Handbook of tilting theory

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Angeleri Hügel, Lidia 1960- (VerfasserIn)
Format: Buch
Sprache:English
Veröffentlicht: Cambridge [u.a.] Cambridge Univ. Press 2007
Ausgabe:1. publ.
Schriftenreihe:London Mathematical Society lecture notes series 332
Schlagworte:
Online-Zugang:Inhaltsverzeichnis
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nam a2200000 cb4500
001 BV022271507
003 DE-604
005 20070724
007 t
008 070214s2007 d||| |||| 00||| eng d
020 |a 9780521680455  |9 978-0-521-68045-5 
020 |a 052168045X  |9 0-521-68045-X 
035 |a (OCoLC)84910946 
035 |a (DE-599)BVBBV022271507 
040 |a DE-604  |b ger  |e rakwb 
041 0 |a eng 
049 |a DE-91G  |a DE-19 
084 |a MAT 180f  |2 stub 
100 1 |a Angeleri Hügel, Lidia  |d 1960-  |e Verfasser  |0 (DE-588)138988234  |4 aut 
245 1 0 |a Handbook of tilting theory  |c ed. by Lidia Angeleri Hügel ... 
250 |a 1. publ. 
264 1 |a Cambridge [u.a.]  |b Cambridge Univ. Press  |c 2007 
300 |a VIII, 472 S.  |b graph. Darst. 
336 |b txt  |2 rdacontent 
337 |b n  |2 rdamedia 
338 |b nc  |2 rdacarrier 
490 1 |a London Mathematical Society lecture notes series  |v 332 
650 4 |a Categories (Mathematics) 
650 4 |a Modules (Algebra) 
650 0 7 |a Kategorientheorie  |0 (DE-588)4120552-2  |2 gnd  |9 rswk-swf 
689 0 0 |a Kategorientheorie  |0 (DE-588)4120552-2  |D s 
689 0 |5 DE-604 
830 0 |a London Mathematical Society lecture notes series  |v 332  |w (DE-604)BV000000130  |9 332 
856 4 2 |m HBZ Datenaustausch  |q application/pdf  |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=015481986&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA  |3 Inhaltsverzeichnis 
999 |a oai:aleph.bib-bvb.de:BVB01-015481986 

Datensatz im Suchindex

DE-BY-TUM_call_number 0102/MAT 001z 2001 A 985-332
DE-BY-TUM_katkey 1583765
DE-BY-TUM_media_number 040010251659
_version_ 1816712678807175168
adam_text Contents 1 Introduction page 1 2 Basic results of classical tilting theory L. Angeleri Hiigel, D. Happel, and H. Krause 9 References 12 3 Classification of representation finite algebras and their modules T. Brustle 15 1 Introduction 15 2 Notation 16 3 Representation finite algebras 18 4 Critical algebras 24 5 Tame algebras 26 References 28 4 A spectral sequence analysis of classical tilting func¬ tors S. Brenner and M. C. R. Butler 31 1 Introduction 31 2 Tilting modules 32 3 Tilting functors, spectral sequences and nitrations 35 4 Applications 43 5 Edge effects, and the case t = 2 46 References 47 5 Derived categories and tilting B. Keller 49 1 Introduction 49 2 Derived categories 51 v vi Contents 3 Derived functors 63 4 Tilting and derived equivalences 66 5 Triangulated categories 72 6 Morita theory for derived categories 78 7 Comparison of t structures, spectral sequences 83 8 Algebraic triangulated categories and dg algebras 90 References 97 6 Hereditary categories H. Lenzing 105 1 Fundamental concepts 106 2 Examples of hereditary categories 108 3 Repetitive shape of the derived category 112 4 Perpendicular categories 114 5 Exceptional objects 115 6 Piecewise hereditary algebras and HappePs theorem 117 7 Derived equivalence of hereditary categories 121 8 Modules over hereditary algebras 121 9 Spectral properties of hereditary categories 124 10 Weighted projective lines 125 11 Quasitilted algebras 142 References 143 7 Fourier Mukai transforms L. Hille and M. Van den Bergh 147 1 Some background 147 2 Notations and conventions 149 3 Basics on Fourier Mukai transforms 149 4 The reconstruction theorem 155 5 Curves and surfaces 159 6 Threefolds and higher dimensional varieties 166 7 Non commutative rings in algebraic geometry 170 References 173 8 Tilting theory and homologically finite subcategories with applications to quasihereditary algebras I. Reiten 179 1 The Basic Ingredients 181 2 The Correspondence Theorem 191 3 Quasihereditary algebras and their generalizations 200 4 Generalizations 207 References 211 Contents vii 9 Tilting modules for algebraic groups and finite dimen¬ sional algebras S. Donkin 215 1 Quasi hereditary algebras 217 2 Coalgebras and Comodules 220 3 Linear Algebraic Groups 225 4 Reductive Groups 228 5 Infinitesimal Methods 233 6 Some support for tilting modules 238 7 Invariant theory 239 8 General Linear Groups 241 9 Connections with symmetric groups and Hecke algebras244 10 Some recent applications to Hecke algebras 247 References 254 10 Combinatorial aspects of the set of tilting modules L. Unger 259 1 Introduction 259 2 The partial order of tilting modules 260 3 The quiver of tilting modules 261 4 The simplicial complex of tilting modules 270 References 275 11 Infinite dimensional tilting modules and cotorsion pairs J. Trlifaj 279 1 Cotorsion pairs and approximations of modules 281 2 Tilting cotorsion pairs 292 3 Cotilting cotorsion pairs 298 4 Finite type, duality, and some examples 304 5 Tilting modules and the finitistic dimension conjectures312 References 316 12 Infinite dimensional tilting modules over finite dimen¬ sional algebras 0. Solberg 323 1 Definitions and preliminaries 324 2 The subcategory correspondence 327 3 The finitistic dimension conjectures 332 4 Complements of tilting and cotilting modules 336 5 Classification of all cotilting modules 340 References 341 viii Contents 13 Cotilting dualities R. Colpi and K. R. Fuller 345 1 Generalized Morita Duality and Finitistic Cotilting Modules 348 2 Cotilting Modules and Bimodules 350 3 Weak Morita Duality 353 4 Pure Injectivity of Cotilting Modules and Reflexivity 355 References 356 14 Representations of finite groups and tilting J. Chuang and J. Richard 359 1 A brief introduction to modular representation theory 359 2 The abelian defect group conjecture 360 3 Symmetric algebras 361 4 Characters and derived equivalence 366 5 Splendid equivalences 370 6 Derived equivalence and stable equivalence 373 7 Lifting stable equivalences 375 8 Clifford theory 376 9 Cases for which the Abelian Defect Group Conjecture has been verified 378 10 Nonabelian defect groups 383 References 384 15 Morita theory in stable homotopy theory B. Shipley 393 1 Introduction 393 2 Spectral Algebra 396 3 Quillen model categories 399 4 Differential graded algebras 403 5 Two topologically equivalent DGAs 406 References 409 Appendix Some remarks concerning tilting modules and tilted algebras. Origin. Relevance. Future. C. M. Ringel 413 1 Basic Setting 414 2 Connections 423 3 The new cluster tilting approach 446 References 470
adam_txt Contents 1 Introduction page 1 2 Basic results of classical tilting theory L. Angeleri Hiigel, D. Happel, and H. Krause 9 References 12 3 Classification of representation finite algebras and their modules T. Brustle 15 1 Introduction 15 2 Notation 16 3 Representation finite algebras 18 4 Critical algebras 24 5 Tame algebras 26 References 28 4 A spectral sequence analysis of classical tilting func¬ tors S. Brenner and M. C. R. Butler 31 1 Introduction 31 2 Tilting modules 32 3 Tilting functors, spectral sequences and nitrations 35 4 Applications 43 5 Edge effects, and the case t = 2 46 References 47 5 Derived categories and tilting B. Keller 49 1 Introduction 49 2 Derived categories 51 v vi Contents 3 Derived functors 63 4 Tilting and derived equivalences 66 5 Triangulated categories 72 6 Morita theory for derived categories 78 7 Comparison of t structures, spectral sequences 83 8 Algebraic triangulated categories and dg algebras 90 References 97 6 Hereditary categories H. Lenzing 105 1 Fundamental concepts 106 2 Examples of hereditary categories 108 3 Repetitive shape of the derived category 112 4 Perpendicular categories 114 5 Exceptional objects 115 6 Piecewise hereditary algebras and HappePs theorem 117 7 Derived equivalence of hereditary categories 121 8 Modules over hereditary algebras 121 9 Spectral properties of hereditary categories 124 10 Weighted projective lines 125 11 Quasitilted algebras 142 References 143 7 Fourier Mukai transforms L. Hille and M. Van den Bergh 147 1 Some background 147 2 Notations and conventions 149 3 Basics on Fourier Mukai transforms 149 4 The reconstruction theorem 155 5 Curves and surfaces 159 6 Threefolds and higher dimensional varieties 166 7 Non commutative rings in algebraic geometry 170 References 173 8 Tilting theory and homologically finite subcategories with applications to quasihereditary algebras I. Reiten 179 1 The Basic Ingredients 181 2 The Correspondence Theorem 191 3 Quasihereditary algebras and their generalizations 200 4 Generalizations 207 References 211 Contents vii 9 Tilting modules for algebraic groups and finite dimen¬ sional algebras S. Donkin 215 1 Quasi hereditary algebras 217 2 Coalgebras and Comodules 220 3 Linear Algebraic Groups 225 4 Reductive Groups 228 5 Infinitesimal Methods 233 6 Some support for tilting modules 238 7 Invariant theory 239 8 General Linear Groups 241 9 Connections with symmetric groups and Hecke algebras244 10 Some recent applications to Hecke algebras 247 References 254 10 Combinatorial aspects of the set of tilting modules L. Unger 259 1 Introduction 259 2 The partial order of tilting modules 260 3 The quiver of tilting modules 261 4 The simplicial complex of tilting modules 270 References 275 11 Infinite dimensional tilting modules and cotorsion pairs J. Trlifaj 279 1 Cotorsion pairs and approximations of modules 281 2 Tilting cotorsion pairs 292 3 Cotilting cotorsion pairs 298 4 Finite type, duality, and some examples 304 5 Tilting modules and the finitistic dimension conjectures312 References 316 12 Infinite dimensional tilting modules over finite dimen¬ sional algebras 0. Solberg 323 1 Definitions and preliminaries 324 2 The subcategory correspondence 327 3 The finitistic dimension conjectures 332 4 Complements of tilting and cotilting modules 336 5 Classification of all cotilting modules 340 References 341 viii Contents 13 Cotilting dualities R. Colpi and K. R. Fuller 345 1 Generalized Morita Duality and Finitistic Cotilting Modules 348 2 Cotilting Modules and Bimodules 350 3 Weak Morita Duality 353 4 Pure Injectivity of Cotilting Modules and Reflexivity 355 References 356 14 Representations of finite groups and tilting J. Chuang and J. Richard 359 1 A brief introduction to modular representation theory 359 2 The abelian defect group conjecture 360 3 Symmetric algebras 361 4 Characters and derived equivalence 366 5 Splendid equivalences 370 6 Derived equivalence and stable equivalence 373 7 Lifting stable equivalences 375 8 Clifford theory 376 9 Cases for which the Abelian Defect Group Conjecture has been verified 378 10 Nonabelian defect groups 383 References 384 15 Morita theory in stable homotopy theory B. Shipley 393 1 Introduction 393 2 Spectral Algebra 396 3 Quillen model categories 399 4 Differential graded algebras 403 5 Two topologically equivalent DGAs 406 References 409 Appendix Some remarks concerning tilting modules and tilted algebras. Origin. Relevance. Future. C. M. Ringel 413 1 Basic Setting 414 2 Connections 423 3 The new cluster tilting approach 446 References 470
any_adam_object 1
any_adam_object_boolean 1
author Angeleri Hügel, Lidia 1960-
author_GND (DE-588)138988234
author_facet Angeleri Hügel, Lidia 1960-
author_role aut
author_sort Angeleri Hügel, Lidia 1960-
author_variant h l a hl hla
building Verbundindex
bvnumber BV022271507
classification_tum MAT 180f
ctrlnum (OCoLC)84910946
(DE-599)BVBBV022271507
discipline Mathematik
discipline_str_mv Mathematik
edition 1. publ.
format Book
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01509nam a2200385 cb4500</leader><controlfield tag="001">BV022271507</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20070724 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">070214s2007 d||| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780521680455</subfield><subfield code="9">978-0-521-68045-5</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">052168045X</subfield><subfield code="9">0-521-68045-X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)84910946</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV022271507</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91G</subfield><subfield code="a">DE-19</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 180f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Angeleri Hügel, Lidia</subfield><subfield code="d">1960-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)138988234</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Handbook of tilting theory</subfield><subfield code="c">ed. by Lidia Angeleri Hügel ...</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">1. publ.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge [u.a.]</subfield><subfield code="b">Cambridge Univ. Press</subfield><subfield code="c">2007</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">VIII, 472 S.</subfield><subfield code="b">graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">London Mathematical Society lecture notes series</subfield><subfield code="v">332</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Categories (Mathematics)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Modules (Algebra)</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Kategorientheorie</subfield><subfield code="0">(DE-588)4120552-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Kategorientheorie</subfield><subfield code="0">(DE-588)4120552-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">London Mathematical Society lecture notes series</subfield><subfield code="v">332</subfield><subfield code="w">(DE-604)BV000000130</subfield><subfield code="9">332</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HBZ Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&amp;doc_library=BVB01&amp;local_base=BVB01&amp;doc_number=015481986&amp;sequence=000002&amp;line_number=0001&amp;func_code=DB_RECORDS&amp;service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-015481986</subfield></datafield></record></collection>
id DE-604.BV022271507
illustrated Illustrated
index_date 2024-07-02T16:46:16Z
indexdate 2024-11-25T17:26:05Z
institution BVB
isbn 9780521680455
052168045X
language English
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-015481986
oclc_num 84910946
open_access_boolean
owner DE-91G
DE-BY-TUM
DE-19
DE-BY-UBM
owner_facet DE-91G
DE-BY-TUM
DE-19
DE-BY-UBM
physical VIII, 472 S. graph. Darst.
publishDate 2007
publishDateSearch 2007
publishDateSort 2007
publisher Cambridge Univ. Press
record_format marc
series London Mathematical Society lecture notes series
series2 London Mathematical Society lecture notes series
spellingShingle Angeleri Hügel, Lidia 1960-
Handbook of tilting theory
London Mathematical Society lecture notes series
Categories (Mathematics)
Modules (Algebra)
Kategorientheorie (DE-588)4120552-2 gnd
subject_GND (DE-588)4120552-2
title Handbook of tilting theory
title_auth Handbook of tilting theory
title_exact_search Handbook of tilting theory
title_exact_search_txtP Handbook of tilting theory
title_full Handbook of tilting theory ed. by Lidia Angeleri Hügel ...
title_fullStr Handbook of tilting theory ed. by Lidia Angeleri Hügel ...
title_full_unstemmed Handbook of tilting theory ed. by Lidia Angeleri Hügel ...
title_short Handbook of tilting theory
title_sort handbook of tilting theory
topic Categories (Mathematics)
Modules (Algebra)
Kategorientheorie (DE-588)4120552-2 gnd
topic_facet Categories (Mathematics)
Modules (Algebra)
Kategorientheorie
url http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=015481986&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA
volume_link (DE-604)BV000000130
work_keys_str_mv AT angelerihugellidia handbookoftiltingtheory