A history of abstract algebra

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Kleiner, Israel (VerfasserIn)
Format: Buch
Sprache:English
Veröffentlicht: Boston [u.a.] Birkhäuser 2007
Schlagworte:
Online-Zugang:Inhaltstext
Inhaltsverzeichnis
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nam a2200000 c 4500
001 BV022525220
003 DE-604
005 20141014
007 t|
008 070724s2007 xx a||| |||| 00||| eng d
016 7 |a 983487073  |2 DE-101 
020 |a 9780817646844  |9 978-0-8176-4684-4 
035 |a (OCoLC)76935733 
035 |a (DE-599)DNB983487073 
040 |a DE-604  |b ger  |e rakddb 
041 0 |a eng 
049 |a DE-824  |a DE-12  |a DE-20  |a DE-210  |a DE-11  |a DE-188 
050 0 |a QA162 
082 0 |a 512/.0209  |2 22 
084 |a SG 553  |0 (DE-625)143061:  |2 rvk 
084 |a SG 590  |0 (DE-625)143069:  |2 rvk 
084 |a SK 200  |0 (DE-625)143223:  |2 rvk 
084 |a 510  |2 sdnb 
100 1 |a Kleiner, Israel  |e Verfasser  |0 (DE-588)133618234  |4 aut 
245 1 0 |a A history of abstract algebra  |c Israel Kleiner 
264 1 |a Boston [u.a.]  |b Birkhäuser  |c 2007 
300 |a XIII, 168 S.  |b Ill.  |c 23 cm 
336 |b txt  |2 rdacontent 
337 |b n  |2 rdamedia 
338 |b nc  |2 rdacarrier 
648 7 |a Geschichte 1700-1950  |2 gnd  |9 rswk-swf 
650 4 |a Algèbre abstraite - Histoire 
650 4 |a Geschichte 
650 4 |a Algebra, Abstract  |x History 
650 0 7 |a Universelle Algebra  |0 (DE-588)4061777-4  |2 gnd  |9 rswk-swf 
689 0 0 |a Universelle Algebra  |0 (DE-588)4061777-4  |D s 
689 0 1 |a Geschichte 1700-1950  |A z 
689 0 |C b  |5 DE-604 
856 4 2 |q text/html  |u http://deposit.dnb.de/cgi-bin/dokserv?id=2930377&prov=M&dok_var=1&dok_ext=htm  |3 Inhaltstext 
856 4 2 |m Digitalisierung Deutsches Museum  |q application/pdf  |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=015731910&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA  |3 Inhaltsverzeichnis 
940 1 |n DHB 
940 1 |q DHB_JDG_ISBN_1 
942 1 1 |c 509  |e 22/bsb  |f 09033 
942 1 1 |c 509  |e 22/bsb  |f 0904 
942 1 1 |c 509  |e 22/bsb  |f 09034 
943 1 |a oai:aleph.bib-bvb.de:BVB01-015731910 

Datensatz im Suchindex

_version_ 1819624362382196736
adam_text CONTENTS PREFACE ......................................................... XI PERMISSIONS ..................................................... XV HISTORYOFCLASSICALALGEBRA ................................... 1 1.1 EARLYROOTS................................................ 1 1.2 THE GREEKS ................................................ 2 1.3 AL-KHWARIZMI ............................................. 3 1.4 CUBIC AND QUARTICEQUATIONS.................................. 5 1.5 THE CUBICAND COMPLEX NUMBERS .............................. 7 1.6 ALGEBRAICNOTATION: VIETEAND DESCARTES ........................ 8 1.7 THE THEORYOFEQUATIONSAND THEFUNDAMENTAL THEOREM OFALGEBRA . 10 1.8 SYMBOLICALALGEBRA......................................... 13 REFERENCES ..................................................... 14 2 HISTORYOFGROUP THEORY ...................................... 17 2.1 SOURCESOFGROUP THEORY..................................... 17 2.1.1 CLASSICAL ALGEBRA .................................... 18 2.1.2 NUMBER THEORY ..................................... 19 2.1.3 GEOMETRY ........................................... 20 2.1.4 ANALYSIS ............................................ 21 2.2 DEVELOPMENT OF SPECIALIZED THEORIESOFGROUPS ................ 22 2.2.1 PERMUTATIONGROUPS .................................. 22 2.2.2 ABELIANGROUPS ...................................... 26 2.2.3 TRANSFORMATIONGROUPS ............................... 28 2.3 EMERGENCE OFABSTRACTION INGROUP THEORY ...................... 30 2.4 CONSOLIDATIONOFTHEABSTRACT GROUP CONCEPT;DAWN OF ABSTRACT GROUP THEORY............................................... 33 2.5 DIVERGENCEOFDEVELOPMENTSINGROUP THEORY .................... 35 REFERENCES ..................................................... 38 VIII CONTENTS 3 HISTORYOFRING THEORY ....................................... 41 3.1 NONCOMMUTATIVE RINGTHEORY ................................. 42 3.1.1 EXAMPLES OFHYPERCOMPLEX NUMBER SYSTEMS ............ 42 3.1.2 CLASSIFICATION ........................................ 43 3.1.3 STRUCTURE ........................................... 45 3.2 COMMUTATIVE RINGTHEORY .................................... 47 3.2.1 ALGEBRAICNUMBER THEORY ............................. 48 3.2.2 ALGEBRAICGEOMETRY .................................. 54 3.2.3 INVARIANT THEORY ..................................... 57 3.3 THE ABSTRACT DEFINITION OFA RING............................... 58 3.4 EMMY NOETHERAND EMIL ARTIN ............................... 59 3.5 EPILOGUE .................................................. 60 REFERENCES ..................................................... 60 4 HISTORYOFFIELDTHEORY ....................................... 63 4.1 GALOISTHEORY .............................................. 63 4.2 ALGEBRAICNUMBER THEORY .................................... 64 4.2.1 DEDEKIND SIDEAS ..................................... 65 4.2.2 KRONECKER SIDEAS .................................... 67 4.2.3 DEDEKIND VS KRONECKER ............................... 68 4.3 ALGEBRAICGEOMETRY ......................................... 68 4.3.1 FIELDSOFALGEBRAICFUNCTIONS .......................... 68 4.3.2 FIELDSOFRATIONALFUNCTIONS ........................... 70 4.4 CONGRUENCES .............................................. 70 4.5 SYMBOLICALALGEBRA......................................... 71 4.6 THE ABSTRACT DEFINITION OFA FIELD .............................. 71 4.7 HENSEL SP-ADICNUMBERS ..................................... 73 4.8 STEINITZ ................................................... 74 4.9 A GLANCEAHEAD ............................................. 76 REFERENCES ..................................................... 77 5 HISTORYOFLINEAR ALGEBRA ..................................... 79 5.1 LINEAREQUATIONS........................................... 79 5.2 DETERMINANTS .............................................. 81 5.3 MATRICESAND LINEARTRANSFORMATIONS........................... 82 5.4 LINEARINDEPENDENCE,BASIS,AND DIMENSION ..................... 84 5.5 VECTORSPACES.............................................. 86 REFERENCES ..................................................... 89 6 EMMY NOETHER AND THEADVENT OFABSTRACTALGEBRA ............... 91 6.1 INVARIANT THEORY ............................................ 92 6.2 COMMUTATIVE ALGEBRA....................................... 94 6.3 NONCOMMUTATIVE ALGEBRAAND REPRESENTATION THEORY.............. 97 6.4 APPLICATIONSOFNONCOMMUTATIVE TOCOMMUTATIVE ALGEBRA......... 98 6.5 NOETHER SLEGACY ........................................... 99 REFERENCES ..................................................... 101 CONTENTS IX 7A COURSE INABSTRACTALGEBRA INSPIREDBY HISTORY ................. 103 PROBLEM I:WHY IS(-1)(-1) = 1? ................................. 104 PROBLEM II:WHAT ARETHEINTEGERSOLUTIONS OFX2 +2= Y3?............. 105 PROBLEM III:CAN WE TRISECT A 60 ANGLEUSINGONLYSTRAIGHTEDGE AND COMPASS? ................................................. 106 PROBLEM IV:CAN WE SOLVEX5 - 6X +3=0 BY RADICALS?.............. 107 PROBLEM V: PAPA,CAN YOU MULTIPLYTRIPLES? ........................ 108 GENERALREMARKSON THECOURSE .................................... 109 REFERENCES ..................................................... 110 8 BIOGRAPHIESOFSELECTEDMATHEMATICIANS ......................... 113 8.1 ARTHURCAYLEY(1821-1895) .................................. 113 8.1.1 INVARIANTS ........................................... 115 8.1.2 GROUPS ............................................. 116 8.1.3 MATRICES ............................................ 117 8.1.4 GEOMETRY ........................................... 118 8.1.5 CONCLUSION ......................................... 119 REFERENCES ..................................................... 120 8.2 RICHARDDEDEKIND(1831-1916) ............................... 121 8.2.1 ALGEBRAICNUMBERS ................................... 124 8.2.2 REALNUMBERS ....................................... 126 8.2.3 NATURALNUMBERS .................................... 128 8.2.4 OTHERWORKS ........................................ 129 8.2.5 CONCLUSION ......................................... 131 REFERENCES ..................................................... 132 8.3 EVARISTEGALOIS(1811-1832) ................................. 133 8.3.1 MATHEMATICS ........................................ 135 8.3.2 POLITICS ............................................. 135 8.3.3 THE DUEL ............................................ 137 8.3.4 TESTAMENT .......................................... 137 8.3.5 CONCLUSION ......................................... 138 REFERENCES ..................................................... 139 8.4 CARLFRIEDRICHGAUSS (1777-1855) ............................ 139 8.4.1 NUMBER THEORY...................................... 140 8.4.2 DIFFERENTIAL GEOMETRY,PROBABILITY, AND STATISTICS .......... 142 8.4.3 THE DIARY ........................................... 142 8.4.4 CONCLUSION ......................................... 143 REFERENCES ..................................................... 144 8.5 WILLIAMROWAN HAMILTON (1805-1865) ........................ 144 8.5.1 OPTICS .............................................. 146 8.5.2 DYNAMICS .......................................... 147 8.5.3 COMPLEX NUMBERS ................................... 149 8.5.4 FOUNDATIONSOFALGEBRA ............................... 150 8.5.5 QUATERNIONS ......................................... 152 8.5.6 CONCLUSION ......................................... 156 REFERENCES ..................................................... 156 X CONTENTS 8.6 EMMY NOETHER(1882-1935) ................................. 157 8.6.1 EARLYYEARS ......................................... 157 8.6.2 UNIVERSITYSTUDIES ................................... 158 8.6.3 GOTTINGEN ........................................... 159 8.6.4 NOETHERASATEACHER ................................. 160 8.6.5 BRYN MAWR ......................................... 161 8.6.6 CONCLUSION ......................................... 162 REFERENCES ..................................................... 162 INDEX ........................................................... 165
any_adam_object 1
author Kleiner, Israel
author_GND (DE-588)133618234
author_facet Kleiner, Israel
author_role aut
author_sort Kleiner, Israel
author_variant i k ik
building Verbundindex
bvnumber BV022525220
callnumber-first Q - Science
callnumber-label QA162
callnumber-raw QA162
callnumber-search QA162
callnumber-sort QA 3162
callnumber-subject QA - Mathematics
classification_rvk SG 553
SG 590
SK 200
ctrlnum (OCoLC)76935733
(DE-599)DNB983487073
dewey-full 512/.0209
dewey-hundreds 500 - Natural sciences and mathematics
dewey-ones 512 - Algebra
dewey-raw 512/.0209
dewey-search 512/.0209
dewey-sort 3512 3209
dewey-tens 510 - Mathematics
discipline Mathematik
era Geschichte 1700-1950 gnd
era_facet Geschichte 1700-1950
format Book
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01909nam a2200517 c 4500</leader><controlfield tag="001">BV022525220</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20141014 </controlfield><controlfield tag="007">t|</controlfield><controlfield tag="008">070724s2007 xx a||| |||| 00||| eng d</controlfield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">983487073</subfield><subfield code="2">DE-101</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780817646844</subfield><subfield code="9">978-0-8176-4684-4</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)76935733</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DNB983487073</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-824</subfield><subfield code="a">DE-12</subfield><subfield code="a">DE-20</subfield><subfield code="a">DE-210</subfield><subfield code="a">DE-11</subfield><subfield code="a">DE-188</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA162</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">512/.0209</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SG 553</subfield><subfield code="0">(DE-625)143061:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SG 590</subfield><subfield code="0">(DE-625)143069:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 200</subfield><subfield code="0">(DE-625)143223:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">510</subfield><subfield code="2">sdnb</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Kleiner, Israel</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)133618234</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">A history of abstract algebra</subfield><subfield code="c">Israel Kleiner</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Boston [u.a.]</subfield><subfield code="b">Birkhäuser</subfield><subfield code="c">2007</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XIII, 168 S.</subfield><subfield code="b">Ill.</subfield><subfield code="c">23 cm</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="648" ind1=" " ind2="7"><subfield code="a">Geschichte 1700-1950</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Algèbre abstraite - Histoire</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Geschichte</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Algebra, Abstract</subfield><subfield code="x">History</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Universelle Algebra</subfield><subfield code="0">(DE-588)4061777-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Universelle Algebra</subfield><subfield code="0">(DE-588)4061777-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Geschichte 1700-1950</subfield><subfield code="A">z</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="C">b</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="q">text/html</subfield><subfield code="u">http://deposit.dnb.de/cgi-bin/dokserv?id=2930377&amp;prov=M&amp;dok_var=1&amp;dok_ext=htm</subfield><subfield code="3">Inhaltstext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung Deutsches Museum</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&amp;doc_library=BVB01&amp;local_base=BVB01&amp;doc_number=015731910&amp;sequence=000001&amp;line_number=0001&amp;func_code=DB_RECORDS&amp;service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="n">DHB</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">DHB_JDG_ISBN_1</subfield></datafield><datafield tag="942" ind1="1" ind2="1"><subfield code="c">509</subfield><subfield code="e">22/bsb</subfield><subfield code="f">09033</subfield></datafield><datafield tag="942" ind1="1" ind2="1"><subfield code="c">509</subfield><subfield code="e">22/bsb</subfield><subfield code="f">0904</subfield></datafield><datafield tag="942" ind1="1" ind2="1"><subfield code="c">509</subfield><subfield code="e">22/bsb</subfield><subfield code="f">09034</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-015731910</subfield></datafield></record></collection>
id DE-604.BV022525220
illustrated Illustrated
indexdate 2024-12-23T20:07:33Z
institution BVB
isbn 9780817646844
language English
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-015731910
oclc_num 76935733
open_access_boolean
owner DE-824
DE-12
DE-20
DE-210
DE-11
DE-188
owner_facet DE-824
DE-12
DE-20
DE-210
DE-11
DE-188
physical XIII, 168 S. Ill. 23 cm
psigel DHB_JDG_ISBN_1
publishDate 2007
publishDateSearch 2007
publishDateSort 2007
publisher Birkhäuser
record_format marc
spellingShingle Kleiner, Israel
A history of abstract algebra
Algèbre abstraite - Histoire
Geschichte
Algebra, Abstract History
Universelle Algebra (DE-588)4061777-4 gnd
subject_GND (DE-588)4061777-4
title A history of abstract algebra
title_auth A history of abstract algebra
title_exact_search A history of abstract algebra
title_full A history of abstract algebra Israel Kleiner
title_fullStr A history of abstract algebra Israel Kleiner
title_full_unstemmed A history of abstract algebra Israel Kleiner
title_short A history of abstract algebra
title_sort a history of abstract algebra
topic Algèbre abstraite - Histoire
Geschichte
Algebra, Abstract History
Universelle Algebra (DE-588)4061777-4 gnd
topic_facet Algèbre abstraite - Histoire
Geschichte
Algebra, Abstract History
Universelle Algebra
url http://deposit.dnb.de/cgi-bin/dokserv?id=2930377&prov=M&dok_var=1&dok_ext=htm
http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=015731910&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA
work_keys_str_mv AT kleinerisrael ahistoryofabstractalgebra