
655 | 7 | |0 (DE-588)4123623-3 |a Lehrbuch |2 gnd-content | |
689 | 0 | 0 | |a Mechanische Schwingung |0 (DE-588)4138305-9 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a DasGupta, Anirvan |e Verfasser |4 aut | |
856 | 4 | 2 | |m HEBIS Datenaustausch Darmstadt |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=015782222&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-015782222 |
Datensatz im Suchindex
DE-BY-TUM_call_number | 0702/MTA 550f 2009 A 7547 |
---|---|
DE-BY-TUM_katkey | 1707254 |
DE-BY-TUM_media_number | 040071307132 |
_version_ | 1816713005492076544 |
adam_text | VIBRATIONS AND WAVES IN CONTINUOUS MECHANICAL SYSTEMS PETER HAGEDORN TU
DARMSTADT, GERMANY ANIRVAN DASGUPTA IIT KHARAGPUR, INDIA BICENTENNIAL
JOHN WILEY & SONS, LTD CONTENTS PREFACE XI 1 VIBRATIONS OF STRINGS AND
BARS 1 1.1 DYNAMICS OF STRINGS AND BARS: THE NEWTONIAN FORMULATION 1
1.1.1 TRANSVERSE DYNAMICS OF STRINGS 1 1.1.2 LONGITUDINAL DYNAMICS OF
BARS 6 1.1.3 TORSIONAL DYNAMICS OF BARS 7 1.2 DYNAMICS OF STRINGS AND
BARS: THE VARIATIONAL FORMULATION 9 1.2.1 TRANSVERSE DYNAMICS OF STRINGS
10 1.2.2 LONGITUDINAL DYNAMICS OF BARS 11 1.2.3 TORSIONAL DYNAMICS OF
BARS 13 1.3 FREE VIBRATION PROBLEM: BERNOULLI S SOLUTION 14 1.4 MODAL
ANALYSIS 18 1.4.1 THE EIGENVALUE PROBLEM *** 18 1.4.2 ORTHOGONALITY OF
EIGENFUNCTIONS^ 24 1.4.3 THE EXPANSION THEOREM , 25 1.4.4 SYSTEMS WITH
DISCRETE ELEMENTS 27 1.5 THE INITIAL VALUE PROBLEM: SOLUTION USING
LAPLACE TRANSFORM 30 1.6 FORCED VIBRATION ANALYSIS 31 1.6.1 HARMONIC
FORCING 32 1.6.2 GENERAL FORCING 36 1.7 APPROXIMATE METHODS FOR
CONTINUOUS SYSTEMS ** 40 1.7.1 RAYLEIGH METHOD 41 1.7.2 RAYLEIGH-RITZ
METHOD 43 1.7.3 RITZ METHOD 44 1.7.4 GALERKIN METHOD 47 1.8 CONTINUOUS
SYSTEMS WITH DAMPING 50 1.8.1 SYSTEMS WITH DISTRIBUTED DAMPING 50 1.8.2
SYSTEMS WITH DISCRETE DAMPING 53 1.9 NON-HOMOGENEOUS BOUNDARY CONDITIONS
56 1.10 DYNAMICS OF AXIALLY TRANSLATING STRINGS 57 1.10.1 EQUATION OF
MOTION 58 1.10.2 MODAL ANALYSIS AND DISCRETIZATION 58 CONTENTS 1.10.3
INTERACTION WITH DISCRETE ELEMENTS 61 EXERCISES 62 REFERENCES 67
ONE-DIMENSIONAL WAVE EQUATION: D ALEMBERT S SOLUTION 69 2.1 D ALEMBERT S
SOLUTION OF THE WAVE EQUATION 69 2.1.1 THE INITIAL VALUE PROBLEM 72
2.1.2 THE INITIAL VALUE PROBLEM: SOLUTION USING FOURIER TRANSFORM 76 2.2
HARMONIC WAVES AND WAVE IMPEDANCE 77 2.3 ENERGETICS OF WAVE MOTION 79
2.4 SCATTERING OF WAVES 83 2.4.1 REFLECTION AT A BOUNDARY 83 2.4.2
SCATTERING AT A FINITE IMPEDANCE 87 2.5 APPLICATIONS OF THE WAVE
SOLUTION 93 2.5.1 IMPULSIVE START OF A BAR 93 2.5.2 STEP-FORCING OF A
BAR WITH BOUNDARY DAMPING 95 2.5.3 AXIAL COLLISION OF BARS 99 2.5.4
STRING ON A COMPLIANT FOUNDATION 102 2.5.5 AXIALLY TRANSLATING STRING
104 EXERCISES 107 REFERENCES 112 VIBRATIONS OF BEAMS 113 3.1 EQUATION OF
MOTION - 113 3.1.1 THE NEWTONIAN FORMULATION 113 3.1.2 THE VARIATIONAL
FORMULATION 116 3.1.3 VARIOUS BOUNDARY CONDITIONS FOR A BEAM 118 3.1.4
TAUT STRING AND TENSIONED BEAM 120 3.2 FREE VIBRATION PROBLEM S 121
3.2.1 MODAL ANALYSIS 121 3.2.2 THE INITIAL VALUE PROBLENT 132 3.3
FORCED VIBRATION ANALYSIS 133 3.3.1 EIGENFUNCTION EXPANSION METHOD 134
3.3.2 APPROXIMATE METHODS 135 3.4 NON-HOMOGENEOUS BOUNDARY CONDITIONS &
137 3.5 DISPERSION RELATION AND FLEXURAL WAVES IN A UNIFORM BEAM 138
3.5.1 ENERGY TRANSPORT 140 3.5.2 SCATTERING OF FLEXURAL WAVES 142 3.6
THE TIMOSHENKO BEAM 144 3.6.1 EQUATIONS OF MOTION 144 3.6.2 HARMONIC
WAVES AND DISPERSION RELATION 147 3.7 DAMPED VIBRATION OF BEAMS 149 3.8
SPECIAL PROBLEMS IN VIBRATIONS OF BEAMS 151 3.8.1 INFLUENCE OF AXIAL
FORCE ON DYNAMIC STABILITY 151 3.8.2 BEAM WITH ECCENTRIC MASS
DISTRIBUTION 155 3.8.3 PROBLEMS INVOLVING THE MOTION OF MATERIAL POINTS
OF A VIBRATING BEAM 159 CONTENTS VII 3.8.4 DYNAMICS OF ROTATING SHAFTS
163 3.8.5 DYNAMICS OF AXIALLY TRANSLATING BEAMS 165 3.8.6 DYNAMICS OF
FLUID-CONVEYING PIPES 168 EXERCISES 171 REFERENCES 178 4 VIBRATIONS OF
MEMBRANES 179 4.1 DYNAMICS OF A MEMBRANE 179 4.1.1 NEWTONIAN FORMULATION
179 4.1.2 VARIATIONAL FORMULATION 182 4.2 MODAL ANALYSIS 185 4.2.1 THE
RECTANGULAR MEMBRANE 185 4.2.2 THE CIRCULAR MEMBRANE 190 4.3 FORCED
VIBRATION ANALYSIS 197 4.4 APPLICATIONS: KETTLEDRUM AND CONDENSER
MICROPHONE 197 4.4.1 MODAL ANALYSIS 197 4.4.2 FORCED VIBRATION ANALYSIS
201 4.5 WAVES IN MEMBRANES 202 4.5.1 WAVES IN CARTESIAN COORDINATES 202
4.5.2 WAVES IN POLAR COORDINATES 204 4.5.3 ENERGETICS OF MEMBRANE WAVES
207 4.5.4 INITIAL VALUE PROBLEM FOR INFINITE MEMBRANES 208 4.5.5
REFLECTION OF PLANE WAVES 209 EXERCISES 213 REFERENCES J 214 5
VIBRATIONS OF PLATES 217 5.1 DYNAMICS OF PLATES . 217 5.1.1 NEWTONIAN
FORMULATION ^ 217 5.2 VIBRATIONS OF RECTANGULAR PLATES 222 5.2.1 FREE
VIBRATIONS - 222 5.2.2 ORTHOGONALITY OF PLATE EIGENFUHCTIONS 228
5.2.3 FORCED VIBRATIONS 229 5.3 VIBRATIONS OF CIRCULAR PLATES 231
5.3.1 FREE VIBRATIONS 231 5.3.2 FORCED VIBRATIONS ^ 234 5.4 WAVES IN
PLATES 236 5.5 PLATES WITH VARYING THICKNESS 238 EXERCISES 239
REFERENCES 241 6 BOUNDARY VALUE AND EIGENVALUE PROBLEMS IN VIBRATIONS
243 6.1 SELF-ADJOINT OPERATORS AND EIGENVALUE PROBLEMS FOR UNDAMPED FREE
VIBRATIONS 243 6.1.1 GENERAL PROPERTIES AND EXPANSION THEOREM 243 6.1.2
GREEN S FUNCTIONS AND INTEGRAL FORMULATION OF EIGENVALUE PROBLEMS 252
6.1.3 BOUNDS FOR EIGENVALUES: RAYLEIGH S QUOTIENT AND OTHER METHODS 255
6.2 FORCED VIBRATIONS 259 VIII CONTENTS 6.2.1 EQUATIONS OF MOTION 259
6.2.2 GREEN S FUNCTION FOR INHOMOGENEOUS VIBRATION PROBLEMS 260 6.3 SOME
DISCRETIZATION METHODS FOR FREE AND FORCED VIBRATIONS 261 6.3.1
EXPANSION IN FUNCTION SERIES 261 6.3.2 THE COLLOCATION METHOD 262 6.3.3
THE METHOD OF SUBDOMAINS 266 6.3.4 GALERKIN S METHOD 267 6.3.5 THE
RAYLEIGH-RITZ METHOD 269 6.3.6 THE FINITE-ELEMENT METHOD 272 REFERENCES
288 7 WAVES IN FLUIDS 289 7.1 ACOUSTIC WAVES IN FLUIDS 289 7.1.1 THE
ACOUSTIC WAVE EQUATION 289 7.1.2 PLANAR ACOUSTIC WAVES 294 7.1.3
ENERGETICS OF PLANAR ACOUSTIC WAVES 295 7.1.4 REFLECTION AND REFRACTION
OF PLANAR ACOUSTIC WAVES 297 7.1.5 SPHERICAL WAVES 300 7.1.6 CYLINDRICAL
WAVES 305 7.1.7 ACOUSTIC RADIATION FROM MEMBRANES AND PLATES 307 7.1.8
WAVES IN WAVE GUIDES 314 7.1.9 ACOUSTIC WAVES IN A SLIGHTLY VISCOUS
FLUID 318 7.2 SURFACE WAVES IN INCOMPRESSIBLE LIQUIDS 320 7.2.1 DYNAMICS
OF SURFACE WAVES 320 7.2.2 SLOSHING 6F LIQUIDS IN TANKS 323 7.2.3
SURFACE WAVES IN A CHANNEL 330 EXERCISES 334 REFERENCES * 337 8 WAVES
IN ELASTIC CONTINUA ? . 339 8.1 EQUATIONS OF MOTION V 339 8.2 PLANE
ELASTIC WAVES IN UNBOUNDED CONTINUA . 344 8.3 ENERGETICS OF ELASTIC
WAVES 346 8.4 REFLECTION OF ELASTIC WAVES 348 8.4.1 REFLECTION FROM A
FREE BOUNDARY 349 8.5 RAYLEIGH SURFACE WAVES 35 3 8.6 REFLECTION AND
REFRACTION OF PLANAR ACOUSTIC WAVES 357 EXERCISES 359 REFERENCES 361 A
THE VARIATIONAL FORMULATION OF DYNAMICS 363 REFERENCES 365 B HARMONIC
WAVES AND DISPERSION RELATION 367 B.I FOURIER REPRESENTATION AND
HARMONIC WAVES 367 B.2 PHASE VELOCITY AND GROUP VELOCITY 369 REFERENCES
372 CONTENTS C VARIATIONAL FORMULATION FOR DYNAMICS OF PLATES 373
REFERENCES 378 INDEX 379
|
adam_txt |
VIBRATIONS AND WAVES IN CONTINUOUS MECHANICAL SYSTEMS PETER HAGEDORN TU
DARMSTADT, GERMANY ANIRVAN DASGUPTA IIT KHARAGPUR, INDIA BICENTENNIAL
JOHN WILEY & SONS, LTD CONTENTS PREFACE XI 1 VIBRATIONS OF STRINGS AND
BARS 1 1.1 DYNAMICS OF STRINGS AND BARS: THE NEWTONIAN FORMULATION 1
1.1.1 TRANSVERSE DYNAMICS OF STRINGS 1 1.1.2 LONGITUDINAL DYNAMICS OF
BARS 6 1.1.3 TORSIONAL DYNAMICS OF BARS 7 1.2 DYNAMICS OF STRINGS AND
BARS: THE VARIATIONAL FORMULATION 9 1.2.1 TRANSVERSE DYNAMICS OF STRINGS
10 1.2.2 LONGITUDINAL DYNAMICS OF BARS 11 1.2.3 TORSIONAL DYNAMICS OF
BARS 13 1.3 FREE VIBRATION PROBLEM: BERNOULLI'S SOLUTION 14 1.4 MODAL
ANALYSIS 18 1.4.1 THE EIGENVALUE PROBLEM *** 18 1.4.2 ORTHOGONALITY OF
EIGENFUNCTIONS^ 24 1.4.3 THE EXPANSION THEOREM , ' 25 1.4.4 SYSTEMS WITH
DISCRETE ELEMENTS 27 1.5 THE INITIAL VALUE PROBLEM: SOLUTION USING
LAPLACE TRANSFORM 30 1.6 FORCED VIBRATION ANALYSIS 31 1.6.1 HARMONIC
FORCING 32 1.6.2 GENERAL FORCING 36 1.7 APPROXIMATE METHODS FOR
CONTINUOUS SYSTEMS ** 40 1.7.1 RAYLEIGH METHOD 41 1.7.2 RAYLEIGH-RITZ
METHOD 43 1.7.3 RITZ METHOD 44 1.7.4 GALERKIN METHOD 47 1.8 CONTINUOUS
SYSTEMS WITH DAMPING 50 1.8.1 SYSTEMS WITH DISTRIBUTED DAMPING 50 1.8.2
SYSTEMS WITH DISCRETE DAMPING 53 1.9 NON-HOMOGENEOUS BOUNDARY CONDITIONS
56 1.10 DYNAMICS OF AXIALLY TRANSLATING STRINGS 57 1.10.1 EQUATION OF
MOTION 58 1.10.2 MODAL ANALYSIS AND DISCRETIZATION 58 CONTENTS 1.10.3
INTERACTION WITH DISCRETE ELEMENTS 61 EXERCISES 62 REFERENCES 67
ONE-DIMENSIONAL WAVE EQUATION: D'ALEMBERT'S SOLUTION 69 2.1 D'ALEMBERT'S
SOLUTION OF THE WAVE EQUATION 69 2.1.1 THE INITIAL VALUE PROBLEM 72
2.1.2 THE INITIAL VALUE PROBLEM: SOLUTION USING FOURIER TRANSFORM 76 2.2
HARMONIC WAVES AND WAVE IMPEDANCE 77 2.3 ENERGETICS OF WAVE MOTION 79
2.4 SCATTERING OF WAVES 83 2.4.1 REFLECTION AT A BOUNDARY 83 2.4.2
SCATTERING AT A FINITE IMPEDANCE 87 2.5 APPLICATIONS OF THE WAVE
SOLUTION 93 2.5.1 IMPULSIVE START OF A BAR 93 2.5.2 STEP-FORCING OF A
BAR WITH BOUNDARY DAMPING 95 2.5.3 AXIAL COLLISION OF BARS 99 2.5.4
STRING ON A COMPLIANT FOUNDATION 102 2.5.5 AXIALLY TRANSLATING STRING
104 EXERCISES 107 REFERENCES 112 VIBRATIONS OF BEAMS 113 3.1 EQUATION OF
MOTION - 113 3.1.1 THE NEWTONIAN FORMULATION 113 3.1.2 THE VARIATIONAL
FORMULATION 116 3.1.3 VARIOUS BOUNDARY CONDITIONS FOR A BEAM 118 3.1.4
TAUT STRING AND TENSIONED BEAM ' 120 3.2 FREE VIBRATION PROBLEM S 121
3.2.1 MODAL ANALYSIS ' 121 3.2.2 THE INITIAL VALUE PROBLENT 132 3.3
FORCED VIBRATION ANALYSIS 133 3.3.1 EIGENFUNCTION EXPANSION METHOD 134
3.3.2 APPROXIMATE METHODS 135 3.4 NON-HOMOGENEOUS BOUNDARY CONDITIONS &
137 3.5 DISPERSION RELATION AND FLEXURAL WAVES IN A UNIFORM BEAM 138
3.5.1 ENERGY TRANSPORT 140 3.5.2 SCATTERING OF FLEXURAL WAVES 142 3.6
THE TIMOSHENKO BEAM 144 3.6.1 EQUATIONS OF MOTION 144 3.6.2 HARMONIC
WAVES AND DISPERSION RELATION 147 3.7 DAMPED VIBRATION OF BEAMS 149 3.8
SPECIAL PROBLEMS IN VIBRATIONS OF BEAMS 151 3.8.1 INFLUENCE OF AXIAL
FORCE ON DYNAMIC STABILITY 151 3.8.2 BEAM WITH ECCENTRIC MASS
DISTRIBUTION 155 3.8.3 PROBLEMS INVOLVING THE MOTION OF MATERIAL POINTS
OF A VIBRATING BEAM 159 CONTENTS VII 3.8.4 DYNAMICS OF ROTATING SHAFTS
163 3.8.5 DYNAMICS OF AXIALLY TRANSLATING BEAMS 165 3.8.6 DYNAMICS OF
FLUID-CONVEYING PIPES 168 EXERCISES 171 REFERENCES 178 4 VIBRATIONS OF
MEMBRANES 179 4.1 DYNAMICS OF A MEMBRANE 179 4.1.1 NEWTONIAN FORMULATION
179 4.1.2 VARIATIONAL FORMULATION 182 4.2 MODAL ANALYSIS 185 4.2.1 THE
RECTANGULAR MEMBRANE 185 4.2.2 THE CIRCULAR MEMBRANE 190 4.3 FORCED
VIBRATION ANALYSIS 197 4.4 APPLICATIONS: KETTLEDRUM AND CONDENSER
MICROPHONE 197 4.4.1 MODAL ANALYSIS 197 4.4.2 FORCED VIBRATION ANALYSIS
201 4.5 WAVES IN MEMBRANES 202 4.5.1 WAVES IN CARTESIAN COORDINATES 202
4.5.2 WAVES IN POLAR COORDINATES 204 4.5.3 ENERGETICS OF MEMBRANE WAVES
207 4.5.4 INITIAL VALUE PROBLEM FOR INFINITE MEMBRANES 208 4.5.5
REFLECTION OF PLANE WAVES 209 EXERCISES 213 REFERENCES J 214 5
VIBRATIONS OF PLATES 217 5.1 DYNAMICS OF PLATES . 217 5.1.1 NEWTONIAN
FORMULATION ^' 217 5.2 VIBRATIONS OF RECTANGULAR PLATES ' 222 5.2.1 FREE
VIBRATIONS ' -' 222 5.2.2 ORTHOGONALITY OF PLATE EIGENFUHCTIONS 228
5.2.3 FORCED VIBRATIONS " 229 5.3 VIBRATIONS OF CIRCULAR PLATES 231
5.3.1 FREE VIBRATIONS 231 5.3.2 FORCED VIBRATIONS ^ 234 5.4 WAVES IN
PLATES 236 5.5 PLATES WITH VARYING THICKNESS 238 EXERCISES 239
REFERENCES 241 6 BOUNDARY VALUE AND EIGENVALUE PROBLEMS IN VIBRATIONS
243 6.1 SELF-ADJOINT OPERATORS AND EIGENVALUE PROBLEMS FOR UNDAMPED FREE
VIBRATIONS 243 6.1.1 GENERAL PROPERTIES AND EXPANSION THEOREM 243 6.1.2
GREEN'S FUNCTIONS AND INTEGRAL FORMULATION OF EIGENVALUE PROBLEMS 252
6.1.3 BOUNDS FOR EIGENVALUES: RAYLEIGH'S QUOTIENT AND OTHER METHODS 255
6.2 FORCED VIBRATIONS 259 VIII CONTENTS 6.2.1 EQUATIONS OF MOTION 259
6.2.2 GREEN'S FUNCTION FOR INHOMOGENEOUS VIBRATION PROBLEMS 260 6.3 SOME
DISCRETIZATION METHODS FOR FREE AND FORCED VIBRATIONS 261 6.3.1
EXPANSION IN FUNCTION SERIES 261 6.3.2 THE COLLOCATION METHOD 262 6.3.3
THE METHOD OF SUBDOMAINS 266 6.3.4 GALERKIN'S METHOD 267 6.3.5 THE
RAYLEIGH-RITZ METHOD 269 6.3.6 THE FINITE-ELEMENT METHOD 272 REFERENCES
288 7 WAVES IN FLUIDS 289 7.1 ACOUSTIC WAVES IN FLUIDS 289 7.1.1 THE
ACOUSTIC WAVE EQUATION 289 7.1.2 PLANAR ACOUSTIC WAVES 294 7.1.3
ENERGETICS OF PLANAR ACOUSTIC WAVES 295 7.1.4 REFLECTION AND REFRACTION
OF PLANAR ACOUSTIC WAVES 297 7.1.5 SPHERICAL WAVES 300 7.1.6 CYLINDRICAL
WAVES 305 7.1.7 ACOUSTIC RADIATION FROM MEMBRANES AND PLATES 307 7.1.8
WAVES IN WAVE GUIDES 314 7.1.9 ACOUSTIC WAVES IN A SLIGHTLY VISCOUS
FLUID 318 7.2 SURFACE WAVES IN INCOMPRESSIBLE LIQUIDS 320 7.2.1 DYNAMICS
OF SURFACE WAVES 320 7.2.2 SLOSHING 6F LIQUIDS IN TANKS 323 7.2.3
SURFACE WAVES IN A CHANNEL 330 EXERCISES 334 REFERENCES ' * 337 8 WAVES
IN ELASTIC CONTINUA ? '. 339 8.1 EQUATIONS OF MOTION V 339 8.2 PLANE
ELASTIC WAVES IN UNBOUNDED CONTINUA . 344 8.3 ENERGETICS OF ELASTIC
WAVES 346 8.4 REFLECTION OF ELASTIC WAVES 348 8.4.1 REFLECTION FROM A
FREE BOUNDARY 349 8.5 RAYLEIGH SURFACE WAVES " 35 3 8.6 REFLECTION AND
REFRACTION OF PLANAR ACOUSTIC WAVES 357 EXERCISES 359 REFERENCES 361 A
THE VARIATIONAL FORMULATION OF DYNAMICS 363 REFERENCES 365 B HARMONIC
WAVES AND DISPERSION RELATION 367 B.I FOURIER REPRESENTATION AND
HARMONIC WAVES 367 B.2 PHASE VELOCITY AND GROUP VELOCITY 369 REFERENCES
372 CONTENTS C VARIATIONAL FORMULATION FOR DYNAMICS OF PLATES 373
REFERENCES 378 INDEX 379 |
any_adam_object | 1 |
any_adam_object_boolean | 1 |
author | Hagedorn, Peter DasGupta, Anirvan |
author_facet | Hagedorn, Peter DasGupta, Anirvan |
author_role | aut aut |
author_sort | Hagedorn, Peter |
author_variant | p h ph a d ad |
building | Verbundindex |
bvnumber | BV022575953 |
callnumber-first | Q - Science |
callnumber-label | QA808 |
callnumber-raw | QA808.2 |
callnumber-search | QA808.2 |
callnumber-sort | QA 3808.2 |
callnumber-subject | QA - Mathematics |
classification_rvk | UF 5000 |
classification_tum | MTA 550f |
ctrlnum | (OCoLC)137221623 (DE-599)HBZHT015138710 |
dewey-full | 620.3 |
dewey-hundreds | 600 - Technology (Applied sciences) |
dewey-ones | 620 - Engineering and allied operations |
dewey-raw | 620.3 |
dewey-search | 620.3 |
dewey-sort | 3620.3 |
dewey-tens | 620 - Engineering and allied operations |
discipline | Physik |
discipline_str_mv | Physik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02232nam a2200445 c 4500</leader><controlfield tag="001">BV022575953</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20100611 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">070813s2007 d||| |||| 00||| eng d</controlfield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">GBA739034</subfield><subfield code="2">dnb</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780470517383</subfield><subfield code="c">(hbk.) : £55.00</subfield><subfield code="9">978-0-470-51738-3</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)137221623</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)HBZHT015138710</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-703</subfield><subfield code="a">DE-91G</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA808.2</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">620.3</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UF 5000</subfield><subfield code="0">(DE-625)145595:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MTA 550f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Hagedorn, Peter</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Vibrations and waves in continuous mechanical systems</subfield><subfield code="c">Peter Hagedorn ; Anirvan DasGupta</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Hoboken, NJ</subfield><subfield code="b">Wiley</subfield><subfield code="c">2007</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Chichester</subfield><subfield code="b">John Wiley</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XIII, 382 S.</subfield><subfield code="b">graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1="1" ind2=" "><subfield code="a">"Starting from an elementary level, Vibrations and Waves in Continuous Mechanical Systems helps develop a comprehensive understanding of the theory of these systems and the tools with which to analyse them, before progressing to more advanced topics." "Vibrations and Waves in Continuous Mechanical Systems provides a first course on the vibrations of continuous systems that will he suitable for students of continuous system dynamics, at senior undergraduate and graduate levels, in mechanical, civil and aerospace engineering. It will also appeal to researchers developing theory and analysis within the field."--BOOK JACKET.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Continuum mechanics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Equations of motion</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Vibration</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mechanische Schwingung</subfield><subfield code="0">(DE-588)4138305-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="0">(DE-588)4123623-3</subfield><subfield code="a">Lehrbuch</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Mechanische Schwingung</subfield><subfield code="0">(DE-588)4138305-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">DasGupta, Anirvan</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HEBIS Datenaustausch Darmstadt</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=015782222&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-015782222</subfield></datafield></record></collection> |
genre | (DE-588)4123623-3 Lehrbuch gnd-content |
genre_facet | Lehrbuch |
id | DE-604.BV022575953 |
illustrated | Illustrated |
index_date | 2024-07-02T18:15:02Z |
indexdate | 2024-11-25T17:26:05Z |
institution | BVB |
isbn | 9780470517383 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-015782222 |
oclc_num | 137221623 |
open_access_boolean | |
owner | DE-703 DE-91G DE-BY-TUM |
owner_facet | DE-703 DE-91G DE-BY-TUM |
physical | XIII, 382 S. graph. Darst. |
publishDate | 2007 |
publishDateSearch | 2007 |
publishDateSort | 2007 |
publisher | Wiley John Wiley |
record_format | marc |
spellingShingle | Hagedorn, Peter DasGupta, Anirvan Vibrations and waves in continuous mechanical systems Continuum mechanics Equations of motion Vibration Mechanische Schwingung (DE-588)4138305-9 gnd |
subject_GND | (DE-588)4138305-9 (DE-588)4123623-3 |
title | Vibrations and waves in continuous mechanical systems |
title_auth | Vibrations and waves in continuous mechanical systems |
title_exact_search | Vibrations and waves in continuous mechanical systems |
title_exact_search_txtP | Vibrations and waves in continuous mechanical systems |
title_full | Vibrations and waves in continuous mechanical systems Peter Hagedorn ; Anirvan DasGupta |
title_fullStr | Vibrations and waves in continuous mechanical systems Peter Hagedorn ; Anirvan DasGupta |
title_full_unstemmed | Vibrations and waves in continuous mechanical systems Peter Hagedorn ; Anirvan DasGupta |
title_short | Vibrations and waves in continuous mechanical systems |
title_sort | vibrations and waves in continuous mechanical systems |
topic | Continuum mechanics Equations of motion Vibration Mechanische Schwingung (DE-588)4138305-9 gnd |
topic_facet | Continuum mechanics Equations of motion Vibration Mechanische Schwingung Lehrbuch |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=015782222&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT hagedornpeter vibrationsandwavesincontinuousmechanicalsystems AT dasguptaanirvan vibrationsandwavesincontinuousmechanicalsystems |