Actuarial models the mathematics of insurance

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Rotar', Vladimir I. (VerfasserIn)
Format: Buch
Sprache:English
Veröffentlicht: Boca Raton, FL Chapman & Hall 2007
Schlagworte:
Online-Zugang:Publisher description
Inhaltsverzeichnis
Klappentext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nam a2200000zc 4500
001 BV022463927
003 DE-604
005 20080528
007 t|
008 070614s2007 xxu |||| 00||| eng d
010 |a 2006045558 
020 |a 9781584885863  |9 978-1-58488-586-3 
020 |a 1584885866  |9 1-584-88586-6 
035 |a (OCoLC)494346427 
035 |a (DE-599)BVBBV022463927 
040 |a DE-604  |b ger  |e aacr 
041 0 |a eng 
044 |a xxu  |c US 
049 |a DE-19  |a DE-384  |a DE-29T 
050 0 |a HG8781 
082 0 |a 368.01  |2 22 
082 0 |a 368/.01 
084 |a QQ 600  |0 (DE-625)141985:  |2 rvk 
084 |a QQ 630  |0 (DE-625)141989:  |2 rvk 
100 1 |a Rotar', Vladimir I.  |e Verfasser  |4 aut 
245 1 0 |a Actuarial models  |b the mathematics of insurance  |c Vladimir I. Rotar 
264 1 |a Boca Raton, FL  |b Chapman & Hall  |c 2007 
300 |a XXII, 633 S. 
336 |b txt  |2 rdacontent 
337 |b n  |2 rdamedia 
338 |b nc  |2 rdacarrier 
500 |a Includes bibliographical references and index 
650 7 |a Assurance - Mathématiques  |2 ram 
650 4 |a Mathematik 
650 4 |a Insurance  |x Mathematics 
650 0 7 |a Versicherungsmathematik  |0 (DE-588)4063194-1  |2 gnd  |9 rswk-swf 
655 7 |0 (DE-588)4123623-3  |a Lehrbuch  |2 gnd-content 
689 0 0 |a Versicherungsmathematik  |0 (DE-588)4063194-1  |D s 
689 0 |8 1\p  |5 DE-604 
856 4 |u http://www.loc.gov/catdir/enhancements/fy0664/2006045558-d.html  |3 Publisher description 
856 4 2 |m Digitalisierung UB Passau  |q application/pdf  |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=015671544&sequence=000003&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA  |3 Inhaltsverzeichnis 
856 4 2 |m Digitalisierung UB Passau  |q application/pdf  |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=015671544&sequence=000004&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA  |3 Klappentext 
883 1 |8 1\p  |a cgwrk  |d 20201028  |q DE-101  |u https://d-nb.info/provenance/plan#cgwrk 
943 1 |a oai:aleph.bib-bvb.de:BVB01-015671544 

Datensatz im Suchindex

DE-19_call_number 0500/QQ 600 R842
DE-19_location 70
DE-BY-UBM_katkey 3395216
DE-BY-UBM_media_number 41623001890018
_version_ 1823053535848169472
adam_text Contents Preface xv Acknowledgments xxi Introduction 1 CHAPTER 0. Some Preliminary Notions and Facts from Probability Theory, the Theory of Interest, and Calculus1 7 1 PROBABILITY AND RANDOM VARIABLES ............... 7 1.1 Sample space, events, probability measure ............... 7 1.2 Independence and conditional probabilities ............... 9 1.3 Random variables, random vectors, and their distributions ....... 10 1.3.1 Random variables ........................ 10 1.3.2 Random vectors ......................... 11 1.3.3 Cumulative distribution functions ................ 14 1.3.4 Quantiles ............................ 17 1.3.5 Mixtures of distributions .................... 17 2 EXPECTATION ................................ 18 2.1 Definitions ................................ 18 2.2 Integration by parts and a formula for expectation ........... 21 2.3 A general definition of expectation ................... 22 2.4 Can we encounter an infinite expected value in models of real phenomena? ............................... 23 2.5 Moments of r.v. s. Correlation ...................... 24 2.5.1 Variance and other moments .................. 24 2.5.2 The Cauchy-Schwarz inequality ................ 25 2.5.3 Covariance and correlation ................... 25 2.6 Inequalities for deviations ........................ 27 2.7 Linear transformations of r.v. s. Normalization ............. 28 3 SOME BASIC DISTRIBUTIONS ...................... 29 3.1 Discrete distributions .......................... 29 3.1.1 The binomial distribution .................... 29 3.1.2 The multinomial distribution .................. 30 3.1.3 The geometric distribution ................... 30 3.1.4 The negative binomial distribution ............... 31 3.1.5 The Poisson distribution .................... 32 3.2 Continuous distributions ........................ 33 3.2.1 The uniform distribution and simulation of r.v. s ........ 33 3.2.2 The exponential distribution .................. 35 3.2.3 The r(gamma)-distribution ................... 36 3.2.4 The normal distribution ..................... 37 4 MOMENT GENERATING FUNCTIONS .................. 38 4.1 Laplace transform ............................ 38 4.2 An example when a m.g.f. does not exist ................ 41 4.3 The m.g.f. s of basic distributions .................... 41 4.3.1 The binomial distribution .................... 42 4.3.2 The geometric and negative binomial distributions ....... 43 4.3.3 The Poisson distribution .................... 43 4.3.4 The uniform distribution .................... 43 4.3.5 The exponential and gamma distributions ........... 44 4.3.6 The normal distribution ..................... 44 4.4 The moment generating function and moments ............ 44 4.5 Expansions for m.g.f. s ......................... 46 4.5.1 Taylor s expansions for m.g.f. s ................. 46 4.5.2 Cumulants ............................ 46 5 CONVERGENCE OF RANDOM VARIABLES AND DISTRIBUTIONS . 47 6 SOME FACTS AND FORMULAS FROM THE THEORY OF INTEREST 50 6.1 Compound interest ........................... 50 6.2 Nominal rate ............................... 53 6.3 Discount and annuities ......................... 54 6.4 Accumulated value ........................... 56 6.5 Effective and nominal discount rates .................. 56 7 APPENDIX. SOME NOTATIONS AND FACTS FROM CALCULUS ... 57 7.1 The small о and big O notation .................... 57 7.1.1 Smallo ............................. 57 7.1.2 Big О .............................. 59 7.2 Taylor expansions ............................ 59 7.2.1 A general expansion ...................... 59 7.2.2 Some particular expansions ................... 60 7.3 Concavity ................................ 61 CHAPTER 1. Comparison of Random Variables. Preferences of Individuals 63 1 COMPARISON OF RANDOM VARIABLES . SOME PARTICULAR CRITERIA ...................... 63 1.1 Preference order ............................. 63 1.2 Several simple criteria .......................... 66 1.2.1 The mean-value criterion .................... 66 1.2.2 Value-at-Risk (VaR) ....................... 66 1.2.3 An important remark: risk measures rather than criteria .... 69 1.2.4 Tail conditional expectation (TCE) or Tail-Value-at-Risk (TailVaR) ............................ 69 1.2.5 The mean-variance criterion .................. 73 1.3 On coherent measures of risk ...................... 76 COMPARISON OF R.V. S AND LIMIT THEOREMS OF PROBABILITY THEORY .......................... 79 2.1 A diversion to Probability Theory: two limit theorems ......... 80 2.1.1 The Law of Large Numbers (LLN) ............... 80 2.1.2 The Central Limit Theorem (CUT) . . . ,........... 80 2.2 A simple model of insurance with many clients ............ 81 2.3 St. Petersburg s paradox ......................... 83 EXPECTED UTILITY ............................ 84 3.1 Expected utility maximization (EUM) ................. 84 3.1.1 Utility function ......................... 84 3.1.2 Expected utility maximization (EUM) criterion ........ 85 3.1.3 Some classical examples of utility functions ......... 88 3.2 Utility and insurance .......................... 91 3.3 How we may determine the utility function in particular cases ..... 93 3.4 Risk aversion .............................. 94 3.4.1 A definition ........................... 94 3.4.2 Jensen s inequality ....................... 95 3.4.3 How to measure risk aversion in the EUM case ........ 96 3.4.4 Proofs .............................. 98 3.5 A new perspective: EUM as a linear criterion ............. 100 3.5.1 Preferences on distributions ................... 100 3.5.2 The first stochastic dominance ................. 101 3.5.3 The second stochastic dominance ................ 103 3.5.4 The EUM criterion ....................... 104 3.5.5 Linearity of the utility functional ................ 105 3.5.6 An axiomatic approach ..................... 108 NON-LINEAR CRITERIA .......................... Ill 4.1 Allais paradox ............................. Ill 4.2 Weighted utility ............................. 112 4.3 Implicit or comparative utility ..................... 114 4.3.1 Definitions and examples .................... 114 4.3.2 In what sense the implicit utility criterion is linear ....... 117 4.4 Rank Dependent Expected Utility ................... 118 4.4.1 Definitions and examples .................... 118 4.4.2 Application to insurance .................... 121 4.4.3 Further discussion and the main axiom ............. 122 4.5 Remarks ................................. 124 OPTIMAL PAYMENT FROM THE STANDPOINT OF THE INSURED . 125 5.1 Arrow s theorem ............................. 125 5.2 A generalization ............................ 128 EXERCISES ................................. 129 CHAPTER 2. An individual Risk Model for a Short Period 137 1 THE DISTRIBUTION OF AN INDIVIDUAL PAYMENT ......... 137 Ш 1.1 The distribution of the loss given that it has occurred ......... 137 1.1.1 Definitions. Characterization of tails .............. 137 1.1.2 Some particular light-tailed distributions ............ 141 1.1.3 Some particular heavy-tailed distributions ........... 142 1.1.4 The asymptotic behavior of tails and moments ........ 145 pá 1.2 The distribution of the loss X ...................... 146 via 1.3 The distribution of the payment and types of insurance ........ 147 2 THE AGGREGATE PAYMENT ....................... 155 2.1 Convolutions .............................. 155 2.1.1 Definitions and examples .................... 155 2.1.2 Some classical examples .................... 158 2.1.3 The analogue of the binomial formula for convolutions .... 162 2.2 Moment generating functions ...................... 163 3 NORMAL AND OTHER APPROXIMATIONS ............... 165 3.1 Normal approximation ......................... 165 3.1.1 A heuristic approach ...................... 165 3.1.2 An important remark: the standard deviation principle ..... 170 3.1.3 A rigorous estimation ..................... 171 vó 3.1.4 The number of contracts needed to maintain a given security level ............................... 176 Ы 3.2 How to take into account the asymmetry of S. The Г -approximation . 178 vS 3.3 Asymptotic expansions and Normal Power (NP) approximation .... 180 4 EXERCISES ................................. 182 CHAPTER 3. Conditional Expectations 191 Ш 1 HOW TO COMPUTE CONDITIONAL EXPECTATIONS . THE CONDITIONING PROCEDURE .................... 191 1.1 Conditional expectation given a r.v .................... 191 1.1.1 The discrete case ........................ 191 1.1.2 The case of continuous distributions .............. 193 1.2 Properties of conditional expectations ................. 196 1.3 Conditioning and some useful formulas ................ 198 1.3.1 A formula for variance ..................... 198 1.3.2 More detailed representations of the formula for total expecta¬ tion ............................... 198 1.4 Conditional expectation given a r. vec .................. 200 1.4.1 General definitions ....................... 200 1.4.2 On the case of an infinite-dimensional X ............ 202 1.4.3 On conditioning in the multi-dimensional case ......... 202 2 FORMULA FOR TOTAL EXPECTATION AND CONDITIONAL EXPECTATION GIVEN A PARTITION ......... 204 Ш 2.1 Conditional expectation given an event ................. 204 2.2 The formula for total expectation .................... 207 2.3 Expectation given a partition ...................... 208 3 CONDITIONAL EXPECTATIONS GIVEN RANDOM VARIABLES OR VECTORS ................................ 209 3.1 The discrete case ............................ 209 3.2 The general case ............................. 211 4 ONE MORE IMPORTANT PROPERTY OF CONDITIONAL EXPECTATIONS ............................... 213 4.1 Conditioning on partitions ....................... 213 4.2 Conditioning on r.v. s or r.vec. s ..................... 214 5 A GENERAL APPROACH TO CONDITIONAL EXPECTATIONS .... 215 5.1 Conditional expectation relative to a σ -algebra ............. 215 5.2 Conditional expectation given a r.v. or a r.vec .............. 218 5.3 Properties of conditional expectations ................. 219 6 SOME PROOFS ............................... 220 6.1 Proofs of the properties stated in Section 1.2.............. 220 6.2 Proof of Proposition 2.......................... 222 7 EXERCISES ................................. 222 CHAPTER 4. A Collective Risk Model for a Short Period 225 1 THREE BASIC PROPOSITIONS ...................... 225 2 COUNTING OR FREQUENCY DISTRIBUTIONS ............. 227 2.1 The Poisson distribution and Poisson s theorem ............ 227 2.1.1 A heuristic approximation ................... 227 2.1.2 The accuracy of the Poisson approximation .......... 231 2.2 Some other counting distributions .................. 233 2.2.1 The mixed Poisson distribution ................. 233 2.2.2 Compound mixing ....................... 237 2.2.3 The (аДО) and (a,b, ) (or Katz-Panjer s) classes ...... 239 3 THE DISTRIBUTION OF THE AGGREGATE CLAIM .......... 241 3.1 The case of a homogeneous group ................... 241 3.1.1 The method of convolutions .................. 241 3.1.2 The case when N has a Poisson distribution .......... 245 3.1.3 The m.g.f. s method ...................... 246 3.2 The case of several homogeneous groups ............... 248 3.2.1 A general scheme and reduction to one group ......... 248 3.2.2 The significance of the weights w¡ ............... 251 4 NORMAL APPROXIMATION OF THE DISTRIBUTION OF THE AGGREGATE CLAIM ......................... 253 4.1 A limit theorem ............................. 253 4.2 Estimation of premiums ........................ 257 4.3 The accuracy of normal approximation ................ 259 4.4 Proof of Theorem 10.......................... 260 5 EXERCISES ................................. 263 CHAPTERS. Random Processes. I. Counting and Compound Processes. Markov Chains. Modeling Claim and Cash Flows 269 1 A GENERAL FRAMEWORK AND TYPICAL SITUATIONS ....... 269 1.1 Preliminaries .............................. 269 1.2 Processes with independent increments ................. 271 1.2.1 The simplest counting process ................. 271 1.2.2 Brownian motion ........................ 271 1.3 Markov processes ............................ 274 2 POISSON AND OTHER COUNTING PROCESSES ............ 276 2.1 The homogeneous Poisson process ................... 276 2.2 The non-homogeneous Poisson process ................ 281 2.2.1 A model and examples ..................... 281 2.2.2 Proof of Proposition 1...................... 284 2.3 The Cox process ............................ 285 3 COMPOUND PROCESSES ......................... 287 4 MARKOV CHAINS. CASH FLOWS IN THE MARKOV ENVIRONMENT 289 4.1 Preliminaries .............................. 289 4.2 Variables defined on a Markov chain. Cash flows ........... 295 4.2.1 Variables defined on states ................... 295 4.2.2 Mean discounted payments ................... 296 4.2.3 The case of absorbing states .................. 298 4.2.4 Variables defined on transitions ................. 301 4.2.5 What to do if the chain is not homogeneous .......... 302 4.3 The first step analysis. An infinite horizon ............... 302 4.3.1 Mean discounted payments in the case of infinite time horizon 303 4.3.2 The first step approach to random walk problems ....... 305 4.4 Limiting probabilities and stationary distributions ........... 310 4.5 The ergodicity property and classification of states .......... 314 4.5.1 Classes of states ......................... 314 4.5.2 The recurrence property ..................... 315 4.5.3 Recurrence and travel times ................... 318 4.5.4 Recurrence and ergodicity ................... 320 5 EXERCISES ................................. 321 CHAPTER 6. Random Processes. II. Brownian Motion and Martingales. Hitting Times 329 1 BROWNIAN MOTION AND ITS GENERALIZATIONS ......... 329 1.1 Further properties of the standard Brownian motion .......... 329 1.1.1 Non-differentiability of trajectories ............... 329 1.1.2 Brownian motion as an approximation. The invariance principle 330 1.1.3 The distribution of.wř, hitting times, and the maximum value of Brownian motion ........................ 331 1.2 The Brownian motion with drift .................... 333 1.2.1 Modeling of the surplus process. What a Brownian motion with drift approximates in this case ................. 334 1.2.2 A reduction to the standard Brownian motion ......... 335 1.3 Geometric Brownian motion ...................... 337 2 MARTINGALES ............................... 338 2.1 General properties and examples .................... 338 2.2 Martingale transform .......................... 343 2.3 Optional stopping time and some applications ............. 344 2.3.1 Definitions and examples .................... 344 2.3.2 Wald s identity ......................... 348 2.3.3 The ruin probability for the simple random walk ....... 349 2.3.4 The ruin probability for the Brownian motion with drift .... 350 2.3.5 The distribution of the ruin time in the case of Brownian motion 352 1¿J 2.3.6 The hitting time for the Brownian motion with drift ...... 353 2.4 Generalizations ............................. 354 2.4.1 The martingale property in the case of random stopping time . 354 2.4.2 A reduction to the standard Brownian motion in the case of random time ........................... 355 2.4.3 The distribution of the ruin time in the case of Brownian motion: another approach ........................ 356 2.4.4 Proof of Theorem 11 ...................... 357 2.4.5 Verification of Condition 3 of Theorem 5............ 358 3 EXERCISES ................................. 359 CHAPTER?. Global Characteristics of the Surplus Process. Ruin Models. Models with Paying Dividends 363 Ш 1 INTRODUCTION .............................. 363 2 RUIN MODELS ............................... 366 2.1 Adjustment coefficients and ruin probabilities ............. 367 2.1.1 A preliminary condition: for large time horizons the aggregate claim should be large ...................... 367 2.1.2 The main theorem ........................ 368 2.1.3 Proof of Lundberg s inequality ................. 370 2.2 Computing adjustment coefficients ................... 370 2.2.1 A general proposition ...................... 370 2.2.2 The discrete time case ...................... 374 2.2.3 The case of a homogeneous compound Poisson process .... 377 2.2.4 The discrete time case revisited ................. 380 2.2.5 The case of the non-homogeneous compound Poisson process 381 2.3 Trade-off between the premium and the initial surplus ........ 381 v$ 2.4 Three cases when the ruin probability may be computed precisely . . 385 vž3 2.4.1 The case when the size of a separate claim is exponentially distributed ............................ 385 2.4.2 The case of the simple random walk .............. 386 2.4.3 The case of Brownian motion ................. 387 Ш 2.5 The martingale approach. A generalization of Theorem 1....... 388 2.6 The renewal approach .......................... 390 2.6.1 The first surplus below the initial level ............. 390 2.6.2 The renewal approximation ................... 391 2.6.3 The Cramér-Lundberg approximation ............. 395 ΙΣ) 2.6.4 Proof of Theorem 5 from Section 2.6.1............. 395 2.7 Some recurrent relations and computational aspects .......... 399 vM 3 CRITERIA CONNECTED WITH PAYING DIVIDENDS ......... 402 Ш 3.1 A general model ............................. 403 3.2 The case of the simple random walk .................. 405 3.3 Finding an optimal strategy ....................... 408 4 EXERCISES ................................. 409 CHAPTERS. Survival Distributions 413 W 1 THE DISTRIBUTION OF THE LIFETIME ................. 413 1.1 Survival functions and force of mortality ................ 413 1.2 The time-until-death for a person of a given age ............ 418 1.3 Curtate-future-lifetime ......................... 422 1.4 Survivorship groups ........................... 423 1.5 Life tables and interpolation ...................... 424 1.5.1 Life tables ............................ 424 1.5.2 Interpolation for fractional ages ................. 429 1.6 Some analytical laws of mortality .................... 431 2 A MULTIPLE DECREMENT MODEL ................... 434 Ш 2.1 A single life ............................... 434 2.2 Another view: net probabilities of decrement .............. 438 2.3 A survivorship group .......................... 442 2.4 Proof of Proposition 1.......................... 443 3 MULTIPLE LIFE MODELS ......................... 444 3.1 The joint distribution .......................... 445 3.2 The lifetime of statuses ......................... 447 3.3 A model of dependency: conditional independence .......... 451 3.3.1 A definition and the first example ................ 452 3.3.2 The common shock model ................... 453 4 EXERCISES ................................. 455 CHAPTERS Life Insurance Models 461 Ш 1 A GENERAL MODEL ............................ 461 1.1 The present value of a future payment ................. 461 1.2 The present value of payments to many clients ............. 464 2 SOME PARTICULAR TYPES OF CONTRACTS .............. 467 2.1 Whole life insurance .......................... 467 2.1.1 The continuous time case (benefits payable at the moment of death) .............................. 467 2.1.2 The discrete time case (benefits payable at the end of the year of death) ............................. 467 2.1.3 A relation between Ax and Ax .................. 470 2.1.4 The case of benefits payable at the end of the m-thly period . . 471 2.2 Deferred whole life insurance ...................... 473 2.2.1 The continuous time case .................... 473 2.2.2 The discrete time case ...................... 474 2.3 Term insurance ............................. 474 2.3.1 Continuous time ......................... 474 2.3.2 Discrete time .......................... 476 2.4 Endowments ............................... 478 2.4.1 Pure endowment ........................ 478 2.4.2 Endowment ........................... 478 3 VARYING BENEFITS ............................ 480 3.1 Certain payments ............................ 480 3.2 Random payments ............................ 484 4 MULTIPLE DECREMENT AND MULTIPLE LIFE MODELS ...... 485 4.1 Multiple decrements ........................... 485 4.2 Multiple life insurance ......................... 488 5 ON THE ACTUARIAL NOTATION ..................... 491 6 EXERCISES ................................. 492 CHAPTER 10. Annuity Models 499 1 INTRODUCTION. TWO APPROACHES TO COMPUTING ANNUITIES 499 1.1 Continuous annuities .......................... 499 1.2 Discrete annuities ............................ 501 2 LEVEL ANNUITIES. A CONNECTION WITH INSURANCE ...... 504 2.1 Certain annuities. Some notation .................... 504 2.2 Random annuities ............................ 504 3 SOME PARTICULAR TYPES OF LEVEL ANNUITIES. EXAMPLES . . 506 3.1 Whole life annuities ........................... 506 3.2 Temporary annuities ........................... 509 3.3 Deferred annuities ............................ 512 3.4 Certain and life annuity ......................... 514 4 MORE ON VARYING PAYMENTS ..................... 516 5 ANNUITIES WITH m-thly PAYMENTS .................. 518 6 MULTIPLE DECREMENT AND MULTIPLE LIFE MODELS ...... 521 6.1 Multiple decrements ........................... 521 6.2 Multiple life annuities .......................... 523 7 EXERCISES ................................. 525 CHAPTER 11. Premiums and Reserves 531 1 SOME GENERAL PREMIUM PRINCIPLES ................ 531 2 PREMIUM ANNUITIES ........................... 536 2.1 Preliminaries. General principles .................... 536 2.2 Benefit premiums. The case of a single risk .............. 537 2.2.1 Netratě ............................. 537 2.2.2 The case when Ύ is consistent with Z ............ 541 2.2.3 Variances ............................ 542 2.2.4 Premiums paid m times a year ................. 544 2.2.5 Combinations of insurances ................... 545 2.3 Accumulated values ........................... 546 2.4 Percentile premium ........................... 547 2.4.1 The case of a single risk ..................... 547 2.4.2 The case of many risks. Normal approximation ........ 549 2.5 Exponential premiums ......................... 552 3 RESERVES .................................. 553 3.1 Definitions and preliminary remarks .................. 553 3.2 Examples of direct calculations ..................... 554 3.3 Formulas for some standard types of insurance ............. 556 3.4 Recursive relations ........................... 557 4 EXERCISES ................................. 560 CHAPTER 12. Risk Exchange: Reinsurance and Coinsurance 565 1 REINSURANCE FROM THE STAND POINT OF A CEDENT ...... 565 1.1 Some optimization considerations ................... 565 1.1.1 Expected utility maximization ................. 566 1.1.2 Variance as a measure of risk .................. 568 1.2 Proportional reinsurance. Adding a new contract to an existing portfolio 570 1.2.1 The case of a fixed security loading coefficient ......... 570 1.2.2 The case of the standard deviation premium principle ..... 573 1.3 Long-term insurance. Ruin probability as a criterion ......... 575 1.3.1 An example with proportional reinsurance ........... 575 1.3.2 An example with excess-of-loss insurance ........... 577 2 RISK EXCHANGE AND RECIPROCITY OF COMPANIES ....... 578 2.1 A general framework and some examples ............... 578 2.2 Two more examples with expected utility maximization ........ 586 2.3 The case of the mean-variance criterion ................ 590 2.3.1 Minimization of variances ................... 590 2.3.2 The exchange of portfolios ................... 593 3 REINSURANCE MARKET ......................... 598 3.1 A model of the exchange market of random assets ........... 598 3.2 An example concerning reinsurance .................. 601 4 EXERCISES ................................. 604 Tables 607 References 611 Answers to Exercises 619 Subject Index 627 Ideal for students preparing for level 300 actuarial exams in the US. Actuarial Modeîs: The Mathematics of insurance provides a comprehensive exposition of insurance processes models and presents mathematical setups and methods used in Actuarial Modeling. Divided into three self-contained and explicitly designated parts of different levels of difficulty, this book examines standard as well as advanced topics such as modern utility theory, martingale technique, models with payments of dividends, reinsurance models, and classification of distributions. It provides practical skills in analysis of insurance processes. This text discusses a number of topics not commonly found in existing Actuarial Mathematics textbooks, including achievements of the modern Risk Evaluation theory, premium principles, accuracy of normal and Poisson approximation, and a reinsurance market model. The book includes numerous examples, practice problems, and exercises on numerical calculations using Excel . It includes also preliminary examination material for the Society of Actuaries and the Casualty Actuarial Society (CAS), providing, in particular, real problems from past CAS exams. Features Provides mathematical models for both non-life and life insurance Uses real problems from past CAS exams and prepares students for level 300 actuarial exams in the US Features a systematic presentation from a mathematical point of view/ Presents supplementary material containing main facts from Probability Theory, Stochastic Processes, the Theory of Interest, and Calculus Contains numerous examples, which may be viewed as a solution guide for corresponding exams Discusses many analytical procedures and contains many computational example for the most part, with use of Excel
any_adam_object 1
author Rotar', Vladimir I.
author_facet Rotar', Vladimir I.
author_role aut
author_sort Rotar', Vladimir I.
author_variant v i r vi vir
building Verbundindex
bvnumber BV022463927
callnumber-first H - Social Science
callnumber-label HG8781
callnumber-raw HG8781
callnumber-search HG8781
callnumber-sort HG 48781
callnumber-subject HG - Finance
classification_rvk QQ 600
QQ 630
ctrlnum (OCoLC)494346427
(DE-599)BVBBV022463927
dewey-full 368.01
368/.01
dewey-hundreds 300 - Social sciences
dewey-ones 368 - Insurance
dewey-raw 368.01
368/.01
dewey-search 368.01
368/.01
dewey-sort 3368.01
dewey-tens 360 - Social problems and services; associations
discipline Wirtschaftswissenschaften
format Book
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02079nam a2200493zc 4500</leader><controlfield tag="001">BV022463927</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20080528 </controlfield><controlfield tag="007">t|</controlfield><controlfield tag="008">070614s2007 xxu |||| 00||| eng d</controlfield><datafield tag="010" ind1=" " ind2=" "><subfield code="a">2006045558</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781584885863</subfield><subfield code="9">978-1-58488-586-3</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1584885866</subfield><subfield code="9">1-584-88586-6</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)494346427</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV022463927</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">xxu</subfield><subfield code="c">US</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-19</subfield><subfield code="a">DE-384</subfield><subfield code="a">DE-29T</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">HG8781</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">368.01</subfield><subfield code="2">22</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">368/.01</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">QQ 600</subfield><subfield code="0">(DE-625)141985:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">QQ 630</subfield><subfield code="0">(DE-625)141989:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Rotar', Vladimir I.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Actuarial models</subfield><subfield code="b">the mathematics of insurance</subfield><subfield code="c">Vladimir I. Rotar</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Boca Raton, FL</subfield><subfield code="b">Chapman &amp; Hall</subfield><subfield code="c">2007</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XXII, 633 S.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references and index</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Assurance - Mathématiques</subfield><subfield code="2">ram</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Insurance</subfield><subfield code="x">Mathematics</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Versicherungsmathematik</subfield><subfield code="0">(DE-588)4063194-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="0">(DE-588)4123623-3</subfield><subfield code="a">Lehrbuch</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Versicherungsmathematik</subfield><subfield code="0">(DE-588)4063194-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2=" "><subfield code="u">http://www.loc.gov/catdir/enhancements/fy0664/2006045558-d.html</subfield><subfield code="3">Publisher description</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Passau</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&amp;doc_library=BVB01&amp;local_base=BVB01&amp;doc_number=015671544&amp;sequence=000003&amp;line_number=0001&amp;func_code=DB_RECORDS&amp;service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Passau</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&amp;doc_library=BVB01&amp;local_base=BVB01&amp;doc_number=015671544&amp;sequence=000004&amp;line_number=0002&amp;func_code=DB_RECORDS&amp;service_type=MEDIA</subfield><subfield code="3">Klappentext</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-015671544</subfield></datafield></record></collection>
genre (DE-588)4123623-3 Lehrbuch gnd-content
genre_facet Lehrbuch
id DE-604.BV022463927
illustrated Not Illustrated
indexdate 2025-02-03T17:14:18Z
institution BVB
isbn 9781584885863
1584885866
language English
lccn 2006045558
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-015671544
oclc_num 494346427
open_access_boolean
owner DE-19
DE-BY-UBM
DE-384
DE-29T
owner_facet DE-19
DE-BY-UBM
DE-384
DE-29T
physical XXII, 633 S.
publishDate 2007
publishDateSearch 2007
publishDateSort 2007
publisher Chapman & Hall
record_format marc
spellingShingle Rotar', Vladimir I.
Actuarial models the mathematics of insurance
Assurance - Mathématiques ram
Mathematik
Insurance Mathematics
Versicherungsmathematik (DE-588)4063194-1 gnd
subject_GND (DE-588)4063194-1
(DE-588)4123623-3
title Actuarial models the mathematics of insurance
title_auth Actuarial models the mathematics of insurance
title_exact_search Actuarial models the mathematics of insurance
title_full Actuarial models the mathematics of insurance Vladimir I. Rotar
title_fullStr Actuarial models the mathematics of insurance Vladimir I. Rotar
title_full_unstemmed Actuarial models the mathematics of insurance Vladimir I. Rotar
title_short Actuarial models
title_sort actuarial models the mathematics of insurance
title_sub the mathematics of insurance
topic Assurance - Mathématiques ram
Mathematik
Insurance Mathematics
Versicherungsmathematik (DE-588)4063194-1 gnd
topic_facet Assurance - Mathématiques
Mathematik
Insurance Mathematics
Versicherungsmathematik
Lehrbuch
url http://www.loc.gov/catdir/enhancements/fy0664/2006045558-d.html
http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=015671544&sequence=000003&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA
http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=015671544&sequence=000004&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA
work_keys_str_mv AT rotarvladimiri actuarialmodelsthemathematicsofinsurance