Discrete mathematics using a computer

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: O'Donnell, John (VerfasserIn), Hall, Cordelia 1955- (VerfasserIn), Page, Rex (VerfasserIn)
Format: Buch
Sprache:English
Veröffentlicht: London Springer 2006
Ausgabe:2. ed.
Schlagworte:
Online-Zugang:Inhaltsverzeichnis
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nam a2200000 c 4500
001 BV022269978
003 DE-604
005 20150506
007 t|
008 070214s2006 xx ad|| |||| 00||| eng d
015 |a 05,N43,0437  |2 dnb 
016 7 |a 976543451  |2 DE-101 
020 |a 9781846282416  |9 978-1-84628-241-6 
020 |a 1846282411  |c Pb. (Pr. in Vorb.)  |9 1-84628-241-1 
024 3 |a 9781846282416 
028 5 2 |a 11011002 
035 |a (OCoLC)255037636 
035 |a (DE-599)BVBBV022269978 
040 |a DE-604  |b ger  |e rakddb 
041 0 |a eng 
049 |a DE-91G  |a DE-706  |a DE-703  |a DE-1046  |a DE-573 
050 0 |a QA76.95 
082 0 |a 004.0151 
082 0 |a 510.285 
084 |a SK 890  |0 (DE-625)143267:  |2 rvk 
084 |a ST 600  |0 (DE-625)143681:  |2 rvk 
084 |a DAT 362f  |2 stub 
084 |a 510  |2 sdnb 
084 |a MAT 050f  |2 stub 
100 1 |a O'Donnell, John  |e Verfasser  |4 aut 
245 1 0 |a Discrete mathematics using a computer  |c John O'Donnell, Cordelia Hall and Rex Page 
250 |a 2. ed. 
264 1 |a London  |b Springer  |c 2006 
300 |a XIX, 441 S.  |b Ill., graph. Darst. 
336 |b txt  |2 rdacontent 
337 |b n  |2 rdamedia 
338 |b nc  |2 rdacarrier 
650 4 |a Diskrete Mathematik 
650 4 |a HASKELL 
650 4 |a Datenverarbeitung 
650 4 |a Informatik 
650 4 |a Mathematik 
650 4 |a Computer science  |x Mathematics 
650 4 |a Mathematics  |x Data processing 
650 0 7 |a Mengenlehre  |0 (DE-588)4074715-3  |2 gnd  |9 rswk-swf 
650 0 7 |a Mathematische Logik  |0 (DE-588)4037951-6  |2 gnd  |9 rswk-swf 
650 0 7 |a Diskrete Mathematik  |0 (DE-588)4129143-8  |2 gnd  |9 rswk-swf 
650 0 7 |a HASKELL  |0 (DE-588)4318275-6  |2 gnd  |9 rswk-swf 
650 0 7 |a Programmierung  |0 (DE-588)4076370-5  |2 gnd  |9 rswk-swf 
689 0 0 |a HASKELL  |0 (DE-588)4318275-6  |D s 
689 0 1 |a Mathematische Logik  |0 (DE-588)4037951-6  |D s 
689 0 2 |a Programmierung  |0 (DE-588)4076370-5  |D s 
689 0 |8 1\p  |5 DE-604 
689 1 0 |a Diskrete Mathematik  |0 (DE-588)4129143-8  |D s 
689 1 1 |a HASKELL  |0 (DE-588)4318275-6  |D s 
689 1 |8 2\p  |5 DE-604 
689 2 0 |a Mengenlehre  |0 (DE-588)4074715-3  |D s 
689 2 |8 3\p  |5 DE-604 
700 1 |a Hall, Cordelia  |d 1955-  |e Verfasser  |0 (DE-588)120908972  |4 aut 
700 1 |a Page, Rex  |e Verfasser  |4 aut 
856 4 2 |m Digitalisierung UB Bayreuth  |q application/pdf  |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=015480481&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA  |3 Inhaltsverzeichnis 
883 1 |8 1\p  |a cgwrk  |d 20201028  |q DE-101  |u https://d-nb.info/provenance/plan#cgwrk 
883 1 |8 2\p  |a cgwrk  |d 20201028  |q DE-101  |u https://d-nb.info/provenance/plan#cgwrk 
883 1 |8 3\p  |a cgwrk  |d 20201028  |q DE-101  |u https://d-nb.info/provenance/plan#cgwrk 
943 1 |a oai:aleph.bib-bvb.de:BVB01-015480481 

Datensatz im Suchindex

DE-BY-TUM_call_number 0102 MAT 050f 2007 A 2240(2)
DE-BY-TUM_katkey 1583655
DE-BY-TUM_location 01
DE-BY-TUM_media_number 040010252194
_version_ 1820897707180425216
adam_text Contents I Programming and Reasoning with Equations 1 1 Introduction to Haskell ....................... 3 1.1 Obtaining and Running Haskell ................. 4 1.2 Expressions ............................. 6 1.2.1 Integer and Int ..................... 6 1.2.2 Rational and Floating Point Numbers ......... 8 1.2.3 Booleans .......................... 9 1.2.4 Characters ......................... 10 1.2.5 Strings ........................... 10 1.3 Basic Data Structures: Tuples and Lists ............. 11 1.3.1 Tuples ........................... 11 1.3.2 Lists ............................ 11 1.3.3 List Notation and (:) .................. 12 1.3.4 List Comprehensions ................... 13 1.4 Functions .............................. 15 1.4.1 Function Application ................... 15 1.4.2 Function Types ...................... 15 1.4.3 Operators and Functions ................. 16 1.4.4 Function Definitions ................... 16 1.4.5 Pattern Matching ..................... 17 1.4.6 Higher Order Functions ................. 19 1.5 Conditional Expressions ...................... 20 1.6 Local Variables: let Expressions ................. 21 1.7 Type Variables ........................... 21 1.8 Common Functions on Lists ................... 22 1.9 Data Type Definitions ....................... 28 1.10 Type Classes and Overloading .................. 31 1.11 Suggestions for Further Reading ................. 33 1.12 Review Exercises .......................... 33 ХШ xiv CONTENTS 2 Equational Reasoning ........................ 37 2.1 Equations and Substitutions ................... 37 2.2 Equational Reasoning as Hand-execution ............ 38 2.2.1 Conditionals ........................ 41 2.3 Equational Reasoning with Lists ................. 42 2.4 The Role of the Language ..................... 43 2.5 Rigor and Formality in Proofs .................. 44 3 Recursion ................................ 47 3.1 Recursion Over Lists ....................... 48 3.2 Higher Order Recursive Functions ................ 54 3.3 Peano Arithmetic ......................... 57 3.4 Data Recursion ........................... 58 3.5 Suggestions for Further Reading ................. 59 3.6 Review Exercises .......................... 59 4 Induction ................................ 61 4.1 The Principle of Mathematical Induction ............ 62 4.2 Examples of Induction on Natural Numbers ........... 63 4.3 Induction and Recursion ..................... 66 4.4 Induction on Peano Naturals ................... 67 4.5 Induction on Lists ......................... 70 4.6 Functional Equality ........................ 76 4.7 Pitfalls and Common Mistakes .................. 78 4.7.1 A Horse of Another Colour ............... 78 4.8 Limitations of Induction ..................... 78 4.9 Suggestions for Further Reading ................. 80 4.10 Review Exercises .......................... 81 5 Trees ................................... 83 5.1 Components of a Tree ....................... 83 5.2 Representing Trees in Haskell ................... 86 5.3 Processing Trees with Recursion ................. 88 5.3.1 Tree Traversal ....................... 89 5.3.2 Processing Tree Structure ................ 90 5.3.3 Evaluating Expression Trees ............... 92 5.3.4 Binary Search Trees ................... 92 5.4 Induction on Trees ......................... 96 5.4.1 Repeated Reflection Theorem .............. 96 5.4.2 Reflection and Reversing ................. 97 5.4.3 The Height of a Balanced Tree ............. 98 5.4.4 Length of a Flattened Tree ................ 99 5.5 Improving Execution Time .................... 100 5.6 Flattening Trees in Linear Time ................. 103 CONTENTS xv II Logic 107 6 Propositional Logic.......................... 109 6.1 The Need for Formalism ..................... Ill 6.2 The Basic Logical Operators ................... 112 6.2.1 Logical And (Л) ...................... 113 6.2.2 Inclusive Logical Or (V) ................. 114 6.2.3 Exclusive Logical Or (®) ................. 115 6.2.4 Logical Not (->)...................... 115 6.2.5 Logical Implication (—>·)................. 115 6.2.6 Logical Equivalence (<->)................. 117 6.3 The Language of Propositional Logic .............. 118 6.3.1 The Syntax of Well-Formed Formulas .......... 118 6.3.2 Precedence of Logical Operators ............. 120 6.3.3 Object Language and Meta-Language ......... 120 6.3.4 Computing with Boolean Expressions .......... 121 6.4 Truth Tables: Semantic Reasoning ................ 122 6.4.1 Truth Table Calculations and Proofs .......... 123 6.4.2 Limitations of Truth Tables ............... 124 6.4.3 Computing Truth Tables ................. 125 6.5 Natural Deduction: Inference Reasoning ............. 126 6.5.1 Definitions of True, ->, and Ό .............. 128 6.5.2 And Introduction {M} .................. 129 6.5.3 And Elimination {AEL}, {aEr} ............ 131 6.5.4 Imply Elimination {-> E} ................ 132 6.5.5 Imply Introduction {->■ 1}................ 133 6.5.6 Or Introduction {Vh}, {V/ň} .............. 136 6.5.7 Or Elimination {v£} ................... 137 6.5.8 Identity {ID} ....................... 138 6.5.9 Contradiction {CTR} .................. 138 6.5.10 Reductio ad Absurdum {RAA} ............. 140 6.5.11 Inferring the Operator Truth Tables .......... 141 6.6 Proof Checking by Computer ................... 142 6.6.1 Example of Proof Checking ............... 143 6.6.2 Representation of WFFs ................. 146 6.6.3 Representing Proofs ................... 147 6.7 Boolean Algebra: Equational Reasoning ............. 149 6.7.1 The Laws of Boolean Algebra .............. 150 6.7.2 Operations with Constants ................ 151 6.7.3 Basic Properties of Λ and V ............... 153 6.7.4 Distributive and DeMorgan s Laws ........... 154 6.7.5 Laws on Negation ..................... 154 6.7.6 Laws on Implication ................... 155 6.7.7 Equivalence ........................ 156 6.8 Logic in Computer Science .................... 156 xvi CONTENTS 6.9 Meta-Logic ............................. 158 6.10 Suggestions for Further Reading ................. 159 6.11 Review Exercises .......................... 161 7 Predicate Logic ............................ 163 7.1 The Language of Predicate Logic ................. 163 7.1.1 Predicates ......................... 163 7.1.2 Quantifiers ......................... 164 7.1.3 Expanding Quantified Expressions ........... 166 7.1.4 The Scope of Variable Bindings ............. 168 7.1.5 Translating Between English and Logic ......... 169 7.2 Computing with Quantifiers ................... 172 7.3 Logical Inference with Predicates ................. 174 7.3.1 Universal Introduction {V/} ............... 175 7.3.2 Universal Elimination {VE} ............... 177 7.3.3 Existential Introduction {31}.............. 179 7.3.4 Existential Elimination {3E} .............. 180 7.4 Algebraic Laws of Predicate Logic ................ 181 7.5 Suggestions for Further Reading ................. 183 7.6 Review Exercises .......................... 184 III Set Theory 187 8 Set Theory ............................... 189 8.1 Notations for Describing Sets ................... 189 8.2 Basic Operations on Sets ..................... 192 8.2.1 Subsets and Set Equality ................. 192 8.2.2 Union, Intersection, and Difference ........... 192 8.2.3 Complement and Power ................. 194 8.3 Finite Sets with Equality ..................... 196 8.3.1 Computing with Sets ................... 198 8.4 Set Laws .............................. 200 8.4.1 Associative and Commutative Set Operations ..... 201 8.4.2 Distributive Laws ..................... 202 8.4.3 DeMorgan s Laws for Sets ................ 202 8.5 Summary .............................. 203 8.6 Suggestions for Further Reading ................. 205 8.7 Review Exercises .......................... 205 9 Inductively Defined Sets ....................... 207 9.1 The Idea Behind Induction .................... 207 9.1.1 The Induction Rule .................... 210 9.2 How to Define a Set Using Induction .............. 212 9.2.1 Inductive Definition of the Set of Natural Numbers . . 213 CONTENTS xvii 9.2.2 The Set of Binary Machine Words ........... 214 9.3 Defining the Set of Integers .................... 215 9.3.1 First Attempt ....................... 215 9.3.2 Second Attempt ...................... 216 9.3.3 Third Attempt ...................... 216 9.3.4 Fourth Attempt ...................... 218 9.3.5 Fifth Attempt ....................... 219 9.4 Suggestions for Further Reading ................. 219 9.5 Review Exercises .......................... 219 10 Relations ................................. 223 10.1 Binary Relations .......................... 223 10.2 Representing Relations with Digraphs .............. 225 10.3 Computing with Binary Relations ................ 226 10.4 Properties of Relations ...................... 228 10.4.1 Reflexive Relations .................... 228 10.4.2 Irreflexive Relations ................... 229 10.4.3 Symmetric Relations ................... 231 10.4.4 Antisymmetric Relations ................. 233 10.4.5 Transitive Relations ................... 235 10.5 Relational Composition ...................... 237 10.6 Powers of Relations ........................ 240 10.7 Closure Properties of Relations .................. 245 10.7.1 Reflexive Closure ..................... 246 10.7.2 Symmetric Closure .................... 248 10.7.3 Transitive Closure .................... 249 10.8 Order Relations .......................... 252 10.8.1 Partial Order ....................... 252 10.8.2 Quasi Order ........................ 257 10.8.3 Linear Order ....................... 258 10.8.4 Well Order ......................... 259 10.8.5 Topological Sort ...................... 260 10.9 Equivalence Relations ....................... 261 10.10 Suggestions for Further Reading ................. 264 10.11 Review Exercises .......................... 264 11 Functions ................................ 267 11.1 The Graph of a Function ..................... 268 11.2 Functions in Programming .................... 271 11.2.1 Inductively Defined Functions .............. 272 11.2.2 Primitive Recursion .................... 273 11.2.3 Computational Complexity ............... 274 11.2.4 State ............................ 275 11.3 Higher Order Functions ...................... 276 11.3.1 Functions That Take Functions as Arguments ..... 277 xviii CONTENTS 11.3.2 Functions That Return Functions ............ 278 11.3.3 Multiple Arguments as Tuples .............. 280 11.3.4 Multiple Results as a Tuple ............... 281 11.3.5 Multiple Arguments with Higher Order Functions ... 281 11.4 Total and Partial Functions .................... 282 11.5 Function Composition ....................... 287 11.6 Properties of Functions ...................... 291 11.6.1 Surjective Functions ................... 291 11.6.2 Injective Functions .................... 293 11.6.3 The Pigeonhole Principle ................. 296 11.7 Bijective Functions ........................ 296 11.7.1 Permutations ....................... 297 11.7.2 Inverse Functions ..................... 299 11.8 Cardinality of Sets ......................... 299 11.8.1 The Rational Numbers Are Countable ......... 302 11.8.2 The Real Numbers Are Uncountable .......... 302 11.9 Suggestions for Further Reading ................. 304 11.10 Review Exercises .......................... 304 IV Applications 311 12 The AVL Tree Miracle ........................ 313 12.1 How to Find a Folder ....................... 313 12.2 The Filing Cabinet Advantage .................. 314 12.3 The New-File Problem ...................... 315 12.4 The AVL Miracle ......................... 316 12.5 Search Trees and Occurrence of Keys .............. 317 12.5.1 Ordered Search Trees and Tree Induction ....... 319 12.5.2 Retrieving Data from a Search Tree ........... 324 12.5.3 Search Time in the Equational Model ......... 326 12.6 Balanced Trees ........................... 329 12.6.1 Rebalancing in the Easy Cases ............. 332 12.6.2 Rebalancing in the Hard Cases ............. 336 12.6.3 Rebalancing Left-Heavy and Right-Heavy Trees .... 338 12.6.4 Inductive Equations for Insertion ............ 339 12.6.5 Insertion in Logarithmic Time .............. 342 12.6.6 Deletion .......................... 344 12.6.7 Shrinking the Spine .................... 347 12.6.8 Equations for Deleting Root ............... 349 12.6.9 Equations for Deletion .................. 35O 12.6.10 Deletion in Logarithmic Time .............. 351 12.7 Things We Didn t Tell You .................. 352 CONTENTS xix 13 Discrete Mathematics in Circuit Design ............. 355 13.1 Boolean Logic Gates ........................ 356 13.2 Functional Circuit Specification ................. 357 13.2.1 Circuit Simulation .................... 358 13.2.2 Circuit Synthesis from Truth Tables .......... 359 13.2.3 Multiplexors ........................ 362 13.2.4 Bit Arithmetic ...................... 363 13.2.5 Binary Representation .................. 366 13.3 Ripple Carry Addition ...................... 367 13.3.1 Circuit Patterns ...................... 369 13.3.2 The η -Bit Ripple Carry Adder ............. 370 13.3.3 Correctness of the Ripple Carry Adder ......... 371 13.3.4 Binary Comparison .................... 372 13.4 Suggestions for Further Reading ................. 374 13.5 Review Exercises .......................... 374 A Software Tools ............................. 377 В Resources on the Web ........................ 379 С Solutions to Selected Exercises ................... 381 C.I Introduction to Haskell ...................... 381 C.3 Recursion .............................. 384 C.4 Induction .............................. 387 C.5 Trees ................................ 397 C.6 Propositional Logic ........................ 398 C.7 Predicate Logic .......................... 411 C.8 Set Theory ............................. 417 C.9 Inductively Defined Sets ...................... 420 CIO Relations .............................. 422 C.ll Functions .............................. 424 C.13 Discrete Mathematics in Circuit Design ............. 428 Bibliography ................................ 431 Index ..................................... 434
any_adam_object 1
author O'Donnell, John
Hall, Cordelia 1955-
Page, Rex
author_GND (DE-588)120908972
author_facet O'Donnell, John
Hall, Cordelia 1955-
Page, Rex
author_role aut
aut
aut
author_sort O'Donnell, John
author_variant j o jo
c h ch
r p rp
building Verbundindex
bvnumber BV022269978
callnumber-first Q - Science
callnumber-label QA76
callnumber-raw QA76.95
callnumber-search QA76.95
callnumber-sort QA 276.95
callnumber-subject QA - Mathematics
classification_rvk SK 890
ST 600
classification_tum DAT 362f
MAT 050f
ctrlnum (OCoLC)255037636
(DE-599)BVBBV022269978
dewey-full 004.0151
510.285
dewey-hundreds 000 - Computer science, information, general works
500 - Natural sciences and mathematics
dewey-ones 004 - Computer science
510 - Mathematics
dewey-raw 004.0151
510.285
dewey-search 004.0151
510.285
dewey-sort 14.0151
dewey-tens 000 - Computer science, information, general works
510 - Mathematics
discipline Informatik
Mathematik
edition 2. ed.
format Book
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02821nam a2200745 c 4500</leader><controlfield tag="001">BV022269978</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20150506 </controlfield><controlfield tag="007">t|</controlfield><controlfield tag="008">070214s2006 xx ad|| |||| 00||| eng d</controlfield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">05,N43,0437</subfield><subfield code="2">dnb</subfield></datafield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">976543451</subfield><subfield code="2">DE-101</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781846282416</subfield><subfield code="9">978-1-84628-241-6</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1846282411</subfield><subfield code="c">Pb. (Pr. in Vorb.)</subfield><subfield code="9">1-84628-241-1</subfield></datafield><datafield tag="024" ind1="3" ind2=" "><subfield code="a">9781846282416</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">11011002</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)255037636</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV022269978</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91G</subfield><subfield code="a">DE-706</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-1046</subfield><subfield code="a">DE-573</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA76.95</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">004.0151</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">510.285</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 890</subfield><subfield code="0">(DE-625)143267:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ST 600</subfield><subfield code="0">(DE-625)143681:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">DAT 362f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">510</subfield><subfield code="2">sdnb</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 050f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">O'Donnell, John</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Discrete mathematics using a computer</subfield><subfield code="c">John O'Donnell, Cordelia Hall and Rex Page</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">2. ed.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">London</subfield><subfield code="b">Springer</subfield><subfield code="c">2006</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XIX, 441 S.</subfield><subfield code="b">Ill., graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Diskrete Mathematik</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">HASKELL</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Datenverarbeitung</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Informatik</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Computer science</subfield><subfield code="x">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield><subfield code="x">Data processing</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mengenlehre</subfield><subfield code="0">(DE-588)4074715-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mathematische Logik</subfield><subfield code="0">(DE-588)4037951-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Diskrete Mathematik</subfield><subfield code="0">(DE-588)4129143-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">HASKELL</subfield><subfield code="0">(DE-588)4318275-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Programmierung</subfield><subfield code="0">(DE-588)4076370-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">HASKELL</subfield><subfield code="0">(DE-588)4318275-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Mathematische Logik</subfield><subfield code="0">(DE-588)4037951-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Programmierung</subfield><subfield code="0">(DE-588)4076370-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Diskrete Mathematik</subfield><subfield code="0">(DE-588)4129143-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">HASKELL</subfield><subfield code="0">(DE-588)4318275-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Mengenlehre</subfield><subfield code="0">(DE-588)4074715-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="8">3\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hall, Cordelia</subfield><subfield code="d">1955-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)120908972</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Page, Rex</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Bayreuth</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&amp;doc_library=BVB01&amp;local_base=BVB01&amp;doc_number=015480481&amp;sequence=000002&amp;line_number=0001&amp;func_code=DB_RECORDS&amp;service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">3\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-015480481</subfield></datafield></record></collection>
id DE-604.BV022269978
illustrated Illustrated
indexdate 2024-12-23T19:57:04Z
institution BVB
isbn 9781846282416
1846282411
language English
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-015480481
oclc_num 255037636
open_access_boolean
owner DE-91G
DE-BY-TUM
DE-706
DE-703
DE-1046
DE-573
owner_facet DE-91G
DE-BY-TUM
DE-706
DE-703
DE-1046
DE-573
physical XIX, 441 S. Ill., graph. Darst.
publishDate 2006
publishDateSearch 2006
publishDateSort 2006
publisher Springer
record_format marc
spellingShingle O'Donnell, John
Hall, Cordelia 1955-
Page, Rex
Discrete mathematics using a computer
Diskrete Mathematik
HASKELL
Datenverarbeitung
Informatik
Mathematik
Computer science Mathematics
Mathematics Data processing
Mengenlehre (DE-588)4074715-3 gnd
Mathematische Logik (DE-588)4037951-6 gnd
Diskrete Mathematik (DE-588)4129143-8 gnd
HASKELL (DE-588)4318275-6 gnd
Programmierung (DE-588)4076370-5 gnd
subject_GND (DE-588)4074715-3
(DE-588)4037951-6
(DE-588)4129143-8
(DE-588)4318275-6
(DE-588)4076370-5
title Discrete mathematics using a computer
title_auth Discrete mathematics using a computer
title_exact_search Discrete mathematics using a computer
title_full Discrete mathematics using a computer John O'Donnell, Cordelia Hall and Rex Page
title_fullStr Discrete mathematics using a computer John O'Donnell, Cordelia Hall and Rex Page
title_full_unstemmed Discrete mathematics using a computer John O'Donnell, Cordelia Hall and Rex Page
title_short Discrete mathematics using a computer
title_sort discrete mathematics using a computer
topic Diskrete Mathematik
HASKELL
Datenverarbeitung
Informatik
Mathematik
Computer science Mathematics
Mathematics Data processing
Mengenlehre (DE-588)4074715-3 gnd
Mathematische Logik (DE-588)4037951-6 gnd
Diskrete Mathematik (DE-588)4129143-8 gnd
HASKELL (DE-588)4318275-6 gnd
Programmierung (DE-588)4076370-5 gnd
topic_facet Diskrete Mathematik
HASKELL
Datenverarbeitung
Informatik
Mathematik
Computer science Mathematics
Mathematics Data processing
Mengenlehre
Mathematische Logik
Programmierung
url http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=015480481&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA
work_keys_str_mv AT odonnelljohn discretemathematicsusingacomputer
AT hallcordelia discretemathematicsusingacomputer
AT pagerex discretemathematicsusingacomputer