Combinatorial algebraic topology

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Feichtner-Kozlov, Dmitry 1972- (VerfasserIn)
Format: Buch
Sprache:English
Veröffentlicht: Berlin ; Heidelberg ; New York Springer [2008]
Schriftenreihe:Algorithms and computation in mathematics Volume 21
Schlagworte:
Online-Zugang:Inhaltsverzeichnis
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nam a2200000 cb4500
001 BV022525237
003 DE-604
005 20230217
007 t|
008 070724s2008 gw |||| |||| 00||| eng d
015 |a 07,N24,0901  |2 dnb 
016 7 |a 984272755  |2 DE-101 
020 |a 9783540719618  |c print  |9 978-3-540-71961-8 
020 |a 9783540730514  |9 978-3-540-73051-4 
020 |a 9783540719625  |c online  |9 978-3-540-71962-5 
020 |a 354071961X  |c Gb. : EUR 85.55 (freier Pr.), sfr 131.00 (freier Pr.)  |9 3-540-71961-X 
020 |a 9783540730514  |c Pp.  |9 978-3-540-73051-4 
024 3 |a 9783540719618 
028 5 2 |a 11936756 
035 |a (OCoLC)185096383 
035 |a (DE-599)DNB984272755 
040 |a DE-604  |b ger  |e rda 
041 0 |a eng 
044 |a gw  |c XA-DE-BE 
049 |a DE-824  |a DE-703  |a DE-355  |a DE-20  |a DE-83  |a DE-11  |a DE-29T  |a DE-898  |a DE-91G  |a DE-188  |a DE-739 
050 0 |a QA169 
082 0 |a 512/.64  |2 22 
084 |a SK 300  |0 (DE-625)143230:  |2 rvk 
084 |a 510  |2 sdnb 
084 |a MAT 570f  |2 stub 
084 |a 55U10  |2 msc 
084 |a MAT 550f  |2 stub 
100 1 |a Feichtner-Kozlov, Dmitry  |d 1972-  |0 (DE-588)114514682  |4 aut 
245 1 0 |a Combinatorial algebraic topology  |c Dmitry Kozlov 
264 1 |a Berlin ; Heidelberg ; New York  |b Springer  |c [2008] 
264 4 |c © 2008 
300 |a XIX, 389 Seiten  |b Diagramme 
336 |b txt  |2 rdacontent 
337 |b n  |2 rdamedia 
338 |b nc  |2 rdacarrier 
490 1 |a Algorithms and computation in mathematics  |v Volume 21 
650 4 |a Algèbre homologique 
650 4 |a Catégories (Mathématiques) 
650 4 |a Topologie algébrique 
650 4 |a Topologie combinatoire 
650 7 |a Topologie  |2 gtt 
650 4 |a Algebra, Homological 
650 4 |a Algebraic topology 
650 4 |a Categories (Mathematics) 
650 4 |a Combinatorial topology 
650 0 7 |a Kombinatorische Topologie  |0 (DE-588)4137530-0  |2 gnd  |9 rswk-swf 
650 0 7 |a Algebraische Topologie  |0 (DE-588)4120861-4  |2 gnd  |9 rswk-swf 
689 0 0 |a Algebraische Topologie  |0 (DE-588)4120861-4  |D s 
689 0 1 |a Kombinatorische Topologie  |0 (DE-588)4137530-0  |D s 
689 0 |8 1\p  |5 DE-604 
689 1 0 |a Kombinatorische Topologie  |0 (DE-588)4137530-0  |D s 
689 1 |5 DE-604 
776 0 8 |i Erscheint auch als  |n Online-Ausgabe  |z 978-3-540-71962-5 
830 0 |a Algorithms and computation in mathematics  |v Volume 21  |w (DE-604)BV011131286  |9 21 
856 4 2 |m Digitalisierung UB Regensburg  |q application/pdf  |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=015731927&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA  |3 Inhaltsverzeichnis 
883 1 |8 1\p  |a cgwrk  |d 20201028  |q DE-101  |u https://d-nb.info/provenance/plan#cgwrk 
943 1 |a oai:aleph.bib-bvb.de:BVB01-015731927 

Datensatz im Suchindex

DE-BY-TUM_call_number 0102 MAT 550f 2011 A 5065
DE-BY-TUM_katkey 1775070
DE-BY-TUM_location 01
DE-BY-TUM_media_number 040010211162
_version_ 1820897839779151872
adam_text Contents 1 Overture .................................................. 1 Part I Concepts of Algebraic Topology 2 Cell Complexes ............................................ 7 2.1 Abstract Simplicial Complexes ............................ 7 2.1.1 Definition of Abstract Simplicial Complexes and Maps Between Them .................................... 7 2.1.2 Deletion, Link, Star, and Wedge ..................... 10 2.1.3 Simplicial Join .................................... 12 2.1.4 Face Posets ....................................... 12 2.1.5 Barycentric and Stellar Subdivisions ................. 13 2.1.6 Pulling and Pushing Simplicial Structures ............ 15 2.2 Polyhedral Complexes ................................___ 16 2.2.1 Geometry of Abstract Simplicial Complexes .......... 16 2.2.2 Geometric Meaning of the Combinatorial Constructions ..................................... 19 2.2.3 Geometric Simplicial Complexes ..................... 23 2.2.4 Complexes Whose Cells Belong to a Specified Set of Polyhedra ...................................... 25 2.3 Trisps .................................................. 28 2.3.1 Construction Using the Gluing Data ................. 28 2.3.2 Constructions Involving Trisps ...................... 30 2.4 CW Complexes ......................................... 33 2.4.1 Gluing Along a Map ............................... 33 2.4.2 Constructive and Intrinsic Definitions ................ 34 2.4.3 Properties and Examples ........................... 35 3 Homology Groups ......................................... 37 3.1 Betti Numbers of Finite Abstract Simplicial Complexes ...... 37 3.2 Simplicial Homology Groups .............................. 39 XII Contente 3.2.1 Homology Groups of Trisps with Coefficients in Zg .... 39 3.2.2 Orientations ...................................... 41 3.2.3 Homolog} Groups of Trisps with Integer Coefficients ... 41 3.3 Invariants Connected to Homology Groups .................. 44 3.3.1 Betti Numbers and Torsion Coefficients .............. 44 3.3.2 Euler Characteristic, and the Euler-Poincaré Formula . . 45 3.4 Variations .............................................. 46 3.4.1 Augmentation and Reduced Homology Groups ........ 46 3.4.2 Homology Groups with Other Coefficients ............ 47 3.4.3 Simplicial Cohomology Groups ...................... 47 3.4.4 Singular Homology ................................ 49 3.5 Chain Complexes ........................................ 51 3.5.1 Definition and Homology of Chain Complexes ......... 51 3.5.2 Maps Between Chain Complexes and Induced Maps on Homology ..................................... 52 3.5.3 Chain Homotopy .................................. 53 3.5.4 Simplicial Homology and Cohomology in the Context of Chain Complexes ............................... 54 3.5.5 Homomorphisms on Homology Induced by Trisp Maps . 54 3.6 Cellular Homology ....................................... 56 3.6.1 An Application of Homology with Integer Coefficients: Winding Number .................................. 56 3.6.2 The Definition of Cellular Homology ................. 57 3.6.3 Cellular Maps and Properties of Cellular Homology .... 58 4 Concepts of Category Theory .............................. 59 4.1 The Notion of a Category ................................ 59 4.1.1 Definition of a Category, Isomorphisms ............... 59 4.1.2 Examples of Categories ............................ 60 4.2 Some Structure Theory of Categories ...................... 63 4.2.1 Initial and Terminal Objects ........................ 63 4.2.2 Products and Coproducts .......................... 64 4.3 Functors ............................................... 68 4.3.1 The Category Cat ................................ 68 4.3.2 Homology and Cohomology Viewed as Functors ....... 70 4.3.3 Group Actions as Functors ......................... 70 4.4 Limit Constructions ..................................... 71 4.4.1 Definition of Colimit of a Functor ................... 71 4.4.2 Colimits and Infinite Unions ........................ 72 4.4.3 Quotients of Group Actions as Colimits .............. 73 4.4.4 Limits ........................................... 74 4.5 Comma Categories ...................................... 74 4.5.1 Objects Below and Above Other Objects ............. 74 4.5.2 The General Construction and Further Examples ...... 75 Contents XIII Exact Sequences ........................................... 77 5.1 Some Structure Theory of Long and Short Exact Sequence« ... 77 5.1.1 Construction of the Connecting Homomorphisni ....... 77 5.1.2 Exact Sequences .................................. 79 5.1.3 Deriving Long Exact Sequences from Short Ones ...... 81 5.2 The Long Exact Sequence of a Pair and Some Applications ... 82 5.2.1 Relative Homology and the Associated Long Exact Sequence ......................................... 82 5.2.2 Applications ...................................... 84 5.3 Mayer-Vietoris Long Exact Sequence ...................... 85 Homotopy ................................................. 89 6.1 Homotopy of Maps ...................................... 89 6.2 Homotopy Type of Topological Spaces ..................... 90 6.3 Mapping Cone and Mapping Cylinder ...................... 91 6.4 Deformation Retracts and Collapses ....................... 93 6.5 Simple Homotopy Type .................................. 95 6.6 Homotopy Groups ....................................... 96 6.7 Connectivity and Hurewicz Theorem« ...................... 97 Cofibrations ...............................................101 7.1 Cofibrations and the Homotopy Extension Property ..........101 7.2 NDR-Pairs ................ ................. ...........103 7.3 Important Facts Involving Cofibrations .....................105 7.4 The Relative Homotopy Equivalence .......................107 Principal P-Bundles and Stiefel— Whitney Characteristic Classes .................................................... Ill 8.1 Locally Trivial Bundles ................................... Ill 8.1.1 Bundle Terminology ............................... Ill 8.1.2 Types of Bundles ..................................112 8.1.3 Bundle Maps .....................................113 8.2 Elements of the Principal Bundle Theory ...................114 8.2.1 Principal Bundles and Spaces with a Free Group Action .....................................114 8.2.2 The Classifying Space of a Group ...................116 8.2.3 Special Cohomology Elements .......................119 8.2.4 Жг-Ѕрасеѕ and the Definition of Stiefel· Whitney Classes ..........................120 8.3 Properties of Stiefel- Whitney Classes ......................122 8.3.1 Borsuk- Ulam Theorem. Index, and Comdex ..........122 8.3.2 Stiefel-Whitney Height .............................123 8.3.3 Higher Connectivity and Stiefel-Whitney Classes ......123 8.3.4 Combinatorial Construction of Stiefel Whitney Classes. 124 8.4 Suggested Reading .......................................125 XIV Contents Part II Methods of Combinatorial Algebraic Topology 9 Combinatorial Complexes Melange ........................129 9.1 Abstract Simplicial Complexes ............................129 9.1.1 Simplicial Flag Complexes ..........................129 9.1.2 Order Complexes ..................................130 9.1.3 Complexes of Combinatorial Properties ..............133 9.1.4 The Neighborhood and Lovász Complexes ............133 9.1.5 Complexes Arising from Matroids ...................134 9.1.6 Geometric Complexes in Metric Spaces ...............134 9.1.7 Combinatorial Presentation by Minimal Nonsimplices .. 136 9.2 Prodsimplicial Complexes ................................138 9.2.1 Prodsimplicial Flag Complexes ......................138 9.2.2 Complex of Complete Bipartite Subgraphs ............138 9.2.3 Hom Complexes ...................................140 9.2.4 General Complexes of Morphisms ...................141 9.2.5 Discrete Configuration Spaces of Generalized Simplicial Complexes ..............................144 9.2.6 The Complex of Phylogenetic Trees ..................144 9.3 Regular Trisps ..........................................145 9.4 Chain Complexes ........................................147 9.5 Bibliographic Notes ......................................148 10 Acyclic Categories .........................................151 10.1 Basics ..................................................151 10.1.1 The Notion of Acyclic Category .....................151 10.1.2 Linear Extensions of Acyclic Categories ..............152 10.1.3 Induced Subcategories of Cat .......................153 10.2 The Regular Trisp of Composable Morphism Chains in an Acyclic Category ...................................153 10.2.1 Definition and First Examples ......................153 10.2.2 Functoriality ......................................155 10.3 Constructions ...........................................156 10.3.1 Disjoint Union as a Coproduct ......................156 10.3.2 Stacks of Acyclic Categories and Joins of Regular Trisps ..................................156 10.3.3 Links, Stars, and Deletions .........................158 10.3.4 Lattices and Acyclic Categories .....................159 10.3.5 Barycentric Subdivision and Zi-Functor ..............160 10.4 Intervals in Acyclic Categories ............................161 10.4.1 Definition and First Properties ......................161 10.4.2 Acyclic Category of Intervals and Its Structural Functor ..........................164 10.4.3 Topology of the Category of Intervals ................167 Contents XV 10.5 Homeomorphisms Associated with the Direct Product Construction ............................................168 10.5.1 Simplicial Subdivision of the Direct Product ..........168 10.5.2 Further Subdivisions ...............................171 10.6 The Möbius Function ....................................173 10.6.1 Möbius Function for Posets .........................173 10.6.2 Möbius Function for Acyclic Categories ..............174 10.7 Bibliographic Notes ......................................178 11 Discrete Morse Theory ....................................179 11.1 Discrete Morse Theory for Posets ..........................179 11.1.1 Acyclic Matchings in Hasse Diagrams of Posets .......179 11.1.2 Poset Maps with Small Fibers ......................182 11.1.3 Universal Object Associated to an Acyclic Matching ... 183 11.1.4 Poset Fibratioiis and the Patchwork Theorem .........185 11.2 Discrete Morse Theory for С W Complexes ..................187 11.2.1 Attaching Cells to Homotopy Equivalent Spaces .......187 11.2.2 The Main Theorem of Discrete Morse Theory for CW Complexes .......................................189 11.2.3 Examples ........................................192 11.3 Algebraic Morse Theory ..................................201 11.3.1 Acyclic Matchings on Free Chain Complexes and the Morse Complex ............................201 11.3.2 The Main Theorem of Algebraic Morse Theory ........203 11.3.3 An Example ......................................205 11.4 Bibliographic Notes ......................................208 12 Lexicographic Shellability ..................................211 12.1 Shellability .............................................211 12.1.1 The Basics .......................................211 12.1.2 Shelling Induced Subcomplexes .....................214 12.1.3 Shelling Nerves of Acyclic Categories ................215 12.2 Lexicographic Shellability ................................216 12.2.1 Labeling Edges as a Way to Order Chains ............216 12.2.2 EL-Labeling ......................................217 12.2.3 General Lexicographic Shellability ...................219 12.2.4 Lexicographic Shellability and Nerves of Acyclic Categories ........................................223 12.3 Bibliographic Notes ......................................224 13 Evasiveness and Closure Operators ........................225 13.1 Evasiveness .............................................225 13.1.1 Evasiveness of Graph Properties .....................225 13.1.2 Evasiveness of Abstract Siniplicial Complexes .........229 XVI Contents 13.2 Closure Operators ....................................... 232 13.2.1 Collapsing Sequences Induced by Closure Operators . .. 232 13.2.2 Applications ...................................... 234 13.2.3 Monotone Poset Maps .............................236 13.2.4 The Reduction Theorem and Implications ............237 13.3 Further Facts About Nonevasiveness ....................... 238 13.3.1 NE-Reduction and Collapses .........................238 13.3.2 Nonevasiveness of Noncomplemented Lattices .........240 13.4 Other Recursively Defined Classes of Complexes .............242 13.5 Bibliographic Notes ......................................243 14 Colimits and Quotients ....................................245 14.1 Quotients of Nerves of Acyclic Categories ...................245 14.1.1 Desirable Properties of the Quotient Construction .....245 14.1.2 Quotients of Simplicial Actions ......................245 14.2 Formalization of Group Actions and the Main Question ......248 14.2.1 Definition of the Quotient and Formulation of the Main Problem ...............................248 14.2.2 An Explicit Description of the Category C/G .........249 14.3 Conditions on Group Actions .............................250 14.3.1 Outline of the Results and Surjectivity of the Canonical Map ..............................250 14.3.2 Condition for Injectivity of the Canonical Projection . .. 251 14.3.3 Conditions for the Canonical Projection to be an Isomorphism ..............................252 14.3.4 Conditions for the Categories to be Closed Under Taking Quotients ............................ 2oo 14.4 Bibliographic Notes ......................................257 15 Homotopy Colimits ........................................259 15.1 Diagrams over Trisps ....................................259 15.1.1 Diagrams and Colimits .............................259 15.1.2 Arrow Pictures and Their Nerves ....................260 15.2 Homotopy Colimits ......................................262 15.2.1 Definition and Some Examples ......................262 15.2.2 Structural Maps Associated to Homotopy Colimits -----263 15.3 Deforming Homotopy Colimits ............................265 15.4 Nerves of Coverings ......................................266 15.4.1 Nerve Diagram ....................................266 15.4.2 Projection Lemma .................................267 15.4.3 Nerve Lemmas ....................................269 10.5 Gluing Spaces ...........................................271 15.5.1 Gluing Lemma ....................................271 15.5.2 QuiUen Lemma ...................................272 Î5.6 Bibliographic Notes ......................................273 Contents XVII 16 Spectral Sequences ........................................275 16.1 Filtrations ..............................................275 16.2 Contriving Spectral Sequences ............................276 16.2.1 The Objects to be Constructed ......................276 16.2.2 The Actual Construction ...........................278 16.2.3 Questions of Convergence and Interpretation of the Answer .....................................280 16.2.4 An Example ......................................280 16.3 Maps Between Spectral Sequences .........................281 16.4 Spectral Sequences and Nerves of Acyclic Categories .........283 16.4.1 A Class of Filtrations ..............................283 16.4.2 Möbius Function and Inequalities for Betti Numbers .. . 285 16.5 Bibliographic Notes ......................................288 Part III Complexes of Graph Homomorphisms 17 Chromatic Numbers and the Kneser Conjecture ...........293 17.1 The Chromatic Number of a Graph ........................293 17.1.1 The Definition and Applications .....................293 17.1.2 The Complexity of Computing the Chromatic Number . 294 17.1.3 The Hadwiger Conjecture ..........................295 17.2 State Graphs and the Variations of the Chromatic Number ... 298 17.2.1 Complete Graphs as State Graphs ...................298 17.2.2 Kneser Graphs as State Graphs and Fractional Chromatic Number ................................298 17.2.3 The Circular Chromatic Number ....................300 17.3 Kneser Conjecture and Lovász Test ........................301 17.3.1 Formulation of the Kneser Conjecture ................301 17.3.2 The Properties of the Neighborhood Complex .........302 17.3.3 Lovász Test for Graph Colorings ....................303 17.3.4 Simplicial and Cubical Complexes Associated to Kneser Graphs .................................304 17.3.5 The Vertex-Critical Subgraphs of Kneser Graphs ......306 17.3.6 Chromatic Numbers of Kneser Hypergraphs ..........307 17.4 Bibliographic Notes ......................................307 18 Structural Theory of Morphism Complexes ................309 18.1 The Scope of Morphism Complexes ........................309 18.1.1 The Morphism Complexes and the Prodsimplicial Flag Construction .................................309 18.1.2 Universality ......................................311 18.2 Special Families of Hom Complexes .........................312 18.2.1 Coloring Complexes of a Graph .....................312 XVIII Contents 18.2.2 Complexes of Bipartite Subgraphs and Neighborhood Complexes .......................................313 18.3 Functoriality of Hom (-, -)................................ 315 18.3.1 Functoriality on the Right ..........................315 18.3.2 Aut (G) Action on Hom(T.G) .......................316 18.3.3 Functoriality on the Left ...........................316 18.3.4 Aut (T) Action on Hom (Г. G) ....................... 318 18.3.5 Commuting Relations ..............................318 18.4 Products, Compositions, and Hom Complexes ...............320 18.4.1 Coproducts .......................................320 18.4.2 Products .........................................320 18.4.3 Composition of Hom Complexes .....................322 18.5 Folds ..................................................323 18.5.1 Definition and First Properties ......................323 18.5.2 Proof of the Folding Theorem .......................324 18.6 Bibliographic Notes ......................................326 19 Characteristic Classes and Chromatic Numbers ............327 19.1 Stiefel -Whitney Characteristic Classes and Test Graphs ......327 19.1.1 Powers of Stiefel- Whitney Classes and Chromatic Numbers of Graphs ................................327 19.1.2 Stiefel- Whitney Test Graphs ........................328 19.2 Examples of Stiefel-Whitney Test Graphs ..................329 19.2.1 Complexes of Complete Multipartite Subgraphs .......329 19.2.2 Odd Cycles as Stiefel-Whitney Test Graphs ..........334 19.3 Homology Tests for Graph Colorings .......................337 19.3.1 The Symmetrizer Operator and Related Structures .... 338 19.3.2 The Topological Rationale for the Tests ..............338 19.3.3 Homology Tests ...................................340 19.3.4 Examples of Homology Tests with Different Test Graphs ......................................341 19.4 Bibliographic Notes ......................................346 20 Applications of Spectral Sequences to Hom Complexes ......349 20.1 НОП1+ Construction .......................................349 20.1.1 Various Definitions ................................349 20.1.2 Connection to Independence Complexes ..............351 20.1.3 The Support Map .................................352 20.1.4 An Example: Hom+(Cm, Kn) ........................353 20.2 Setting up the Spectral Sequence ..........................354 20.2.1 Filtration Induced by the Support Map ..............354 20.2.2 The Oth and the 1st Tableaux .......................355 20.2.3 The First Differential ..............................355 20.3 Encoding Cohomology Generators by Arc Pictures ...........356 20.3.1 The Language of Arcs ..............................356 20.3.2 The Corresponding Cohomology Generators ..........356 Contents XIX 20.3.3 The First Reduction ...............................357 20.4 Topology of the Torus Front Complexes ....................358 20.4.1 Reinterpretation of H*{A*t,di) Using a Family of Cubical Complexes {Фт,п,д} ......................358 20.4.2 The Torus Front Interpretation ......................360 20.4.3 Grinding .........................................362 20.4.4 Thin Fronts ......................................364 20.4.5 The Implications for the Cohomology Groups of Hom (Cm, Kn) ...................................366 20.5 Euler Characteristic Formula ..............................367 20.6 Cohomology with Integer Coefficients ......................368 20.6.1 Fixing Orientations on Hom and Нопц- Complexes ......368 20.6.2 Signed Versions of Formula« for Generators [erf,] .......370 20.6.3 Completing the Calculation of the Second Tableau .....371 20.6.4 Summary: the Full Description of the Groups Я*(Нот(Ст. A „);Z)............................... 374 20.7 Bibliographic Notes and Conclusion ........................376 References .....................................................377 Index ..........................................................385
any_adam_object 1
author Feichtner-Kozlov, Dmitry 1972-
author_GND (DE-588)114514682
author_facet Feichtner-Kozlov, Dmitry 1972-
author_role aut
author_sort Feichtner-Kozlov, Dmitry 1972-
author_variant d f k dfk
building Verbundindex
bvnumber BV022525237
callnumber-first Q - Science
callnumber-label QA169
callnumber-raw QA169
callnumber-search QA169
callnumber-sort QA 3169
callnumber-subject QA - Mathematics
classification_rvk SK 300
classification_tum MAT 570f
MAT 550f
ctrlnum (OCoLC)185096383
(DE-599)DNB984272755
dewey-full 512/.64
dewey-hundreds 500 - Natural sciences and mathematics
dewey-ones 512 - Algebra
dewey-raw 512/.64
dewey-search 512/.64
dewey-sort 3512 264
dewey-tens 510 - Mathematics
discipline Mathematik
format Book
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02781nam a2200709 cb4500</leader><controlfield tag="001">BV022525237</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20230217 </controlfield><controlfield tag="007">t|</controlfield><controlfield tag="008">070724s2008 gw |||| |||| 00||| eng d</controlfield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">07,N24,0901</subfield><subfield code="2">dnb</subfield></datafield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">984272755</subfield><subfield code="2">DE-101</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783540719618</subfield><subfield code="c">print</subfield><subfield code="9">978-3-540-71961-8</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783540730514</subfield><subfield code="9">978-3-540-73051-4</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783540719625</subfield><subfield code="c">online</subfield><subfield code="9">978-3-540-71962-5</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">354071961X</subfield><subfield code="c">Gb. : EUR 85.55 (freier Pr.), sfr 131.00 (freier Pr.)</subfield><subfield code="9">3-540-71961-X</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783540730514</subfield><subfield code="c">Pp.</subfield><subfield code="9">978-3-540-73051-4</subfield></datafield><datafield tag="024" ind1="3" ind2=" "><subfield code="a">9783540719618</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">11936756</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)185096383</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DNB984272755</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">gw</subfield><subfield code="c">XA-DE-BE</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-824</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-355</subfield><subfield code="a">DE-20</subfield><subfield code="a">DE-83</subfield><subfield code="a">DE-11</subfield><subfield code="a">DE-29T</subfield><subfield code="a">DE-898</subfield><subfield code="a">DE-91G</subfield><subfield code="a">DE-188</subfield><subfield code="a">DE-739</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA169</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">512/.64</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 300</subfield><subfield code="0">(DE-625)143230:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">510</subfield><subfield code="2">sdnb</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 570f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">55U10</subfield><subfield code="2">msc</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 550f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Feichtner-Kozlov, Dmitry</subfield><subfield code="d">1972-</subfield><subfield code="0">(DE-588)114514682</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Combinatorial algebraic topology</subfield><subfield code="c">Dmitry Kozlov</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin ; Heidelberg ; New York</subfield><subfield code="b">Springer</subfield><subfield code="c">[2008]</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">© 2008</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XIX, 389 Seiten</subfield><subfield code="b">Diagramme</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Algorithms and computation in mathematics</subfield><subfield code="v">Volume 21</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Algèbre homologique</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Catégories (Mathématiques)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Topologie algébrique</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Topologie combinatoire</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Topologie</subfield><subfield code="2">gtt</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Algebra, Homological</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Algebraic topology</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Categories (Mathematics)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Combinatorial topology</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Kombinatorische Topologie</subfield><subfield code="0">(DE-588)4137530-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Algebraische Topologie</subfield><subfield code="0">(DE-588)4120861-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Algebraische Topologie</subfield><subfield code="0">(DE-588)4120861-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Kombinatorische Topologie</subfield><subfield code="0">(DE-588)4137530-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Kombinatorische Topologie</subfield><subfield code="0">(DE-588)4137530-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe</subfield><subfield code="z">978-3-540-71962-5</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Algorithms and computation in mathematics</subfield><subfield code="v">Volume 21</subfield><subfield code="w">(DE-604)BV011131286</subfield><subfield code="9">21</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Regensburg</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&amp;doc_library=BVB01&amp;local_base=BVB01&amp;doc_number=015731927&amp;sequence=000002&amp;line_number=0001&amp;func_code=DB_RECORDS&amp;service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-015731927</subfield></datafield></record></collection>
id DE-604.BV022525237
illustrated Not Illustrated
indexdate 2024-12-23T20:07:33Z
institution BVB
isbn 9783540719618
9783540730514
9783540719625
354071961X
language English
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-015731927
oclc_num 185096383
open_access_boolean
owner DE-824
DE-703
DE-355
DE-BY-UBR
DE-20
DE-83
DE-11
DE-29T
DE-898
DE-BY-UBR
DE-91G
DE-BY-TUM
DE-188
DE-739
owner_facet DE-824
DE-703
DE-355
DE-BY-UBR
DE-20
DE-83
DE-11
DE-29T
DE-898
DE-BY-UBR
DE-91G
DE-BY-TUM
DE-188
DE-739
physical XIX, 389 Seiten Diagramme
publishDate 2008
publishDateSearch 2008
publishDateSort 2008
publisher Springer
record_format marc
series Algorithms and computation in mathematics
series2 Algorithms and computation in mathematics
spellingShingle Feichtner-Kozlov, Dmitry 1972-
Combinatorial algebraic topology
Algorithms and computation in mathematics
Algèbre homologique
Catégories (Mathématiques)
Topologie algébrique
Topologie combinatoire
Topologie gtt
Algebra, Homological
Algebraic topology
Categories (Mathematics)
Combinatorial topology
Kombinatorische Topologie (DE-588)4137530-0 gnd
Algebraische Topologie (DE-588)4120861-4 gnd
subject_GND (DE-588)4137530-0
(DE-588)4120861-4
title Combinatorial algebraic topology
title_auth Combinatorial algebraic topology
title_exact_search Combinatorial algebraic topology
title_full Combinatorial algebraic topology Dmitry Kozlov
title_fullStr Combinatorial algebraic topology Dmitry Kozlov
title_full_unstemmed Combinatorial algebraic topology Dmitry Kozlov
title_short Combinatorial algebraic topology
title_sort combinatorial algebraic topology
topic Algèbre homologique
Catégories (Mathématiques)
Topologie algébrique
Topologie combinatoire
Topologie gtt
Algebra, Homological
Algebraic topology
Categories (Mathematics)
Combinatorial topology
Kombinatorische Topologie (DE-588)4137530-0 gnd
Algebraische Topologie (DE-588)4120861-4 gnd
topic_facet Algèbre homologique
Catégories (Mathématiques)
Topologie algébrique
Topologie combinatoire
Topologie
Algebra, Homological
Algebraic topology
Categories (Mathematics)
Combinatorial topology
Kombinatorische Topologie
Algebraische Topologie
url http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=015731927&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA
volume_link (DE-604)BV011131286
work_keys_str_mv AT feichtnerkozlovdmitry combinatorialalgebraictopology