Mathematical methods in survival analysis, reliability and quality of life

Gespeichert in:
Bibliographische Detailangaben
Format: Buch
Sprache:English
Veröffentlicht: London ISTE [u.a.] 2008
Ausgabe:1. publ.
Schriftenreihe:Applied stochastic methods series
Schlagworte:
Online-Zugang:Inhaltsverzeichnis
Klappentext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nam a2200000 c 4500
001 BV022490534
003 DE-604
005 20210302
007 t|
008 070702s2008 xx d||| |||| 00||| eng d
020 |a 9781847040213  |9 978-1-84704-021-3 
020 |a 1847040217  |9 1-84704-021-7 
020 |a 9781848210103  |9 978-1-84821-010-3 
035 |a (OCoLC)182573444 
035 |a (DE-599)BVBBV022490534 
040 |a DE-604  |b ger  |e rakwb 
041 0 |a eng 
049 |a DE-355 
050 0 |a QA276 
082 0 |a 519.5/46  |2 22 
084 |a QH 252  |0 (DE-625)141562:  |2 rvk 
245 1 0 |a Mathematical methods in survival analysis, reliability and quality of life  |c ed. by Catherine Huber ... 
250 |a 1. publ. 
264 1 |a London  |b ISTE [u.a.]  |c 2008 
300 |a 369 S.  |b graph. Darst. 
336 |b txt  |2 rdacontent 
337 |b n  |2 rdamedia 
338 |b nc  |2 rdacarrier 
490 0 |a Applied stochastic methods series 
650 4 |a Failure time data analysis 
650 4 |a Survival analysis (Biometry) 
650 0 7 |a Ereignisdatenanalyse  |0 (DE-588)4132103-0  |2 gnd  |9 rswk-swf 
650 0 7 |a Zuverlässigkeitstheorie  |0 (DE-588)4195525-0  |2 gnd  |9 rswk-swf 
650 0 7 |a Mathematische Methode  |0 (DE-588)4155620-3  |2 gnd  |9 rswk-swf 
655 7 |0 (DE-588)4143413-4  |a Aufsatzsammlung  |2 gnd-content 
689 0 0 |a Ereignisdatenanalyse  |0 (DE-588)4132103-0  |D s 
689 0 1 |a Zuverlässigkeitstheorie  |0 (DE-588)4195525-0  |D s 
689 0 2 |a Mathematische Methode  |0 (DE-588)4155620-3  |D s 
689 0 |C b  |5 DE-604 
700 1 |a Huber, Catherine  |e Sonstige  |4 oth 
856 4 2 |m Digitalisierung UB Regensburg  |q application/pdf  |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=015697754&sequence=000003&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA  |3 Inhaltsverzeichnis 
856 4 2 |m Digitalisierung UB Regensburg  |q application/pdf  |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=015697754&sequence=000004&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA  |3 Klappentext 
943 1 |a oai:aleph.bib-bvb.de:BVB01-015697754 

Datensatz im Suchindex

DE-BY-UBR_call_number 02/21.Q0060
DE-BY-UBR_katkey 3868767
DE-BY-UBR_location 00
DE-BY-UBR_media_number 069040997496
_version_ 1822742694638649344
adam_text Contents Preface ......................................... 13 Part і ......................................... 15 Chapter 1. Model Selection for Additive Regression in the Presence of Right-Censoring ................................... 17 Elodie Brunel and Fabienne Comte 1.1. Introduction ................................. 17 1.2. Assumptions on the model and the collection of approximation spaces 18 1.2.1. Non-parametric regression model with censored data ...... 18 1.2.2. Description of the approximation spaces in the univariate case . 19 1.2.3. The particular multivariate setting of additive models ...... 20 1.3. The estimation method ........................... 20 1.3.1. Transformation of the data ..................... 20 1.3.2. The mean-square contrast ...................... 21 1.4. Main result for the adaptive mean-square estimator .......... 22 1.5. Practical implementation ......................... 23 1.5.1. The algorithm ............................. 23 1.5.2. Univariate examples ......................... 24 1.5.3. В ¡variate examples .......................... 27 1.5.4. A trivariate example ......................... 28 1.6. Bibliography ................................ 30 Chapter 2. Non-parametric Estimation of Conditional Probabilities, Means and Quantités under Bias Sampling ....................... 33 Odile Pons 2.1. Introduction ................................. 33 2.2. Non-parametric estimation of ρ ...................... 34 2.3. Bias depending on the value of F .................... 35 6 Mathematical Methods in Survival Analysis, Reliability and Quality of Life 2.4. Bias due to truncation on X ........................ 37 2.5. Truncation of a response variable in a non-parametric regression model 37 2.6. Double censoring of a response variable in a non-parametric model . 42 2.7. Other truncation and censoring of У in a non-parametric model ... 44 2.8. Observation by interval .......................... 47 2.9. Bibliography ................................ 48 Chapter 3. Inference in Transformation Models for Arbitrarily Censored and Truncated Data ................................. 49 Filia Vonta and Catherine Huber 3.1. Introduction ................................. 49 3.2. Non-parametric estimation of the survival function S ......... 50 3.3. Semi-parametric estimation of the survival function S ......... 51 3.4. Simulations ................................. 54 3.5. Bibliography ................................ 59 Chapter 4. Introduction of Within-area Risk Factor Distribution in Eco¬ logical Poisson Models ............................... 61 Lea Fortunato, Chantal Guihenneuc-Jouyaux, Dominique Laurier, Margot TlRMARCHE, Jacqueline CLAVEL and Denis HÉMON 4.1. Introduction ................................. 61 4.2. Modeling framework ............................ 62 4.2.1. Aggregated model .......................... 62 4.2.2. Prior distributions .......................... 65 4.3. Simulation framework ........................... 65 4.4. Results .................................... 66 4.4.1. Strong association between relative risk and risk factor, corre¬ lated within-area means and variances (mean-dependent case) . 67 4.4.2. Sensitivity to within-area distribution of the risk factor ..... 68 4.4.3. Application: leukemia and indoor radon exposure ........ 69 4.5. Discussion ................................. 71 4.6. Bibliography ................................ 72 Chapter 5. Semi-Markov Processes and Usefulness in Medicine ...... 75 Eve Mathieu-Dupas, Claudine Gras-Aygon and Jean-Pierre DaurÈS 5.1. Introduction ................................. 75 5.2. Methods ................................... 76 5.2.1. Model description and notation ................... 76 5.2.2. Construction of health indicators .................. 79 5.3. An application to HIV control ...................... 82 5.3.1. Context ................................ 82 5.3.2. Estimation method .......................... 82 Contents 7 5.3.3. Results: new indicators of health state ............... 84 5.4. An application to breast cancer ...................... 86 5.4.1. Context ................................ 86 5.4.2. Age and stage-specific prevalence ................. 87 5.4.3. Estimation method .......................... 88 5.4.4. Results: indicators of public health ................. 88 5.5. Discussion ................................. 89 5.6. Bibliography ................................ 89 Chapter 6. Bivariate Cox Models ......................... 93 Michel Broniatowski, Alexandre Depire and Ya acov Ritov 6.1. Introduction ................................. 93 6.2. A dependence model for duration data .................. 93 6.3. Some useful facts in bivariate dependence ................ 95 6.4. Coherence .................................. 98 6.5. Covariates and estimation ......................... 102 6.6. Application: regression of Spearman s rho on covariates ....... 104 6.7. Bibliography ................................ 106 Chapter 7. Non-parametric Estimation of a Class of Survival Functionals 109 Belkacem Abdous 7.1. Introduction ................................. 109 7.2. Weighted local polynomial estimates ................... Ill 7.3. Consistency of local polynomial fitting estimators ........... 114 7.4. Automatic selection of the smoothing parameter ............ 116 7.5. Bibliography ................................ 119 Chapter 8. Approximate Likelihood in Survival Models ........... 121 Henning Läuter 8.1. Introduction ................................. 121 8.2. Likelihood in proportional hazard models ................ 122 8.3. Likelihood in parametric models ..................... 122 8.4. Profile likelihood .............................. 123 8.4.1. Smoothness classes ......................... 124 8.4.2. Approximate likelihood function .................. 125 8.5. Statistical arguments ............................ 127 8.6. Bibliography ................................ 129 PARTII ........................................ 131 Chapter 9. Cox Regression with Missing Values of a Covariate having a Non-proportional Effect on Risk of Failure ................... 133 Jean-François DUPUY and Eve Leconte 8 Mathematical Methods in Survival Analysis, Reliability and Quality of Life 9.1. Introduction ................................. 133 9.2. Estimation in the Cox model with missing covariate values: a short review .................................... 136 9.3. Estimation procedure in the stratified Cox model with missing stra¬ tum indicator values ............................ 139 9.4. Asymptotic theory ............................. 141 9.5. A simulation study ............................. 145 9.6. Discussion ................................. 147 9.7. Bibliography ................................ 149 Chapter 10. Exact Bayesian Variable Sampling Plans for Exponential Dis¬ tribution under Туре -I Censoring ......................... 151 Chien-Tai Lin, Yen-Lung HUANG and N. Balakrishnan 10.1. Introduction ................................. 151 10.2. Proposed sampling plan and Bayes risk ................. 152 10.3. Numerical examples and comparison .................. 156 10.4. Bibliography ................................ 161 Chapter 11. Reliability of Stochastic Dynamical Systems Applied to Fa¬ tigue Crack Growth Modeling ........................... 163 Julien Chiquet and Nikolaos Limnios 11.1. Introduction ................................. 163 11.2. Stochastic dynamical systems with jump Markov process ....... 165 11.3. Estimation .................................. 168 11.4. Numerical application ........................... 170 11.5. Conclusion ................................. 175 11.6. Bibliography ................................ 175 Chapter 12. Statistical Analysis of a Redundant System with One Stand¬ by Unit ......................................... 179 Vilijandas Bagdonavičius, Inga Masiulaityte and Mikhail Nikulin 12.1. Introduction ................................. 179 12.2. The models ................................. 180 12.3. The tests ................................... 181 12.4. Limit distribution of the test statistics .................. 182 12.5. Bibliography ................................ 187 Chapter 13. A Modified Chi-squared Goodness-of-fit Test for the Three- parameter Weibull Distribution and its Applications in Reliability ..... 189 Vassilly Voinov, Roza Alloyarova and Natalie Pya 13.1. Introduction ................................. 189 13.2. Parameter estimation and modified chi-squared tests .......... 191 Contents 9 13.3. Power estimation .............................. 194 13.4. Neyman-Pearson classes.......................... 194 13.5. Discussion ................................. 197 13.6. Conclusion ................................. 198 13.7. Appendix.................................. 198 13.8. Bibliography ................................ 201 Chapter 14. Accelerated Life Testing when the Hazard Rate Function has Cup Shape ...................................... 203 Vilijandas Bagdonavičius, Luc Clerjaud and Mikhail Nikulin 14.1. Introduction ................................. 203 14.2. Estimation in the AFT-GW model .................... 204 14.2.1. AFT model .............................. 204 14.2.2. AFT-Weibull, AFT-lognormal and AFT-GW models ....... 205 14.2.3. Plans of ALT experiments ...................... 205 14.2.4. Parameter estimation: AFT-GW model .............. 206 14.3. Properties of estimators: simulation results for the AFT-GW model . 207 14.4. Some remarks on the second plan of experiments ........... 211 14.5. Conclusion ................................. 213 14.6. Appendix .................................. 213 14.7. Bibliography ................................ 215 Chapter 15. Point Processes in Software Reliability .............. 217 James Ledoux 15.1. Introduction ................................. 217 15.2. Basic concepts for repairable systems .................. 219 15.3. Self-exciting point processes and black-box models .......... 221 15.4. White-box models and Markovian arrival processes .......... 225 15.4.1. A Markovian arrival model ..................... 226 15.4.2. Parameter estimation ......................... 228 15.4.3. Reliability growth .......................... 232 15.5. Bibliography ................................ 234 Part III ....................................... 237 Chapter 16. Likelihood Inference for the Latent Markov Rasch Model . . 239 Francesco Bartolucci, Fulvia Pennoni and Monia Lupparelli 16.1. Introduction ................................. 239 16.2. Latent class Rasch model ......................... 240 16.3. Latent Markov Rasch model ....................... 241 16.4. Likelihood inference for the latent Markov Rasch model ....... 243 16.4.1. Log-likelihood maximization .................... 244 10 Mathematical Methods in Survival Analysis, Reliability and Quality of Life 16.4.2. Likelihood ratio testing of hypotheses on the parameters .... 245 16.5. An application ............................... 246 16.6. Possible extensions ............................. 247 16.6.1. Discrete response variables ..................... 248 16.6.2. Multivariate longitudinal data .................... 248 16.7. Conclusions ................................. 251 16.8. Bibliography ................................ 252 Chapter 17. Selection of Items Fitting a Rasch Model ............. 255 Jean-Benoit Hardouin andMounir Mesbah 17.1. Introduction ................................. 255 17.2. Notations and assumptions ........................ 256 17.2.1. Notations ............................... 256 17.2.2. Fundamental assumptions of the Item Response Theory (IRT) . 256 17.3. The Rasch model and the multidimensional marginally sufficient Rasch model ................................. 256 17.3.1. The Rasch model ........................... 256 17.3.2. The multidimensional marginally sufficient Rasch model .... 257 17.4. The Raschfit procedure .......................... 258 17.5. A fast version of Raschfit......................... 259 17.5.1. Estimation of the parameters under the fixed effects Rasch model 259 17.5.2. Principle of Raschfit-fast ...................... 260 17.5.3. A model where the new item is explained by the same latent trait as the kernel ........................... 260 17.5.4. A model where the new item is not explained by the same latent trait as the kernel ........................... 260 17.5.5. Selection of the new item in the scale ............... 261 17.6. A small set of simulations to compare Raschfit and Raschfit-fast ... 261 17.6.1. Parameters of the simulation study ................. 261 17.6.2. Results and computing time ..................... 264 17.7. A large set of simulations to compare Raschfit-fast, MSP and HCA/CCPROX ............................... 269 17.7.1. Parameters of the simulations .................... 269 17.7.2. Discussion .............................. 270 17.8. The Stata module Raschfif ....................... 270 17.9. Conclusion ................................. 271 n.lO.Bibliography ................................ 273 Chapter 18. Analysis of Longitudinal HrQoL using Latent Regression in the Context of Rasch Modeling .......................... 275 Silvia Bacci 18.1. Introduction ................................. 275 18.2. Global models for longitudinal data analysis .............. 276 Contents 11 18.3. A latent regression Rasch model for longitudinal data analysis .... 278 18.3.1. Model structure ............................ 278 18.3.2. Correlation structure ......................... 280 18.3.3. Estimation .............................. 281 18.3.4. Implementation with SAS ...................... 281 18.4. Case study: longitudinal HrQoL of terminal cancer patients ...... 283 18.5. Concluding remarks ............................ 287 18.6. Bibliography ................................ 289 Chapter 19. Empirical Internal Validation and Analysis of a Quality of Life Instrument in French Diabetic Patients during an Educational Inter¬ vention ......................................... 291 Judith Chwalow, Keith Meadows, Mounir Mesbah, Vincent Coliche and Etienne Mollet 19.1. Introduction ................................. 291 19.2. Material and methods ........................... 292 19.2.1. Health care providers and patients ................. 292 19.2.2. Psychometric validation of the DHP ................ 293 19.2.3. Psychometric methods ........................ 293 19.2.4. Comparative analysis of quality of life by treatment group . . . 294 19.3. Results .................................... 295 19.3.1. Internal validation of the DHP ................... 295 19.3.2. Comparative analysis of quality of life by treatment group . . . 303 19.4. Discussion ................................. 304 19.5. Conclusion ................................. 305 19.6. Bibliography ................................ 306 19.7. Appendices ................................. 309 Part IV ........................................ 315 Chapter 20. Deterministic Modeling of the Size of the HIV/AIDS Epidemic in Cuba ........................................ 317 Rachid Lounes, Hector de Arazoza, Y.H. Hsieh and Jose Joanes 20.1. Introduction ................................. 317 20.2. The models ................................. 319 20.2.1. The k2X model ........................... 322 20.2.2. The k2Y model ............................ 322 20.2.3. The λ·2ΧΥ model .......................... 323 20.2.4. The k2-^Y model .......................... 324 20.3. The underreporting rate .......................... 324 20.4. Fitting the models to Cuban data ..................... 325 20.5. Discussion and concluding remarks ................... 326 20.6. Bibliography ................................ 330 12 Mathematical Methods in Survival Analysis, Reliability and Quality of Life Chapter 21. Some Probabilistic Models Useful in Sport Sciences ...... 333 Léo Gerville-Réache, Mikhail Nikulin, Sébastien Orazio, Nicolas Paris and Virginie Ro S A 21.1. Introduction ................................. 333 21.2. Sport jury analysis: the Gauss-Markov approach ............ 334 21.2.1. Gauss-Markov model ........................ 334 21.2.2. Test for non-objectivity of a variable ................ 334 21.2.3. Test of difference between skaters ................. 335 21.2.4. Test for the less precise judge .................... 336 21.3. Sport performance analysis: the fatigue and fitness approach ..... 337 21.3.1. Model characteristics ........................ 337 21.3.2. Monte Carlo simulation ....................... 338 21.3.3. Results ................................ 339 21.4. Sport equipment analysis: the fuzzy subset approach ......... 339 21.4.1. Statistical model used ........................ 340 21.4.2. Sensorial analysis step ........................ 341 21.4.3. Results ................................ 342 21.5. Sport duel issue analysis: the logistic simulation approach ...... 343 21.5.1. Modeling by logistic regression .................. 344 21.5.2. Numerical simulations ........................ 345 21.5.3. Results ................................ 345 21.6. Sport epidemiology analysis: the accelerated degradation approach . 347 21.6.1. Principle of degradation in reliability analysis .......... 347 21.6.2. Accelerated degradation model ................... 348 21.7. Conclusion ................................. 350 21.8. Bibliography ................................ 350 Appendices ...................................... 353 A. European Seminar: Some Figures ...................... 353 A.I. Former international speakers invited to the European Seminar . . 353 A.2. Former meetings supported by the European Seminar ....... 353 A.3. Books edited by the organizers of the European Seminar ...... 354 A.4. Institutions supporting the European Seminar (names of colleagues) 355 B. Contributors .................................. 357 Index .......................................... 367 Reliability and survival analysis are important applications of stochastic mathematics (probability, statistics and stochastic processes) that are usually covered separately in spite of the similarity of the mathematical theory involved. This book aims to redress this situation: it includes 21 chapters divided into four parts: survival analysis, reliability, quality of life and related topics. Many of these chapters are based on papers that were presented at the European Seminar on Mathematical Methods for Survival Analysis, Reliability and Quality of Life in 2006. Catherine Huber is an Emeritus Professor at the Université de Paris René Descartes, France. Nikolaos Li m n ios is a Professor at the University of Technology of Compiègne, France. Mounir Mesbah is a Professor at the Université Pierre et Marie Curie, Paris 6, France. Mikhail Nikuiin is a Professor at the Université Victor Segalen, Bordeaux 2, France,
any_adam_object 1
building Verbundindex
bvnumber BV022490534
callnumber-first Q - Science
callnumber-label QA276
callnumber-raw QA276
callnumber-search QA276
callnumber-sort QA 3276
callnumber-subject QA - Mathematics
classification_rvk QH 252
ctrlnum (OCoLC)182573444
(DE-599)BVBBV022490534
dewey-full 519.5/46
dewey-hundreds 500 - Natural sciences and mathematics
dewey-ones 519 - Probabilities and applied mathematics
dewey-raw 519.5/46
dewey-search 519.5/46
dewey-sort 3519.5 246
dewey-tens 510 - Mathematics
discipline Mathematik
Wirtschaftswissenschaften
edition 1. publ.
format Book
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02101nam a2200481 c 4500</leader><controlfield tag="001">BV022490534</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20210302 </controlfield><controlfield tag="007">t|</controlfield><controlfield tag="008">070702s2008 xx d||| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781847040213</subfield><subfield code="9">978-1-84704-021-3</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1847040217</subfield><subfield code="9">1-84704-021-7</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781848210103</subfield><subfield code="9">978-1-84821-010-3</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)182573444</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV022490534</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-355</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA276</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">519.5/46</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">QH 252</subfield><subfield code="0">(DE-625)141562:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Mathematical methods in survival analysis, reliability and quality of life</subfield><subfield code="c">ed. by Catherine Huber ...</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">1. publ.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">London</subfield><subfield code="b">ISTE [u.a.]</subfield><subfield code="c">2008</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">369 S.</subfield><subfield code="b">graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Applied stochastic methods series</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Failure time data analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Survival analysis (Biometry)</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Ereignisdatenanalyse</subfield><subfield code="0">(DE-588)4132103-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Zuverlässigkeitstheorie</subfield><subfield code="0">(DE-588)4195525-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mathematische Methode</subfield><subfield code="0">(DE-588)4155620-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="0">(DE-588)4143413-4</subfield><subfield code="a">Aufsatzsammlung</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Ereignisdatenanalyse</subfield><subfield code="0">(DE-588)4132103-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Zuverlässigkeitstheorie</subfield><subfield code="0">(DE-588)4195525-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Mathematische Methode</subfield><subfield code="0">(DE-588)4155620-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="C">b</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Huber, Catherine</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Regensburg</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&amp;doc_library=BVB01&amp;local_base=BVB01&amp;doc_number=015697754&amp;sequence=000003&amp;line_number=0001&amp;func_code=DB_RECORDS&amp;service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Regensburg</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&amp;doc_library=BVB01&amp;local_base=BVB01&amp;doc_number=015697754&amp;sequence=000004&amp;line_number=0002&amp;func_code=DB_RECORDS&amp;service_type=MEDIA</subfield><subfield code="3">Klappentext</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-015697754</subfield></datafield></record></collection>
genre (DE-588)4143413-4 Aufsatzsammlung gnd-content
genre_facet Aufsatzsammlung
id DE-604.BV022490534
illustrated Illustrated
indexdate 2024-12-23T20:06:38Z
institution BVB
isbn 9781847040213
1847040217
9781848210103
language English
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-015697754
oclc_num 182573444
open_access_boolean
owner DE-355
DE-BY-UBR
owner_facet DE-355
DE-BY-UBR
physical 369 S. graph. Darst.
publishDate 2008
publishDateSearch 2008
publishDateSort 2008
publisher ISTE [u.a.]
record_format marc
series2 Applied stochastic methods series
spellingShingle Mathematical methods in survival analysis, reliability and quality of life
Failure time data analysis
Survival analysis (Biometry)
Ereignisdatenanalyse (DE-588)4132103-0 gnd
Zuverlässigkeitstheorie (DE-588)4195525-0 gnd
Mathematische Methode (DE-588)4155620-3 gnd
subject_GND (DE-588)4132103-0
(DE-588)4195525-0
(DE-588)4155620-3
(DE-588)4143413-4
title Mathematical methods in survival analysis, reliability and quality of life
title_auth Mathematical methods in survival analysis, reliability and quality of life
title_exact_search Mathematical methods in survival analysis, reliability and quality of life
title_full Mathematical methods in survival analysis, reliability and quality of life ed. by Catherine Huber ...
title_fullStr Mathematical methods in survival analysis, reliability and quality of life ed. by Catherine Huber ...
title_full_unstemmed Mathematical methods in survival analysis, reliability and quality of life ed. by Catherine Huber ...
title_short Mathematical methods in survival analysis, reliability and quality of life
title_sort mathematical methods in survival analysis reliability and quality of life
topic Failure time data analysis
Survival analysis (Biometry)
Ereignisdatenanalyse (DE-588)4132103-0 gnd
Zuverlässigkeitstheorie (DE-588)4195525-0 gnd
Mathematische Methode (DE-588)4155620-3 gnd
topic_facet Failure time data analysis
Survival analysis (Biometry)
Ereignisdatenanalyse
Zuverlässigkeitstheorie
Mathematische Methode
Aufsatzsammlung
url http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=015697754&sequence=000003&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA
http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=015697754&sequence=000004&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA
work_keys_str_mv AT hubercatherine mathematicalmethodsinsurvivalanalysisreliabilityandqualityoflife