Economy of descriptions and minimal indices

It has been known for some time that if the power of a programming language is restricted it very often tends to lose succinctness in its description of programs. A primitive recursive definition scheme for instance is frequently not as concise in describing primitive recursive functions as a double...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Bagchi, Amitava (VerfasserIn)
Format: Buch
Sprache:English
Veröffentlicht: Cambridge, Mass. Mass Inst. of Technology, Project MAC 1972
Schriftenreihe:MAC technical memorandum 27
Schlagworte:
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nam a2200000zcb4500
001 BV022136212
003 DE-604
005 20201102
007 t|
008 890123s1972 xx |||| 00||| eng d
035 |a (OCoLC)227656124 
035 |a (DE-599)BVBBV022136212 
040 |a DE-604  |b ger 
041 0 |a eng 
049 |a DE-706 
088 |a MAC-TM-27 
100 1 |a Bagchi, Amitava  |e Verfasser  |4 aut 
245 1 0 |a Economy of descriptions and minimal indices 
264 1 |a Cambridge, Mass.  |b Mass Inst. of Technology, Project MAC  |c 1972 
300 |a VII, 36 S. 
336 |b txt  |2 rdacontent 
337 |b n  |2 rdamedia 
338 |b nc  |2 rdacarrier 
490 1 |a MAC technical memorandum  |v 27 
500 |a Kopie, erschienen bei National Techn. Information Service, Springfield, Va. 
520 3 |a It has been known for some time that if the power of a programming language is restricted it very often tends to lose succinctness in its description of programs. A primitive recursive definition scheme for instance is frequently not as concise in describing primitive recursive functions as a double recursive definition scheme. A careful study of the problem has been made by Meyer, where he shows that as one increases the power of programming languages, one can obtain economies in program size by any recursive amount for even very simple functions. The principal objective of this part of the thesis is the generalization of the results of Meyer to sets of integers A and B related in some recursion theoretic manner, e.g. A double prime < or = (sub T) B prime. (Author). 
650 7 |a (Programming languages  |2 dtict 
650 7 |a Computer Programming and Software  |2 scgdst 
650 7 |a Grammars  |2 dtict 
650 7 |a Mathematical logic)  |2 dtict 
650 7 |a Recursive functions  |2 dtict 
650 7 |a Set theory  |2 dtict 
650 7 |a Theorems  |2 dtict 
650 0 7 |a Rekursive Funktion  |0 (DE-588)4138367-9  |2 gnd  |9 rswk-swf 
650 0 7 |a Programmiersprache  |0 (DE-588)4047409-4  |2 gnd  |9 rswk-swf 
689 0 0 |a Rekursive Funktion  |0 (DE-588)4138367-9  |D s 
689 0 1 |a Programmiersprache  |0 (DE-588)4047409-4  |D s 
689 0 |5 DE-604 
830 0 |a MAC technical memorandum  |v 27  |w (DE-604)BV008910218  |9 27 
943 1 |a oai:aleph.bib-bvb.de:BVB01-015350830 

Datensatz im Suchindex

_version_ 1819262177351041026
any_adam_object
author Bagchi, Amitava
author_facet Bagchi, Amitava
author_role aut
author_sort Bagchi, Amitava
author_variant a b ab
building Verbundindex
bvnumber BV022136212
ctrlnum (OCoLC)227656124
(DE-599)BVBBV022136212
format Book
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02256nam a2200445zcb4500</leader><controlfield tag="001">BV022136212</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20201102 </controlfield><controlfield tag="007">t|</controlfield><controlfield tag="008">890123s1972 xx |||| 00||| eng d</controlfield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)227656124</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV022136212</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-706</subfield></datafield><datafield tag="088" ind1=" " ind2=" "><subfield code="a">MAC-TM-27</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Bagchi, Amitava</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Economy of descriptions and minimal indices</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge, Mass.</subfield><subfield code="b">Mass Inst. of Technology, Project MAC</subfield><subfield code="c">1972</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">VII, 36 S.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">MAC technical memorandum</subfield><subfield code="v">27</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Kopie, erschienen bei National Techn. Information Service, Springfield, Va.</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">It has been known for some time that if the power of a programming language is restricted it very often tends to lose succinctness in its description of programs. A primitive recursive definition scheme for instance is frequently not as concise in describing primitive recursive functions as a double recursive definition scheme. A careful study of the problem has been made by Meyer, where he shows that as one increases the power of programming languages, one can obtain economies in program size by any recursive amount for even very simple functions. The principal objective of this part of the thesis is the generalization of the results of Meyer to sets of integers A and B related in some recursion theoretic manner, e.g. A double prime &lt; or = (sub T) B prime. (Author).</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">(Programming languages</subfield><subfield code="2">dtict</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Computer Programming and Software</subfield><subfield code="2">scgdst</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Grammars</subfield><subfield code="2">dtict</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Mathematical logic)</subfield><subfield code="2">dtict</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Recursive functions</subfield><subfield code="2">dtict</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Set theory</subfield><subfield code="2">dtict</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Theorems</subfield><subfield code="2">dtict</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Rekursive Funktion</subfield><subfield code="0">(DE-588)4138367-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Programmiersprache</subfield><subfield code="0">(DE-588)4047409-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Rekursive Funktion</subfield><subfield code="0">(DE-588)4138367-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Programmiersprache</subfield><subfield code="0">(DE-588)4047409-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">MAC technical memorandum</subfield><subfield code="v">27</subfield><subfield code="w">(DE-604)BV008910218</subfield><subfield code="9">27</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-015350830</subfield></datafield></record></collection>
id DE-604.BV022136212
illustrated Not Illustrated
indexdate 2024-12-23T19:53:32Z
institution BVB
language English
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-015350830
oclc_num 227656124
open_access_boolean
owner DE-706
owner_facet DE-706
physical VII, 36 S.
publishDate 1972
publishDateSearch 1972
publishDateSort 1972
publisher Mass Inst. of Technology, Project MAC
record_format marc
series MAC technical memorandum
series2 MAC technical memorandum
spelling Bagchi, Amitava Verfasser aut
Economy of descriptions and minimal indices
Cambridge, Mass. Mass Inst. of Technology, Project MAC 1972
VII, 36 S.
txt rdacontent
n rdamedia
nc rdacarrier
MAC technical memorandum 27
Kopie, erschienen bei National Techn. Information Service, Springfield, Va.
It has been known for some time that if the power of a programming language is restricted it very often tends to lose succinctness in its description of programs. A primitive recursive definition scheme for instance is frequently not as concise in describing primitive recursive functions as a double recursive definition scheme. A careful study of the problem has been made by Meyer, where he shows that as one increases the power of programming languages, one can obtain economies in program size by any recursive amount for even very simple functions. The principal objective of this part of the thesis is the generalization of the results of Meyer to sets of integers A and B related in some recursion theoretic manner, e.g. A double prime < or = (sub T) B prime. (Author).
(Programming languages dtict
Computer Programming and Software scgdst
Grammars dtict
Mathematical logic) dtict
Recursive functions dtict
Set theory dtict
Theorems dtict
Rekursive Funktion (DE-588)4138367-9 gnd rswk-swf
Programmiersprache (DE-588)4047409-4 gnd rswk-swf
Rekursive Funktion (DE-588)4138367-9 s
Programmiersprache (DE-588)4047409-4 s
DE-604
MAC technical memorandum 27 (DE-604)BV008910218 27
spellingShingle Bagchi, Amitava
Economy of descriptions and minimal indices
MAC technical memorandum
(Programming languages dtict
Computer Programming and Software scgdst
Grammars dtict
Mathematical logic) dtict
Recursive functions dtict
Set theory dtict
Theorems dtict
Rekursive Funktion (DE-588)4138367-9 gnd
Programmiersprache (DE-588)4047409-4 gnd
subject_GND (DE-588)4138367-9
(DE-588)4047409-4
title Economy of descriptions and minimal indices
title_auth Economy of descriptions and minimal indices
title_exact_search Economy of descriptions and minimal indices
title_full Economy of descriptions and minimal indices
title_fullStr Economy of descriptions and minimal indices
title_full_unstemmed Economy of descriptions and minimal indices
title_short Economy of descriptions and minimal indices
title_sort economy of descriptions and minimal indices
topic (Programming languages dtict
Computer Programming and Software scgdst
Grammars dtict
Mathematical logic) dtict
Recursive functions dtict
Set theory dtict
Theorems dtict
Rekursive Funktion (DE-588)4138367-9 gnd
Programmiersprache (DE-588)4047409-4 gnd
topic_facet (Programming languages
Computer Programming and Software
Grammars
Mathematical logic)
Recursive functions
Set theory
Theorems
Rekursive Funktion
Programmiersprache
volume_link (DE-604)BV008910218
work_keys_str_mv AT bagchiamitava economyofdescriptionsandminimalindices