Convex and discrete geometry

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Gruber, Peter M. 1941-2017 (VerfasserIn)
Format: Buch
Sprache:English
Veröffentlicht: Berlin Springer [2007]
Schriftenreihe:Grundlehren der mathematischen Wissenschaften 336
Schlagworte:
Online-Zugang:Inhaltsverzeichnis
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nam a2200000 cb4500
001 BV022430476
003 DE-604
005 20201202
007 t
008 070521s2007 gw a||| |||| 00||| eng d
015 |a 07,N08,1042  |2 dnb 
016 7 |a 982862083  |2 DE-101 
020 |a 9783540711322  |c Gb. : ca. EUR 96.25 (freier Pr.), ca. sfr 147.50 (freier Pr.)  |9 978-3-540-71132-2 
020 |a 3540711325  |c Gb. : ca. EUR 96.25 (freier Pr.), ca. sfr 147.50 (freier Pr.)  |9 3-540-71132-5 
024 3 |a 9783540711322 
028 5 2 |a 11966739 
035 |a (OCoLC)123375612 
035 |a (DE-599)BVBBV022430476 
040 |a DE-604  |b ger  |e rda 
041 0 |a eng 
044 |a gw  |c XA-DE-BE 
049 |a DE-824  |a DE-20  |a DE-384  |a DE-703  |a DE-1051  |a DE-83  |a DE-11  |a DE-19  |a DE-188  |a DE-706  |a DE-2070s  |a DE-29T  |a DE-634 
050 0 |a QA639.5 
082 0 |a 516.08  |2 22 
082 0 |a 510 
084 |a SK 380  |0 (DE-625)143235:  |2 rvk 
084 |a 52-01  |2 msc 
084 |a 510  |2 sdnb 
100 1 |a Gruber, Peter M.  |d 1941-2017  |e Verfasser  |0 (DE-588)11063814X  |4 aut 
245 1 0 |a Convex and discrete geometry  |c Peter M. Gruber 
264 1 |a Berlin  |b Springer  |c [2007] 
300 |a XIII, 578 Seiten  |b Illustrationen, Diagramme  |c 235 mm x 155 mm 
336 |b txt  |2 rdacontent 
337 |b n  |2 rdamedia 
338 |b nc  |2 rdacarrier 
490 1 |a Grundlehren der mathematischen Wissenschaften  |v 336 
650 4 |a Géométrie convexe 
650 4 |a Géométrie discrète 
650 4 |a Convex geometry 
650 4 |a Discrete geometry 
650 0 7 |a Diskrete Geometrie  |0 (DE-588)4130271-0  |2 gnd  |9 rswk-swf 
650 0 7 |a Konvexe Geometrie  |0 (DE-588)4407260-0  |2 gnd  |9 rswk-swf 
689 0 0 |a Konvexe Geometrie  |0 (DE-588)4407260-0  |D s 
689 0 |5 DE-604 
689 1 0 |a Diskrete Geometrie  |0 (DE-588)4130271-0  |D s 
689 1 |5 DE-604 
776 0 8 |i Erscheint auch als  |n Online-Ausgabe  |z 978-3-540-71133-9 
830 0 |a Grundlehren der mathematischen Wissenschaften  |v 336  |w (DE-604)BV000000395  |9 336 
856 4 2 |m Digitalisierung UB Augsburg  |q application/pdf  |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=015638671&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA  |3 Inhaltsverzeichnis 
999 |a oai:aleph.bib-bvb.de:BVB01-015638671 

Datensatz im Suchindex

_version_ 1804136503253663744
adam_text Contents Preface Convex 1 1.1 1.2 1.3 1.4 1.5 2 2.1 and a Heuristic Principle 2.2 2.3 2.4 2.5 in the Calculus of Variations Convex Bodies 3 3.1 3.2 of 3.3 4 4.1 4.2 4.3 4.4 5 5.1 Contents 20 Linear 20.1 20.2 20.3 20.4 20.5 ................................... 335 Preliminaries and Duality The Simplex Algorithm The Ellipsoid Algorithm Lattice Polyhedra and Totally Dual Integral Systems Hubert Bases and Totally Dual Integral Systems Geometry of Numbers and Aspects of Discrete Geometry . . 353 21 21.1 Equation 21.2 21.3 21.4 22 22.1 22.2 of Polynomials 23 23.1 Theorem 23.2 and Khintchine 24 24. 24.2 of Rogers-Schmidt 25 25.1 25.2 26 26.1 26.2 26.3 27 27.1 Matrices 27.2 27.3 28 28.1 28.2 Lattice Vector Problem Contents 29 29.1 29.2 29.3 29.4 Packing 30 30.1 30.2 30.3 for 30.4 31 31.1 and the Covering Criterion of Wills 31.2 31.3 31.4 32 32.1 Complexes 32.2 of 32.3 and Keller 33 33.1 33.2 33.3 Principle 33.4 and Numerical Integration 34 34.1 and Scheinerman 34.2 References Index Author Index 513 567 577 Contents XI 5.2 Extreme Points................................... 5.3 Birkhoff s Theorem Mixed Volumes and 6.1 and Blaschke s Selection Theorem 6.2 Formula 6.3 6.4 Quermassintegrals 7 7. 7.2 7.3 Theorem 7.4 7.5 The Brunn-Minkowski Inequality 8.1 8.2 8.3 and Generalized Surface Area 8.4 in Crystallography 8.5 Brunn-Minkowski Inequality 8.6 of Measure Symmetrization 9.1 9.2 Steiner The Isodiametric, Isoperimetric, Brunn-Minkowski, Blaschke-Santaló 9.3 9.4 9.5 Inequality 10 10.1 10.2 Surfaces 10.3 11 11.1 Inequality 11.2 Problem for Polytopes, and a Heuristic Principle 74 76 79 80 88 93 102 110 118 126 134 140 141 142 146 147 155 161 164 168 168 175 178 179 185 187 188 197 199 202 203 209 12 13 Special Convex Bodies 12.1 12.2 12.3 and Its Applications The Space of Convex Bodies 13.1 13.2 13.3 13.4 Convex Polytopes 1 14.1 14.2 14.3 14.4 15 15.1 for 15.2 15.3 15.4 15.5 16 16.1 16.2 17 17.1 17.2 18 18.1 18.2 18.3 and 19 19.1 19.2 and Lattice Point Enumerators 19.3 Polytopes 19.4 19.5 and the Minding-Kouchnirenko-Bemstein Theorem 243 244 244 247 252 257 258 259 265 270 272 277 280 280 288 292 292 297 301 301 303 308 310 310 316 320 324 332
adam_txt Contents Preface Convex 1 1.1 1.2 1.3 1.4 1.5 2 2.1 and a Heuristic Principle 2.2 2.3 2.4 2.5 in the Calculus of Variations Convex Bodies 3 3.1 3.2 of 3.3 4 4.1 4.2 4.3 4.4 5 5.1 Contents 20 Linear 20.1 20.2 20.3 20.4 20.5 . 335 Preliminaries and Duality The Simplex Algorithm The Ellipsoid Algorithm Lattice Polyhedra and Totally Dual Integral Systems Hubert Bases and Totally Dual Integral Systems Geometry of Numbers and Aspects of Discrete Geometry . . 353 21 21.1 Equation 21.2 21.3 21.4 22 22.1 22.2 of Polynomials 23 23.1 Theorem 23.2 and Khintchine 24 24. 24.2 of Rogers-Schmidt 25 25.1 25.2 26 26.1 26.2 26.3 27 27.1 Matrices 27.2 27.3 28 28.1 28.2 Lattice Vector Problem Contents 29 29.1 29.2 29.3 29.4 Packing 30 30.1 30.2 30.3 for 30.4 31 31.1 and the Covering Criterion of Wills 31.2 31.3 31.4 32 32.1 Complexes 32.2 of 32.3 and Keller 33 33.1 33.2 33.3 Principle 33.4 and Numerical Integration 34 34.1 and Scheinerman 34.2 References Index Author Index 513 567 577 Contents XI 5.2 Extreme Points. 5.3 Birkhoff 's Theorem Mixed Volumes and 6.1 and Blaschke's Selection Theorem 6.2 Formula 6.3 6.4 Quermassintegrals 7 7. 7.2 7.3 Theorem 7.4 7.5 The Brunn-Minkowski Inequality 8.1 8.2 8.3 and Generalized Surface Area 8.4 in Crystallography 8.5 Brunn-Minkowski Inequality 8.6 of Measure Symmetrization 9.1 9.2 Steiner The Isodiametric, Isoperimetric, Brunn-Minkowski, Blaschke-Santaló 9.3 9.4 9.5 Inequality 10 10.1 10.2 Surfaces 10.3 11 11.1 Inequality 11.2 Problem for Polytopes, and a Heuristic Principle 74 76 79 80 88 93 102 110 118 126 134 140 141 142 146 147 155 161 164 168 168 175 178 179 185 187 188 197 199 202 203 209 12 13 Special Convex Bodies 12.1 12.2 12.3 and Its Applications The Space of Convex Bodies 13.1 13.2 13.3 13.4 Convex Polytopes 1 14.1 14.2 14.3 14.4 15 15.1 for 15.2 15.3 15.4 15.5 16 16.1 16.2 17 17.1 17.2 18 18.1 18.2 18.3 and 19 19.1 19.2 and Lattice Point Enumerators 19.3 Polytopes 19.4 19.5 and the Minding-Kouchnirenko-Bemstein Theorem 243 244 244 247 252 257 258 259 265 270 272 277 280 280 288 292 292 297 301 301 303 308 310 310 316 320 324 332
any_adam_object 1
any_adam_object_boolean 1
author Gruber, Peter M. 1941-2017
author_GND (DE-588)11063814X
author_facet Gruber, Peter M. 1941-2017
author_role aut
author_sort Gruber, Peter M. 1941-2017
author_variant p m g pm pmg
building Verbundindex
bvnumber BV022430476
callnumber-first Q - Science
callnumber-label QA639
callnumber-raw QA639.5
callnumber-search QA639.5
callnumber-sort QA 3639.5
callnumber-subject QA - Mathematics
classification_rvk SK 380
ctrlnum (OCoLC)123375612
(DE-599)BVBBV022430476
dewey-full 516.08
510
dewey-hundreds 500 - Natural sciences and mathematics
dewey-ones 516 - Geometry
510 - Mathematics
dewey-raw 516.08
510
dewey-search 516.08
510
dewey-sort 3516.08
dewey-tens 510 - Mathematics
discipline Mathematik
discipline_str_mv Mathematik
format Book
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02268nam a2200565 cb4500</leader><controlfield tag="001">BV022430476</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20201202 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">070521s2007 gw a||| |||| 00||| eng d</controlfield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">07,N08,1042</subfield><subfield code="2">dnb</subfield></datafield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">982862083</subfield><subfield code="2">DE-101</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783540711322</subfield><subfield code="c">Gb. : ca. EUR 96.25 (freier Pr.), ca. sfr 147.50 (freier Pr.)</subfield><subfield code="9">978-3-540-71132-2</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">3540711325</subfield><subfield code="c">Gb. : ca. EUR 96.25 (freier Pr.), ca. sfr 147.50 (freier Pr.)</subfield><subfield code="9">3-540-71132-5</subfield></datafield><datafield tag="024" ind1="3" ind2=" "><subfield code="a">9783540711322</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">11966739</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)123375612</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV022430476</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">gw</subfield><subfield code="c">XA-DE-BE</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-824</subfield><subfield code="a">DE-20</subfield><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-1051</subfield><subfield code="a">DE-83</subfield><subfield code="a">DE-11</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-188</subfield><subfield code="a">DE-706</subfield><subfield code="a">DE-2070s</subfield><subfield code="a">DE-29T</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA639.5</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">516.08</subfield><subfield code="2">22</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">510</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 380</subfield><subfield code="0">(DE-625)143235:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">52-01</subfield><subfield code="2">msc</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">510</subfield><subfield code="2">sdnb</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Gruber, Peter M.</subfield><subfield code="d">1941-2017</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)11063814X</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Convex and discrete geometry</subfield><subfield code="c">Peter M. Gruber</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin</subfield><subfield code="b">Springer</subfield><subfield code="c">[2007]</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XIII, 578 Seiten</subfield><subfield code="b">Illustrationen, Diagramme</subfield><subfield code="c">235 mm x 155 mm</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Grundlehren der mathematischen Wissenschaften</subfield><subfield code="v">336</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Géométrie convexe</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Géométrie discrète</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Convex geometry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Discrete geometry</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Diskrete Geometrie</subfield><subfield code="0">(DE-588)4130271-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Konvexe Geometrie</subfield><subfield code="0">(DE-588)4407260-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Konvexe Geometrie</subfield><subfield code="0">(DE-588)4407260-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Diskrete Geometrie</subfield><subfield code="0">(DE-588)4130271-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe</subfield><subfield code="z">978-3-540-71133-9</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Grundlehren der mathematischen Wissenschaften</subfield><subfield code="v">336</subfield><subfield code="w">(DE-604)BV000000395</subfield><subfield code="9">336</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Augsburg</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&amp;doc_library=BVB01&amp;local_base=BVB01&amp;doc_number=015638671&amp;sequence=000002&amp;line_number=0001&amp;func_code=DB_RECORDS&amp;service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-015638671</subfield></datafield></record></collection>
id DE-604.BV022430476
illustrated Illustrated
index_date 2024-07-02T17:29:07Z
indexdate 2024-07-09T20:57:26Z
institution BVB
isbn 9783540711322
3540711325
language English
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-015638671
oclc_num 123375612
open_access_boolean
owner DE-824
DE-20
DE-384
DE-703
DE-1051
DE-83
DE-11
DE-19
DE-BY-UBM
DE-188
DE-706
DE-2070s
DE-29T
DE-634
owner_facet DE-824
DE-20
DE-384
DE-703
DE-1051
DE-83
DE-11
DE-19
DE-BY-UBM
DE-188
DE-706
DE-2070s
DE-29T
DE-634
physical XIII, 578 Seiten Illustrationen, Diagramme 235 mm x 155 mm
publishDate 2007
publishDateSearch 2007
publishDateSort 2007
publisher Springer
record_format marc
series Grundlehren der mathematischen Wissenschaften
series2 Grundlehren der mathematischen Wissenschaften
spelling Gruber, Peter M. 1941-2017 Verfasser (DE-588)11063814X aut
Convex and discrete geometry Peter M. Gruber
Berlin Springer [2007]
XIII, 578 Seiten Illustrationen, Diagramme 235 mm x 155 mm
txt rdacontent
n rdamedia
nc rdacarrier
Grundlehren der mathematischen Wissenschaften 336
Géométrie convexe
Géométrie discrète
Convex geometry
Discrete geometry
Diskrete Geometrie (DE-588)4130271-0 gnd rswk-swf
Konvexe Geometrie (DE-588)4407260-0 gnd rswk-swf
Konvexe Geometrie (DE-588)4407260-0 s
DE-604
Diskrete Geometrie (DE-588)4130271-0 s
Erscheint auch als Online-Ausgabe 978-3-540-71133-9
Grundlehren der mathematischen Wissenschaften 336 (DE-604)BV000000395 336
Digitalisierung UB Augsburg application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=015638671&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis
spellingShingle Gruber, Peter M. 1941-2017
Convex and discrete geometry
Grundlehren der mathematischen Wissenschaften
Géométrie convexe
Géométrie discrète
Convex geometry
Discrete geometry
Diskrete Geometrie (DE-588)4130271-0 gnd
Konvexe Geometrie (DE-588)4407260-0 gnd
subject_GND (DE-588)4130271-0
(DE-588)4407260-0
title Convex and discrete geometry
title_auth Convex and discrete geometry
title_exact_search Convex and discrete geometry
title_exact_search_txtP Convex and discrete geometry
title_full Convex and discrete geometry Peter M. Gruber
title_fullStr Convex and discrete geometry Peter M. Gruber
title_full_unstemmed Convex and discrete geometry Peter M. Gruber
title_short Convex and discrete geometry
title_sort convex and discrete geometry
topic Géométrie convexe
Géométrie discrète
Convex geometry
Discrete geometry
Diskrete Geometrie (DE-588)4130271-0 gnd
Konvexe Geometrie (DE-588)4407260-0 gnd
topic_facet Géométrie convexe
Géométrie discrète
Convex geometry
Discrete geometry
Diskrete Geometrie
Konvexe Geometrie
url http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=015638671&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA
volume_link (DE-604)BV000000395
work_keys_str_mv AT gruberpeterm convexanddiscretegeometry