Handbook of tilting theory
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Cambridge [u.a.]
Cambridge Univ. Press
2007
|
Ausgabe: | 1. publ. |
Schriftenreihe: | London Mathematical Society lecture notes series
332 |
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV022271507 | ||
003 | DE-604 | ||
005 | 20070724 | ||
007 | t | ||
008 | 070214s2007 d||| |||| 00||| eng d | ||
020 | |a 9780521680455 |9 978-0-521-68045-5 | ||
020 | |a 052168045X |9 0-521-68045-X | ||
035 | |a (OCoLC)84910946 | ||
035 | |a (DE-599)BVBBV022271507 | ||
040 | |a DE-604 |b ger |e rakwb | ||
041 | 0 | |a eng | |
049 | |a DE-91G |a DE-19 | ||
084 | |a MAT 180f |2 stub | ||
100 | 1 | |a Angeleri Hügel, Lidia |d 1960- |e Verfasser |0 (DE-588)138988234 |4 aut | |
245 | 1 | 0 | |a Handbook of tilting theory |c ed. by Lidia Angeleri Hügel ... |
250 | |a 1. publ. | ||
264 | 1 | |a Cambridge [u.a.] |b Cambridge Univ. Press |c 2007 | |
300 | |a VIII, 472 S. |b graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a London Mathematical Society lecture notes series |v 332 | |
650 | 4 | |a Categories (Mathematics) | |
650 | 4 | |a Modules (Algebra) | |
650 | 0 | 7 | |a Kategorientheorie |0 (DE-588)4120552-2 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Kategorientheorie |0 (DE-588)4120552-2 |D s |
689 | 0 | |5 DE-604 | |
830 | 0 | |a London Mathematical Society lecture notes series |v 332 |w (DE-604)BV000000130 |9 332 | |
856 | 4 | 2 | |m HBZ Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=015481986&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-015481986 |
Datensatz im Suchindex
DE-BY-TUM_call_number | 0102/MAT 001z 2001 A 985-332 |
---|---|
DE-BY-TUM_katkey | 1583765 |
DE-BY-TUM_media_number | 040010251659 |
_version_ | 1816712678807175168 |
adam_text | Contents
1 Introduction page 1
2 Basic results of classical tilting theory
L. Angeleri Hiigel, D. Happel, and H. Krause 9
References 12
3 Classification of representation finite algebras and their
modules
T. Brustle 15
1 Introduction 15
2 Notation 16
3 Representation finite algebras 18
4 Critical algebras 24
5 Tame algebras 26
References 28
4 A spectral sequence analysis of classical tilting func¬
tors
S. Brenner and M. C. R. Butler 31
1 Introduction 31
2 Tilting modules 32
3 Tilting functors, spectral sequences and nitrations 35
4 Applications 43
5 Edge effects, and the case t = 2 46
References 47
5 Derived categories and tilting
B. Keller 49
1 Introduction 49
2 Derived categories 51
v
vi Contents
3 Derived functors 63
4 Tilting and derived equivalences 66
5 Triangulated categories 72
6 Morita theory for derived categories 78
7 Comparison of t structures, spectral sequences 83
8 Algebraic triangulated categories and dg algebras 90
References 97
6 Hereditary categories
H. Lenzing 105
1 Fundamental concepts 106
2 Examples of hereditary categories 108
3 Repetitive shape of the derived category 112
4 Perpendicular categories 114
5 Exceptional objects 115
6 Piecewise hereditary algebras and HappePs theorem 117
7 Derived equivalence of hereditary categories 121
8 Modules over hereditary algebras 121
9 Spectral properties of hereditary categories 124
10 Weighted projective lines 125
11 Quasitilted algebras 142
References 143
7 Fourier Mukai transforms
L. Hille and M. Van den Bergh 147
1 Some background 147
2 Notations and conventions 149
3 Basics on Fourier Mukai transforms 149
4 The reconstruction theorem 155
5 Curves and surfaces 159
6 Threefolds and higher dimensional varieties 166
7 Non commutative rings in algebraic geometry 170
References 173
8 Tilting theory and homologically finite subcategories
with applications to quasihereditary algebras
I. Reiten 179
1 The Basic Ingredients 181
2 The Correspondence Theorem 191
3 Quasihereditary algebras and their generalizations 200
4 Generalizations 207
References 211
Contents vii
9 Tilting modules for algebraic groups and finite dimen¬
sional algebras
S. Donkin 215
1 Quasi hereditary algebras 217
2 Coalgebras and Comodules 220
3 Linear Algebraic Groups 225
4 Reductive Groups 228
5 Infinitesimal Methods 233
6 Some support for tilting modules 238
7 Invariant theory 239
8 General Linear Groups 241
9 Connections with symmetric groups and Hecke algebras244
10 Some recent applications to Hecke algebras 247
References 254
10 Combinatorial aspects of the set of tilting modules
L. Unger 259
1 Introduction 259
2 The partial order of tilting modules 260
3 The quiver of tilting modules 261
4 The simplicial complex of tilting modules 270
References 275
11 Infinite dimensional tilting modules and cotorsion pairs
J. Trlifaj 279
1 Cotorsion pairs and approximations of modules 281
2 Tilting cotorsion pairs 292
3 Cotilting cotorsion pairs 298
4 Finite type, duality, and some examples 304
5 Tilting modules and the finitistic dimension conjectures312
References 316
12 Infinite dimensional tilting modules over finite dimen¬
sional algebras
0. Solberg 323
1 Definitions and preliminaries 324
2 The subcategory correspondence 327
3 The finitistic dimension conjectures 332
4 Complements of tilting and cotilting modules 336
5 Classification of all cotilting modules 340
References 341
viii Contents
13 Cotilting dualities
R. Colpi and K. R. Fuller 345
1 Generalized Morita Duality and Finitistic Cotilting
Modules 348
2 Cotilting Modules and Bimodules 350
3 Weak Morita Duality 353
4 Pure Injectivity of Cotilting Modules and Reflexivity 355
References 356
14 Representations of finite groups and tilting
J. Chuang and J. Richard 359
1 A brief introduction to modular representation theory 359
2 The abelian defect group conjecture 360
3 Symmetric algebras 361
4 Characters and derived equivalence 366
5 Splendid equivalences 370
6 Derived equivalence and stable equivalence 373
7 Lifting stable equivalences 375
8 Clifford theory 376
9 Cases for which the Abelian Defect Group Conjecture
has been verified 378
10 Nonabelian defect groups 383
References 384
15 Morita theory in stable homotopy theory
B. Shipley 393
1 Introduction 393
2 Spectral Algebra 396
3 Quillen model categories 399
4 Differential graded algebras 403
5 Two topologically equivalent DGAs 406
References 409
Appendix Some remarks concerning tilting modules and
tilted algebras. Origin. Relevance. Future.
C. M. Ringel 413
1 Basic Setting 414
2 Connections 423
3 The new cluster tilting approach 446
References 470
|
adam_txt |
Contents
1 Introduction page 1
2 Basic results of classical tilting theory
L. Angeleri Hiigel, D. Happel, and H. Krause 9
References 12
3 Classification of representation finite algebras and their
modules
T. Brustle 15
1 Introduction 15
2 Notation 16
3 Representation finite algebras 18
4 Critical algebras 24
5 Tame algebras 26
References 28
4 A spectral sequence analysis of classical tilting func¬
tors
S. Brenner and M. C. R. Butler 31
1 Introduction 31
2 Tilting modules 32
3 Tilting functors, spectral sequences and nitrations 35
4 Applications 43
5 Edge effects, and the case t = 2 46
References 47
5 Derived categories and tilting
B. Keller 49
1 Introduction 49
2 Derived categories 51
v
vi Contents
3 Derived functors 63
4 Tilting and derived equivalences 66
5 Triangulated categories 72
6 Morita theory for derived categories 78
7 Comparison of t structures, spectral sequences 83
8 Algebraic triangulated categories and dg algebras 90
References 97
6 Hereditary categories
H. Lenzing 105
1 Fundamental concepts 106
2 Examples of hereditary categories 108
3 Repetitive shape of the derived category 112
4 Perpendicular categories 114
5 Exceptional objects 115
6 Piecewise hereditary algebras and HappePs theorem 117
7 Derived equivalence of hereditary categories 121
8 Modules over hereditary algebras 121
9 Spectral properties of hereditary categories 124
10 Weighted projective lines 125
11 Quasitilted algebras 142
References 143
7 Fourier Mukai transforms
L. Hille and M. Van den Bergh 147
1 Some background 147
2 Notations and conventions 149
3 Basics on Fourier Mukai transforms 149
4 The reconstruction theorem 155
5 Curves and surfaces 159
6 Threefolds and higher dimensional varieties 166
7 Non commutative rings in algebraic geometry 170
References 173
8 Tilting theory and homologically finite subcategories
with applications to quasihereditary algebras
I. Reiten 179
1 The Basic Ingredients 181
2 The Correspondence Theorem 191
3 Quasihereditary algebras and their generalizations 200
4 Generalizations 207
References 211
Contents vii
9 Tilting modules for algebraic groups and finite dimen¬
sional algebras
S. Donkin 215
1 Quasi hereditary algebras 217
2 Coalgebras and Comodules 220
3 Linear Algebraic Groups 225
4 Reductive Groups 228
5 Infinitesimal Methods 233
6 Some support for tilting modules 238
7 Invariant theory 239
8 General Linear Groups 241
9 Connections with symmetric groups and Hecke algebras244
10 Some recent applications to Hecke algebras 247
References 254
10 Combinatorial aspects of the set of tilting modules
L. Unger 259
1 Introduction 259
2 The partial order of tilting modules 260
3 The quiver of tilting modules 261
4 The simplicial complex of tilting modules 270
References 275
11 Infinite dimensional tilting modules and cotorsion pairs
J. Trlifaj 279
1 Cotorsion pairs and approximations of modules 281
2 Tilting cotorsion pairs 292
3 Cotilting cotorsion pairs 298
4 Finite type, duality, and some examples 304
5 Tilting modules and the finitistic dimension conjectures312
References 316
12 Infinite dimensional tilting modules over finite dimen¬
sional algebras
0. Solberg 323
1 Definitions and preliminaries 324
2 The subcategory correspondence 327
3 The finitistic dimension conjectures 332
4 Complements of tilting and cotilting modules 336
5 Classification of all cotilting modules 340
References 341
viii Contents
13 Cotilting dualities
R. Colpi and K. R. Fuller 345
1 Generalized Morita Duality and Finitistic Cotilting
Modules 348
2 Cotilting Modules and Bimodules 350
3 Weak Morita Duality 353
4 Pure Injectivity of Cotilting Modules and Reflexivity 355
References 356
14 Representations of finite groups and tilting
J. Chuang and J. Richard 359
1 A brief introduction to modular representation theory 359
2 The abelian defect group conjecture 360
3 Symmetric algebras 361
4 Characters and derived equivalence 366
5 Splendid equivalences 370
6 Derived equivalence and stable equivalence 373
7 Lifting stable equivalences 375
8 Clifford theory 376
9 Cases for which the Abelian Defect Group Conjecture
has been verified 378
10 Nonabelian defect groups 383
References 384
15 Morita theory in stable homotopy theory
B. Shipley 393
1 Introduction 393
2 Spectral Algebra 396
3 Quillen model categories 399
4 Differential graded algebras 403
5 Two topologically equivalent DGAs 406
References 409
Appendix Some remarks concerning tilting modules and
tilted algebras. Origin. Relevance. Future.
C. M. Ringel 413
1 Basic Setting 414
2 Connections 423
3 The new cluster tilting approach 446
References 470 |
any_adam_object | 1 |
any_adam_object_boolean | 1 |
author | Angeleri Hügel, Lidia 1960- |
author_GND | (DE-588)138988234 |
author_facet | Angeleri Hügel, Lidia 1960- |
author_role | aut |
author_sort | Angeleri Hügel, Lidia 1960- |
author_variant | h l a hl hla |
building | Verbundindex |
bvnumber | BV022271507 |
classification_tum | MAT 180f |
ctrlnum | (OCoLC)84910946 (DE-599)BVBBV022271507 |
discipline | Mathematik |
discipline_str_mv | Mathematik |
edition | 1. publ. |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01509nam a2200385 cb4500</leader><controlfield tag="001">BV022271507</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20070724 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">070214s2007 d||| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780521680455</subfield><subfield code="9">978-0-521-68045-5</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">052168045X</subfield><subfield code="9">0-521-68045-X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)84910946</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV022271507</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91G</subfield><subfield code="a">DE-19</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 180f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Angeleri Hügel, Lidia</subfield><subfield code="d">1960-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)138988234</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Handbook of tilting theory</subfield><subfield code="c">ed. by Lidia Angeleri Hügel ...</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">1. publ.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge [u.a.]</subfield><subfield code="b">Cambridge Univ. Press</subfield><subfield code="c">2007</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">VIII, 472 S.</subfield><subfield code="b">graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">London Mathematical Society lecture notes series</subfield><subfield code="v">332</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Categories (Mathematics)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Modules (Algebra)</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Kategorientheorie</subfield><subfield code="0">(DE-588)4120552-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Kategorientheorie</subfield><subfield code="0">(DE-588)4120552-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">London Mathematical Society lecture notes series</subfield><subfield code="v">332</subfield><subfield code="w">(DE-604)BV000000130</subfield><subfield code="9">332</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HBZ Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=015481986&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-015481986</subfield></datafield></record></collection> |
id | DE-604.BV022271507 |
illustrated | Illustrated |
index_date | 2024-07-02T16:46:16Z |
indexdate | 2024-11-25T17:26:05Z |
institution | BVB |
isbn | 9780521680455 052168045X |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-015481986 |
oclc_num | 84910946 |
open_access_boolean | |
owner | DE-91G DE-BY-TUM DE-19 DE-BY-UBM |
owner_facet | DE-91G DE-BY-TUM DE-19 DE-BY-UBM |
physical | VIII, 472 S. graph. Darst. |
publishDate | 2007 |
publishDateSearch | 2007 |
publishDateSort | 2007 |
publisher | Cambridge Univ. Press |
record_format | marc |
series | London Mathematical Society lecture notes series |
series2 | London Mathematical Society lecture notes series |
spellingShingle | Angeleri Hügel, Lidia 1960- Handbook of tilting theory London Mathematical Society lecture notes series Categories (Mathematics) Modules (Algebra) Kategorientheorie (DE-588)4120552-2 gnd |
subject_GND | (DE-588)4120552-2 |
title | Handbook of tilting theory |
title_auth | Handbook of tilting theory |
title_exact_search | Handbook of tilting theory |
title_exact_search_txtP | Handbook of tilting theory |
title_full | Handbook of tilting theory ed. by Lidia Angeleri Hügel ... |
title_fullStr | Handbook of tilting theory ed. by Lidia Angeleri Hügel ... |
title_full_unstemmed | Handbook of tilting theory ed. by Lidia Angeleri Hügel ... |
title_short | Handbook of tilting theory |
title_sort | handbook of tilting theory |
topic | Categories (Mathematics) Modules (Algebra) Kategorientheorie (DE-588)4120552-2 gnd |
topic_facet | Categories (Mathematics) Modules (Algebra) Kategorientheorie |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=015481986&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
volume_link | (DE-604)BV000000130 |
work_keys_str_mv | AT angelerihugellidia handbookoftiltingtheory |