Economy of descriptions and minimal indices
It has been known for some time that if the power of a programming language is restricted it very often tends to lose succinctness in its description of programs. A primitive recursive definition scheme for instance is frequently not as concise in describing primitive recursive functions as a double...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Cambridge, Mass.
Mass Inst. of Technology, Project MAC
1972
|
Schriftenreihe: | MAC technical memorandum
27 |
Schlagworte: | |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
MARC
LEADER | 00000nam a2200000zcb4500 | ||
---|---|---|---|
001 | BV022136212 | ||
003 | DE-604 | ||
005 | 20201102 | ||
007 | t| | ||
008 | 890123s1972 xx |||| 00||| eng d | ||
035 | |a (OCoLC)227656124 | ||
035 | |a (DE-599)BVBBV022136212 | ||
040 | |a DE-604 |b ger | ||
041 | 0 | |a eng | |
049 | |a DE-706 | ||
088 | |a MAC-TM-27 | ||
100 | 1 | |a Bagchi, Amitava |e Verfasser |4 aut | |
245 | 1 | 0 | |a Economy of descriptions and minimal indices |
264 | 1 | |a Cambridge, Mass. |b Mass Inst. of Technology, Project MAC |c 1972 | |
300 | |a VII, 36 S. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a MAC technical memorandum |v 27 | |
500 | |a Kopie, erschienen bei National Techn. Information Service, Springfield, Va. | ||
520 | 3 | |a It has been known for some time that if the power of a programming language is restricted it very often tends to lose succinctness in its description of programs. A primitive recursive definition scheme for instance is frequently not as concise in describing primitive recursive functions as a double recursive definition scheme. A careful study of the problem has been made by Meyer, where he shows that as one increases the power of programming languages, one can obtain economies in program size by any recursive amount for even very simple functions. The principal objective of this part of the thesis is the generalization of the results of Meyer to sets of integers A and B related in some recursion theoretic manner, e.g. A double prime < or = (sub T) B prime. (Author). | |
650 | 7 | |a (Programming languages |2 dtict | |
650 | 7 | |a Computer Programming and Software |2 scgdst | |
650 | 7 | |a Grammars |2 dtict | |
650 | 7 | |a Mathematical logic) |2 dtict | |
650 | 7 | |a Recursive functions |2 dtict | |
650 | 7 | |a Set theory |2 dtict | |
650 | 7 | |a Theorems |2 dtict | |
650 | 0 | 7 | |a Rekursive Funktion |0 (DE-588)4138367-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Programmiersprache |0 (DE-588)4047409-4 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Rekursive Funktion |0 (DE-588)4138367-9 |D s |
689 | 0 | 1 | |a Programmiersprache |0 (DE-588)4047409-4 |D s |
689 | 0 | |5 DE-604 | |
830 | 0 | |a MAC technical memorandum |v 27 |w (DE-604)BV008910218 |9 27 | |
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-015350830 |
Datensatz im Suchindex
_version_ | 1819262177351041026 |
---|---|
any_adam_object | |
author | Bagchi, Amitava |
author_facet | Bagchi, Amitava |
author_role | aut |
author_sort | Bagchi, Amitava |
author_variant | a b ab |
building | Verbundindex |
bvnumber | BV022136212 |
ctrlnum | (OCoLC)227656124 (DE-599)BVBBV022136212 |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02256nam a2200445zcb4500</leader><controlfield tag="001">BV022136212</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20201102 </controlfield><controlfield tag="007">t|</controlfield><controlfield tag="008">890123s1972 xx |||| 00||| eng d</controlfield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)227656124</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV022136212</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-706</subfield></datafield><datafield tag="088" ind1=" " ind2=" "><subfield code="a">MAC-TM-27</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Bagchi, Amitava</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Economy of descriptions and minimal indices</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge, Mass.</subfield><subfield code="b">Mass Inst. of Technology, Project MAC</subfield><subfield code="c">1972</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">VII, 36 S.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">MAC technical memorandum</subfield><subfield code="v">27</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Kopie, erschienen bei National Techn. Information Service, Springfield, Va.</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">It has been known for some time that if the power of a programming language is restricted it very often tends to lose succinctness in its description of programs. A primitive recursive definition scheme for instance is frequently not as concise in describing primitive recursive functions as a double recursive definition scheme. A careful study of the problem has been made by Meyer, where he shows that as one increases the power of programming languages, one can obtain economies in program size by any recursive amount for even very simple functions. The principal objective of this part of the thesis is the generalization of the results of Meyer to sets of integers A and B related in some recursion theoretic manner, e.g. A double prime < or = (sub T) B prime. (Author).</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">(Programming languages</subfield><subfield code="2">dtict</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Computer Programming and Software</subfield><subfield code="2">scgdst</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Grammars</subfield><subfield code="2">dtict</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Mathematical logic)</subfield><subfield code="2">dtict</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Recursive functions</subfield><subfield code="2">dtict</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Set theory</subfield><subfield code="2">dtict</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Theorems</subfield><subfield code="2">dtict</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Rekursive Funktion</subfield><subfield code="0">(DE-588)4138367-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Programmiersprache</subfield><subfield code="0">(DE-588)4047409-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Rekursive Funktion</subfield><subfield code="0">(DE-588)4138367-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Programmiersprache</subfield><subfield code="0">(DE-588)4047409-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">MAC technical memorandum</subfield><subfield code="v">27</subfield><subfield code="w">(DE-604)BV008910218</subfield><subfield code="9">27</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-015350830</subfield></datafield></record></collection> |
id | DE-604.BV022136212 |
illustrated | Not Illustrated |
indexdate | 2024-12-23T19:53:32Z |
institution | BVB |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-015350830 |
oclc_num | 227656124 |
open_access_boolean | |
owner | DE-706 |
owner_facet | DE-706 |
physical | VII, 36 S. |
publishDate | 1972 |
publishDateSearch | 1972 |
publishDateSort | 1972 |
publisher | Mass Inst. of Technology, Project MAC |
record_format | marc |
series | MAC technical memorandum |
series2 | MAC technical memorandum |
spelling | Bagchi, Amitava Verfasser aut Economy of descriptions and minimal indices Cambridge, Mass. Mass Inst. of Technology, Project MAC 1972 VII, 36 S. txt rdacontent n rdamedia nc rdacarrier MAC technical memorandum 27 Kopie, erschienen bei National Techn. Information Service, Springfield, Va. It has been known for some time that if the power of a programming language is restricted it very often tends to lose succinctness in its description of programs. A primitive recursive definition scheme for instance is frequently not as concise in describing primitive recursive functions as a double recursive definition scheme. A careful study of the problem has been made by Meyer, where he shows that as one increases the power of programming languages, one can obtain economies in program size by any recursive amount for even very simple functions. The principal objective of this part of the thesis is the generalization of the results of Meyer to sets of integers A and B related in some recursion theoretic manner, e.g. A double prime < or = (sub T) B prime. (Author). (Programming languages dtict Computer Programming and Software scgdst Grammars dtict Mathematical logic) dtict Recursive functions dtict Set theory dtict Theorems dtict Rekursive Funktion (DE-588)4138367-9 gnd rswk-swf Programmiersprache (DE-588)4047409-4 gnd rswk-swf Rekursive Funktion (DE-588)4138367-9 s Programmiersprache (DE-588)4047409-4 s DE-604 MAC technical memorandum 27 (DE-604)BV008910218 27 |
spellingShingle | Bagchi, Amitava Economy of descriptions and minimal indices MAC technical memorandum (Programming languages dtict Computer Programming and Software scgdst Grammars dtict Mathematical logic) dtict Recursive functions dtict Set theory dtict Theorems dtict Rekursive Funktion (DE-588)4138367-9 gnd Programmiersprache (DE-588)4047409-4 gnd |
subject_GND | (DE-588)4138367-9 (DE-588)4047409-4 |
title | Economy of descriptions and minimal indices |
title_auth | Economy of descriptions and minimal indices |
title_exact_search | Economy of descriptions and minimal indices |
title_full | Economy of descriptions and minimal indices |
title_fullStr | Economy of descriptions and minimal indices |
title_full_unstemmed | Economy of descriptions and minimal indices |
title_short | Economy of descriptions and minimal indices |
title_sort | economy of descriptions and minimal indices |
topic | (Programming languages dtict Computer Programming and Software scgdst Grammars dtict Mathematical logic) dtict Recursive functions dtict Set theory dtict Theorems dtict Rekursive Funktion (DE-588)4138367-9 gnd Programmiersprache (DE-588)4047409-4 gnd |
topic_facet | (Programming languages Computer Programming and Software Grammars Mathematical logic) Recursive functions Set theory Theorems Rekursive Funktion Programmiersprache |
volume_link | (DE-604)BV008910218 |
work_keys_str_mv | AT bagchiamitava economyofdescriptionsandminimalindices |