Principles of adaptive filters and self-learning systems
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
London
Springer
2005
|
Schriftenreihe: | Advanced textbooks in control and signal processing
|
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
MARC
LEADER | 00000nam a2200000zc 4500 | ||
---|---|---|---|
001 | BV021989867 | ||
003 | DE-604 | ||
005 | 20051019000000.0 | ||
007 | t | ||
008 | 050927s2005 d||| |||| 00||| eng d | ||
020 | |a 1852339845 |9 1-85233-984-5 | ||
020 | |a 9781852339845 |9 978-1-85233-984-5 | ||
028 | 5 | 2 | |a 10978566 |
035 | |a (OCoLC)60767398 | ||
035 | |a (DE-599)BVBBV021989867 | ||
040 | |a DE-604 |b ger | ||
041 | 0 | |a eng | |
049 | |a DE-706 | ||
050 | 0 | |a TK7872.F5 | |
082 | 0 | |a 621.3815/324 |2 22 | |
100 | 1 | |a Zaknich, Anthony |e Verfasser |4 aut | |
245 | 1 | 0 | |a Principles of adaptive filters and self-learning systems |c A. Zaknich |
264 | 1 | |a London |b Springer |c 2005 | |
300 | |a XXII, 386 S. |b graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 0 | |a Advanced textbooks in control and signal processing | |
500 | |a Literaturverz. S. [373] - 380 | ||
650 | 4 | |a Filtres adaptatifs - Conception - Mathématiques | |
650 | 4 | |a Intelligence artificielle | |
650 | 4 | |a Künstliche Intelligenz | |
650 | 4 | |a Mathematik | |
650 | 4 | |a Adaptive filters |x Design and construction |x Mathematics | |
650 | 4 | |a Artificial intelligence | |
650 | 0 | 7 | |a Adaptives Filter |0 (DE-588)4141377-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Lernendes System |0 (DE-588)4120666-6 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Lernendes System |0 (DE-588)4120666-6 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Adaptives Filter |0 (DE-588)4141377-5 |D s |
689 | 1 | |5 DE-604 | |
856 | 4 | 2 | |m SWB Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=015204681&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-015204681 |
Datensatz im Suchindex
_version_ | 1804135964840296448 |
---|---|
adam_text | ADVANCED TEXTBOOKS IN CONTROL AND SIGNAL PROCESSING SERIES EDITORS
PROFESSOR MICHAEL J. GRIMBLE, PROFESSOR OF INDUSTRIAL SYSTEMS AND
DIRECTOR PROFESSOR EMERITUS MICHAEL A. JOHNSON, PROFESSOR OF CONTROL
SYSTEMS AND DEPUTY DIRECTOR INDUSTRIAL CONTROL CENTRE, DEPARTMENT OF
ELECTRONIC AND ELECTRICAL ENGINEERING, UNIVERSITY OF STRATHCLYDE, GRAHAM
HILLS BUILDING, 50 GEORGE STREET, GLASGOW G1 1QE, U.K. OTHER TITLES
PUBLISHED IN THIS SERIES: GENETIC ALGORITHMS K.F. MAN, K.S. TANG AND S.
KWONG NEURAL NETWORKS FOR MODELLING AND CONTROL OF DYNAMIC SYSTEMS M.
NOERGAARD, O. RAVN, L.K. HANSEN AND N.K. POULSEN MODELLING AND CONTROL OF
ROBOT MANIPULATORS (2ND EDITION) L. SCIAVICCO AND B. SICILIANO FAULT
DETECTION AND DIAGNOSIS IN INDUSTRIAL SYSTEMS L.H. CHIANG, E.L. RUSSELL
AND R.D. BRAATZ SOFT COMPUTING L. FORTUNA, G. RIZZOTTO, M. LAVORGNA, G.
NUNNARI, M.G. XIBILIA AND R. CAPONETTO STATISTICAL SIGNAL PROCESSING T.
CHONAVEL DISCRETE-TIME STOCHASTIC PROCESSES (2ND EDITION) T. SOEDERSTROEM
PARALLEL COMPUTING FOR REAL-TIME SIGNAL PROCESSING AND CONTROL M.O.
TOKHI, M.A. HOSSAIN AND M.H. SHAHEED MULTIVARIABLE CONTROL SYSTEMS P.
ALBERTOS AND A. SALA CONTROL SYSTEMS WITH INPUT AND OUTPUT CONSTRAINTS
A.H. GLATTFELDER AND W. SCHAUFELBERGER ANALYSIS AND CONTROL OF
NON-LINEAR PROCESS SYSTEMS K. HANGOS, J. BOKOR AND G. SZEDERKENYI MODEL
PREDICTIVE CONTROL (2ND EDITION) E.F. CAMACHO AND C. BORDONS DIGITAL
SELF-TUNING CONTROLLERS V. BOBAL, J. BOEHM, J. FESSL AND J. MACHA * CEK
CONTROL OF ROBOT MANIPULATORS IN JOINT SPACE R. KELLY, V. SANTIBANEZ AND
A. LORIA PUBLICATION DUE JULY 2005 ROBUST CONTROL DESIGN WITH MATLAB
D.-W. GU, P.HR. PETKOV AND M.M. KONSTANTINOV PUBLICATION DUE JULY 2005
ACTIVE NOISE AND VIBRATION CONTROL M.O. TOKHI PUBLICATION DUE NOVEMBER
2005 A. ZAKNICH PRINCIPLES OF ADAPTIVE FILTERS AND SELF-LEARNING SYSTEMS
WITH 95 FIGURES 123 ANTHONY ZAKNICH, PHD SCHOOL OF ENGINEERING SCIENCE,
ROCKINGHAM CAMPUS, MURDOCH UNIVERSITY, SOUTH STREET, MURDOCH, WA 6150,
AUSTRALIA AND CENTRE FOR INTELLIGENT INFORMATION PROCESSING SYSTEMS,
SCHOOL OF ELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING, THE
UNIVERSITY OF WESTERN AUSTRALIA, 35 STIRLING HIGHWAY, CRAWLEY, WA 6009,
AUSTRALIA INSTRUCTORS SOLUTIONS MANUAL IN PDF CAN BE DOWNLOADED FROM THE
BOOK*S PAGE AT SPRINGERONLINE.COM BRITISH LIBRARY CATALOGUING IN
PUBLICATION DATA ZAKNICH, ANTHONY PRINCIPLES OF ADAPTIVE FILTERS AND
SELF-LEARNING SYSTEMS. (ADVANCED TEXTBOOKS IN CONTROL AND SIGNAL
PROCESSING) 1. ADAPTIVE FILTERS 2. ADAPTIVE SIGNAL PROCESSING 3. SYSTEM
ANALYSIS I. TITLE 621.3*815324 ISBN-10: 1852339845 LIBRARY OF CONGRESS
CONTROL NUMBER: 2005923608 APART FROM ANY FAIR DEALING FOR THE PURPOSES
OF RESEARCH OR PRIVATE STUDY, OR CRITICISM OR REVIEW, AS PERMITTED UNDER
THE COPYRIGHT, DESIGNS AND PATENTS ACT 1988, THIS PUBLICATION MAY ONLY
BE REPRODUCED, STORED OR TRANSMITTED, IN ANY FORM OR BY ANY MEANS, WITH
THE PRIOR PERMISSION IN WRITING OF THE PUBLISHERS, OR IN THE CASE OF
REPROGRAPHIC REPRODUCTION IN ACCORDANCE WITH THE TERMS OF LICENCES
ISSUED BY THE COPYRIGHT LICENSING AGENCY. ENQUIRIES CONCERNING
REPRODUCTION OUTSIDE THOSE TERMS SHOULD BE SENT TO THE PUBLISHERS.
ADVANCED TEXTBOOKS IN CONTROL AND SIGNAL PROCESSING SERIES ISSN
1439-2232 ISBN-10 1-85233-984-5 ISBN-13 978-1-85233-984-5 SPRINGER
SCIENCE+BUSINESS MEDIA SPRINGERONLINE.COM SPRINGER-VERLAG LONDON
LIMITED 2005 THE USE OF REGISTERED NAMES, TRADEMARKS, ETC. IN THIS
PUBLICATION DOES NOT IMPLY, EVEN IN THE ABSENCE OF A SPECIFIC STATEMENT,
THAT SUCH NAMES ARE EXEMPT FROM THE RELEVANT LAWS AND REGULATIONS AND
THEREFORE FREE FOR GENERAL USE. THE PUBLISHER MAKES NO REPRESENTATION,
EXPRESS OR IMPLIED, WITH REGARD TO THE ACCURACY OF THE INFOR- MATION
CONTAINED IN THIS BOOK AND CANNOT ACCEPT ANY LEGAL RESPONSIBILITY OR
LIABILITY FOR ANY ERRORS OR OMISSIONS THAT MAY BE MADE. TYPESETTING:
CAMERA READY BY AUTHOR PRODUCTION: LE-TEX JELONEK, SCHMIDT & VOECKLER
GBR, LEIPZIG, GERMANY PRINTED IN GERMANY 69/3141-543210 PRINTED ON
ACID-FREE PAPER SPIN 10978566 CONTENTS PART I INTRODUCTION 1 1
ADAPTIVE FILTERING
..............................................................................
...............3 1.1 LINEAR ADAPTIVE FILTERS
.............................................................................5
1.1.1 LINEAR ADAPTIVE FILTER ALGORITHMS
..............................................7 1.2 NONLINEAR ADAPTIVE
FILTERS........................................................................9
1.2.1 ADAPTIVE VOLTERRA
FILTERS.............................................................9
1.3 NONCLASSICAL ADAPTIVE SYSTEMS
..............................................................10
1.3.1 ARTIFICIAL NEURAL NETWORKS
........................................................10 1.3.2
FUZZY
LOGIC...............................................................................11
1.3.3 GENETIC ALGORITHMS
...................................................................11
1.4 A BRIEF HISTORY AND OVERVIEW OF CLASSICAL
THEORIES..............................12 1.4.1 LINEAR ESTIMATION
THEORY.............................................. ............12
1.4.2 LINEAR ADAPTIVE
FILTERS..............................................................13
1.4.3 ADAPTIVE SIGNAL PROCESSING
APPLICATIONS..................................14 1.4.4 ADAPTIVE
CONTROL.......................................................................16
1.5 A BRIEF HISTORY AND OVERVIEW OF NONCLASSICAL
THEORIES........................17 1.5.1 ARTIFICIAL NEURAL NETWORKS
........................................................17 1.5.2
FUZZY
LOGIC...............................................................................18
1.5.3 GENETIC ALGORITHMS
...................................................................18
1.6 FUNDAMENTALS OF ADAPTIVE
NETWORKS......................................................19 1.7
CHOICE OF ADAPTIVE FILTER ALGORITHM
......................................................23 2 LINEAR
SYSTEMS AND STOCHASTIC PROCESSES
......................................................25 2.1 BASIC
CONCEPTS OF LINEAR
SYSTEMS..........................................................27
2.2 DISCRETE-TIME SIGNALS AND SYSTEMS
.........................................................29 2.3 THE
DISCRETE FOURIER TRANSFORM (DFT)
..................................................31 2.3.1 DISCRETE
LINEAR CONVOLUTION USING THE DFT..............................32
2.3.2 DIGITAL SAMPLING THEORY
...........................................................33
2.3.2.1 ANALOGUE INTERPRETATION FORMULA...............................37
2.4 THE FAST FOURIER
TRANSFORM....................................................................37
2.5 THE Z-TRANSFORM
.....................................................................................40
2.5.1 RELATIONSHIP BETWEEN LAPLACE TRANSFORM AND
Z-TRANSFORM......40 2.5.1.1 BILATERAL Z-TRANSFORM
................................................41 CONTENTS XVI
2.5.1.2 UNILATERAL Z-TRANSFORM
..............................................42 2.5.1.3 REGION
OF CONVERGENCE (ROC) FOR THE Z-TRANSFORM .42 2.5.1.4 REGION OF
CONVERGENCE (ROC) FOR GENERAL SIGNALS..43 2.5.2 GENERAL PROPERTIES
OF THE DFT AND Z-TRANSFORM.......................44 2.6 SUMMARY OF
DISCRETE-TIME LSI
SYSTEMS................................................46 2.7 SPECIAL
CLASSES OF FILTERS
........................................................................48
2.7.1 PHASE RESPONSE FROM FREQUENCY MAGNITUDE
RESPONSE.............50 2.8 LINEAR ALGEBRA
SUMMARY........................................................................51
2.8.1 VECTORS
......................................................................................51
2.8.2 LINEAR INDEPENDENCE, VECTOR SPACES, AND BASIC
VECTORS..........52 2.8.3
MATRICES......................................................................
...............53 2.8.4 LINEAR EQUATIONS
.......................................................................55
2.8.5 SPECIAL MATRICES
........................................................................56
2.8.6 QUADRATIC AND HERMITIAN FORMS
................................................59 2.8.7
EIGENVALUES AND
EIGENVECTORS...................................................59 2.9
INTRODUCTION TO STOCHASTIC
PROCESSES.......................................................61
2.10 RANDOM SIGNALS
......................................................................................63
2.11 BASIC DESCRIPTIVE MODELS OF RANDOM
SIGNALS........................................64 2.11.1 THE MEAN
SQUARE VALUE AND VARIANCE......................................64
2.11.2 THE PROBABILITY DENSITY
FUNCTION..............................................65 2.11.3
JOINTLY DISTRIBUTED RANDOM
VARIABLES.......................................68 2.11.4 THE
EXPECTATION OPERATOR
.........................................................68 2.11.5
THE AUTOCORRELATION AND RELATED
FUNCTIONS..............................69 2.11.6 POWER SPECTRAL
DENSITY FUNCTIONS.............................................72
2.11.7 COHERENCE
FUNCTION...................................................................73
2.11.8 DISCRETE ERGODIC RANDOM SIGNAL STATISTICS
...............................74 2.11.9 AUTOCOVARIANCE AND
AUTOCORRELATION MATRICES..........................75 2.11.10
SPECTRUM OF A RANDOM
PROCESS.................................................76 2.11.11
FILTERING OF RANDOM
PROCESSES..................................................78
2.11.12 IMPORTANT EXAMPLES OF RANDOM PROCESSES
...............................80 2.11.12.1 GAUSSIAN PROCESS
.......................................................80
2.11.12.2 WHITE
NOISE...............................................................80
2.11.12.3 WHITE SEQUENCES
.......................................................81
2.11.12.4 GAUSS-MARKOV
PROCESSES...........................................81 2.11.12.5
THE RANDOM TELEGRAPH WAVE...................................81 2.12
EXERCISES.....................................................................
............................82 2.12.1
PROBLEMS......................................................................
..............82 PART II MODELLING 87 3 OPTIMISATION AND LEAST SQUARE
ESTIMATION ..................................................89 3.1
OPTIMISATION
THEORY...............................................................................89
3.2 OPTIMISATION METHODS IN DIGITAL FILTER
DESIGN.......................................91 3.3 LEAST SQUARES
ESTIMATION........................................................................95
3.4 LEAST SQUARES MAXIMUM LIKELIHOOD ESTIMATOR
......................................97 CONTENTS XVII 3.5
LINEAR REGRESSION * FITTING DATA TO A LINE
.............................................98 3.6 GENERAL LINEAR
LEAST SQUARES
.................................................................99
3.7 A SHIP POSITIONING EXAMPLE OF
LSE.....................................................100 3.8
ACOUSTIC POSITIONING SYSTEM
EXAMPLE..................................................104 3.9
MEASURE OF LSE PRECISION
....................................................................108
3.10 MEASURE OF LSE
RELIABILITY...................................................................109
3.11 LIMITATIONS OF
LSE................................................................................110
3.12 ADVANTAGES OF LSE
...............................................................................110
3.13 THE SINGULAR VALUE
DECOMPOSITION......................................................111
3.13.1 THE
PSEUDOINVERSE...................................................................112
3.13.2 COMPUTATION OF THE
SVD.........................................................112
3.13.2.1 THE JACOBI ALGORITHM
..............................................112 3.13.2.2 THE
QR ALGORITHM...................................................115
3.14
EXERCISES.....................................................................
..........................116 3.14.1
PROBLEMS......................................................................
............116 4 PARAMETRIC SIGNAL AND SYSTEM MODELLING
..................................................119 4.1 THE
ESTIMATION PROBLEM
.......................................................................120
4.2 DETERMINISTIC SIGNAL AND SYSTEM
MODELLING.........................................121 4.2.1 THE
LEAST SQUARES METHOD
......................................................122 4.2.2 THE
PADE APPROXIMATION METHOD ...........................................124
4.2.3 PRONY*S METHOD
.......................................................................127
4.2.3.1 ALL-POLE MODELLING USING PRONY*S METHOD..............130
4.2.3.2 LINEAR PREDICTION
.....................................................131 4.2.3.3
DIGITAL WIENER FILTER................................................132
4.2.4 AUTOCORRELATION AND COVARIANCE
METHODS...............................133 4.3 STOCHASTIC SIGNAL
MODELLING
................................................................137
4.3.1 AUTOREGRESSIVE MOVING AVERAGE
MODELS................................137 4.3.2 AUTOREGRESSIVE
MODELS............................................................139
4.3.3 MOVING AVERAGE
MODELS.........................................................140 4.4
THE LEVINSON-DURBIN RECURSION AND LATTICE
FILTERS.............................141 4.4.1 THE LEVINSON-DURBIN
RECURSION DEVELOPMENT .......................142 4.4.1.1 EXAMPLE
OF THE LEVINSON-DURBIN RECURSION............145 4.4.2 THE LATTICE
FILTER.....................................................................146
4.4.3 THE CHOLESKY DECOMPOSITION
.................................................149 4.4.4 THE
LEVINSON
RECURSION..........................................................151
4.5
EXERCISES.....................................................................
..........................154 4.5.1
PROBLEMS......................................................................
............154 PART III CLASSICAL FILTERS AND SPECTRAL ANALYSIS 157 5
OPTIMUM WIENER FILTER
................................................................................159
5.1 DERIVATION OF THE IDEAL CONTINUOUS-TIME WIENER FILTER
........................160 5.2 THE IDEAL DISCRETE-TIME FIR WIENER
FILTER ...........................................162 5.2.1 GENERAL
NOISE FIR WIENER FILTERING .......................................164
CONTENTS XVIII 5.2.2 FIR WIENER LINEAR PREDICTION
.................................................165 5.3 DISCRETE-TIME
CAUSAL IIR WIENER FILTER
................................................167 5.3.1 CAUSAL
IIR WIENER FILTERING
....................................................169 5.3.2
WIENER DECONVOLUTION
............................................................170 5.4
EXERCISES.....................................................................
..........................171 5.4.1
PROBLEMS......................................................................
............171 6 OPTIMAL KALMAN FILTER
..............................................................................
...173 6.1 BACKGROUND TO THE KALMAN FILTER
........................................................173 6.2 THE
KALMAN
FILTER.................................................................................174
6.2.1 KALMAN FILTER EXAMPLES
..........................................................181 6.3
KALMAN FILTER FOR SHIP
MOTION..............................................................185
6.3.1 KALMAN TRACKING FILTER
PROPER................................................186 6.3.2
SIMPLE EXAMPLE OF A DYNAMIC SHIP MODELS...........................189
6.3.3 STOCHASTIC MODELS
...................................................................192
6.3.4 ALTERNATE SOLUTION
MODELS.......................................................192
6.3.5 ADVANTAGES OF KALMAN
FILTERING..............................................193 6.3.6
DISADVANTAGES OF KALMAN FILTERING
.........................................193 6.4 EXTENDED KALMAN
FILTER
........................................................................194
6.5
EXERCISES.....................................................................
..........................194 6.5.1
PROBLEMS......................................................................
............194 7 POWER SPECTRAL DENSITY ANALYSIS
.................................................................197
7.1 POWER SPECTRAL DENSITY ESTIMATION TECHNIQUES
...................................198 7.2 NONPARAMETRIC SPECTRAL
DENSITY ESTIMATION .........................................199
7.2.1 PERIODOGRAM POWER SPECTRAL DENSITY
ESTIMATION....................199 7.2.2 MODIFIED PERIODOGRAM * DATA
WINDOWING .............................203 7.2.3 BARTLETT*S METHOD
* PERIODOGRAM AVERAGING ..........................205 7.2.4 WELCH*S
METHOD
......................................................................206
7.2.5 BLACKMAN-TUKEY
METHOD........................................................208
7.2.6 PERFORMANCE COMPARISONS OF NONPARAMETRIC MODELS.............209
7.2.7 MINIMUM VARIANCE METHOD
....................................................209 7.2.8
MAXIMUM ENTROPY (ALL POLES) METHOD...................................212
7.3 PARAMETRIC SPECTRAL DENSITY
ESTIMATION................................................215 7.3.1
AUTOREGRESSIVE
METHODS..........................................................215
7.3.1.1 YULE-WALKER
APPROACH............................................216 7.3.1.2
COVARIANCE, LEAST SQUARES AND BURG METHODS ........217 7.3.1.3
MODEL ORDER SELECTION FOR THE AUTOREGRESSIVE METHODS
..........................................218 7.3.2 MOVING AVERAGE
METHOD ........................................................218
7.3.3 AUTOREGRESSIVE MOVING AVERAGE
METHOD................................219 7.3.4 HARMONIC
METHODS..................................................................219
7.3.4.1 EIGENDECOMPOSITION OF THE AUTOCORRELATION
MATRIX
......................................................................219
7.3.4.1.1 PISARENKO*S METHOD
.................................221 7.3.4.1.2
MUSIC.....................................................222
CONTENTS XIX 7.4
EXERCISES.....................................................................
..........................223 7.4.1
PROBLEMS......................................................................
............223 PART IV ADAPTIVE FILTER THEORY 225 8 ADAPTIVE FINITE
IMPULSE RESPONSE FILTERS
...................................................227 8.1 ADAPTIVE
INTERFERENCE CANCELLING
.........................................................228 8.2 LEAST
MEAN SQUARES ADAPTATION
...........................................................230
8.2.1 OPTIMUM WIENER
SOLUTION.......................................................231
8.2.2 THE METHOD OF STEEPEST GRADIENT DESCENT
SOLUTION................233 8.2.3 THE LMS ALGORITHM
SOLUTION..................................................235 8.2.4
STABILITY OF THE LMS
ALGORITHM...............................................237 8.2.5
THE NORMALISED LMS
ALGORITHM.............................................239 8.3
RECURSIVE LEAST SQUARES ESTIMATION
.....................................................239 8.3.1 THE
EXPONENTIALLY WEIGHTED RECURSIVE LEAST SQUARES
ALGORITHM...................................................................240
8.3.2 RECURSIVE LEAST SQUARES ALGORITHM
CONVERGENCE...................243 8.3.2.1 CONVERGENCE OF THE
FILTER COEFFICIENTS IN THE
MEAN..................................................................243
8.3.2.2 CONVERGENCE OF THE FILTER COEFFICIENTS IN THE
MEAN SQUARE......................................................244
8.3.2.3 CONVERGENCE OF THE RLS ALGORITHM IN THE MEAN
SQUARE......................................................244
8.3.3 THE RLS ALGORITHM AS A KALMAN
FILTER...................................244 8.4
EXERCISES.....................................................................
..........................245 8.4.1
PROBLEMS......................................................................
............245 9 FREQUENCY DOMAIN ADAPTIVE FILTERS
...........................................................247 9.1
FREQUENCY DOMAIN
PROCESSING..............................................................247
9.1.1 TIME DOMAIN BLOCK ADAPTIVE FILTERING
..................................248 9.1.2 FREQUENCY DOMAIN
ADAPTIVE FILTERING ....................................249
9.1.2.1 THE OVERLAP-SAVE
METHOD.......................................251 9.1.2.2 THE
OVERLAP-ADD METHOD .......................................254
9.1.2.3 THE CIRCULAR CONVOLUTION METHOD...........................255
9.1.2.4 COMPUTATIONAL
COMPLEXITY......................................256 9.2
EXERCISES.....................................................................
..........................256 9.2.1
PROBLEMS......................................................................
............256 10 ADAPTIVE VOLTERRA FILTERS
.............................................................................2
57 10.1 NONLINEAR FILTERS
...................................................................................257
10.2 THE VOLTERRA SERIES EXPANSION
.............................................................259 10.3
A LMS ADAPTIVE SECOND-ORDER VOLTERRA FILTER
....................................259 10.4 A LMS ADAPTIVE QUADRATIC
FILTER ........................................................261
10.5 A RLS ADAPTIVE QUADRATIC FILTER
.........................................................262 10.6
EXERCISES.....................................................................
..........................264 CONTENTS XX 10.6.1
PROBLEMS......................................................................
............264 11 ADAPTIVE CONTROL SYSTEMS
............................................................................267
11.1 MAIN THEORETICAL
ISSUES........................................................................268
11.2 INTRODUCTION TO MODEL-REFERENCE ADAPTIVE
SYSTEMS..............................270 11.2.1 THE GRADIENT
APPROACH...........................................................271
11.2.2 LEAST SQUARES ESTIMATION
........................................................273 11.2.3
A GENERAL SINGLE-INPUT-SINGLE-OUTPUT MRAS..........................274
11.2.4 LYAPUNOV*S STABILITY THEORY
...................................................277 11.3
INTRODUCTION TO SELF-TUNING
REGULATORS..................................................280
11.3.1 INDIRECT SELF-TUNING
REGULATORS................................................282
11.3.2 DIRECT SELF-TUNING
REGULATORS..................................................283 11.4
RELATIONS BETWEEN MRAS AND
STR......................................................284 11.5
APPLICATIONS..................................................................
........................285 PART V NONCLASSICAL ADAPTIVE SYSTEMS 287
12 INTRODUCTION TO NEURAL NETWORKS
................................................................289
12.1 ARTIFICIAL NEURAL
NETWORKS....................................................................289
12.1.1
DEFINITIONS...................................................................
............290 12.1.2 THREE MAIN TYPES
...................................................................290
12.1.3 SPECIFIC ARTIFICIAL NEURAL NETWORK
PARADIGMS........................292 12.1.4 ARTIFICIAL NEURAL
NETWORKS AS BLACK BOXED ............................293 12.1.5
IMPLEMENTATION OF ARTIFICIAL NEURAL NETWORKS........................294
12.1.6 WHEN TO USE AN ARTIFICIAL NEURAL NETWORK
.............................295 12.1.7 HOW TO USE AN ARTIFICIAL
NEURAL NETWORK ...............................295 12.1.8 ARTIFICIAL
NEURAL NETWORK GENERAL APPLICATIONS.....................296 12.1.9
SIMPLE APPLICATION EXAMPLES
.................................................297 12.1.9.1
SHEEP EATING PHASE IDENTIFICATION FROM JAW SOUNDS
.....................................................................298
12.1.9.2 HYDRATE PARTICLE ISOLATION IN SEM
IMAGES...............298 12.1.9.3 OXALATE NEEDLE DETECTION IN
MICROSCOPE IMAGES....299 12.1.9.4 WATER LEVEL DETERMINATION FROM
RESONANT SOUND ANALYSIS
........................................................299
12.1.9.5 NONLINEAR SIGNAL FILTERING
.......................................299 12.1.9.6 A MOTOR
CONTROL EXAMPLE.......................................300 12.2 A
THREE-LAYER MULTI-LAYER PERCEPTRON MODEL
.......................................300 12.2.1 MLP
BACKPROPAGATION-OF-ERROR LEARNING................................302
12.2.2 DERIVATION OF BACKPROPAGATION-OF-ERROR LEARNING
..................303 12.2.2.1 CHANGE IN ERROR DUE TO OUTPUT
LAYER WEIGHTS ........303 12.2.2.2 CHANGE IN ERROR DUE TO HIDDEN
LAYER WEIGHTS........304 12.2.2.3 THE WEIGHT ADJUSTMENTS
.........................................305 12.2.2.4 ADDITIONAL
MOMENTUM FACTOR .................................307 12.2.3 NOTES
ON CLASSIFICATION AND FUNCTION MAPPING.......................308
12.2.4 MLP APPLICATION AND TRAINING
ISSUES.....................................308 CONTENTS XXI
12.3
EXERCISES.....................................................................
..........................310 12.3.1
PROBLEMS......................................................................
............310 13 INTRODUCTION TO FUZZY LOGIC SYSTEMS
..........................................................313 13.1
BASIC FUZZY LOGIC
................................................................................313
13.1.1 FUZZY LOGIC MEMBERSHIP FUNCTIONS
.......................................314 13.1.2 FUZZY LOGIC
OPERATIONS ..........................................................315
13.1.3 FUZZY LOGIC
RULES...................................................................316
13.1.4 FUZZY LOGIC DEFUZZIFICATION
...................................................317 13.2 FUZZY
LOGIC CONTROL DESIGN
.................................................................318
13.2.1 FUZZY LOGIC
CONTROLLERS..........................................................319
13.2.1.1 CONTROL RULE
CONSTRUCTION.......................................319 13.2.1.2
PARAMETER TUNING ....................................................321
13.2.1.3 CONTROL RULE REVISION
.............................................322 13.3 FUZZY ARTIFICIAL
NEURAL
NETWORKS.........................................................322
13.4 FUZZY APPLICATIONS
...............................................................................323
14 INTRODUCTION TO GENETIC ALGORITHMS
............................................................325 14.1
A GENERAL GENETIC ALGORITHM
...............................................................326
14.2 THE COMMON HYPOTHESIS
REPRESENTATION.............................................327 14.3
GENETIC ALGORITHM
OPERATORS................................................................329
14.4 FITNESS FUNCTIONS
..................................................................................330
14.5 HYPOTHESIS
SEARCHING............................................................................330
14.6 GENETIC PROGRAMMING
...........................................................................331
14.7 APPLICATIONS OF GENETIC
PROGRAMMING..................................................332
14.7.1 FILTER CIRCUIT DESIGN APPLICATIONS OF GAS AND GP
.................333 14.7.2 TIC-TAC-TO GAME PLAYING APPLICATION OF
GAS .........................334 PART VI ADAPTIVE FILTER APPLICATION 337
15 APPLICATIONS OF ADAPTIVE SIGNAL PROCESSING
...............................................339 15.1 ADAPTIVE
PREDICTION
..............................................................................340
15.2 ADAPTIVE MODELLING
..............................................................................342
15.3 ADAPTIVE TELEPHONE ECHO
CANCELLING...................................................343 15.4
ADAPTIVE EQUALISATION OF COMMUNICATION
CHANNELS.............................344 15.5 ADAPTIVE SELF-TUNING
FILTERS..................................................................346
15.6 ADAPTIVE NOISE CANCELLING
...................................................................346
15.7 FOCUSED TIME DELAY ESTIMATION FOR RANGING
.......................................348 15.7.1 ADAPTIVE ARRAY
PROCESSING......................................................349
15.8 OTHER ADAPTIVE FILTER
APPLICATIONS.......................................................350
15.8.1 ADAPTIVE 3-D SOUND
SYSTEMS..................................................350 15.8.2
MICROPHONE
ARRAYS..................................................................351
15.8.3 NETWORK AND ACOUSTIC ECHO
CANCELLATION...............................352 15.8.4 REAL-WORLD
ADAPTIVE FILTERING APPLICATIONS............................353 CONTENTS
XXII 16 GENERIC ADAPTIVE FILTER STRUCTURES
.............................................................355
16.1 SUB-BAND ADAPTIVE FILTERS
....................................................................355
16.2 SUB-SPACE ADAPTIVE FILTERS
...................................................................358
16.2.1 MPNN
MODEL..........................................................................360
16.2.2 APPROXIMATELY PIECEWISE LINEAR REGRESSION
MODEL...............362 16.2.3 THE SUB-SPACE ADAPTIVE FILTER
MODEL.....................................364 16.2.4 EXAMPLE
APPLICATIONS OF THE SSAF MODEL..............................366
16.2.4.1 LOUDSPEAKER 3-D FREQUENCY RESPONSE MODEL ........367
16.2.4.2 VELOCITY OF SOUND IN WATER 3-D MODEL...................369
16.3 DISCUSSION AND OVERVIEW OF THE SSAF
.................................................370 REFERENCES
..............................................................................
.............................373 INDEX
..............................................................................
......................................381
|
adam_txt |
ADVANCED TEXTBOOKS IN CONTROL AND SIGNAL PROCESSING SERIES EDITORS
PROFESSOR MICHAEL J. GRIMBLE, PROFESSOR OF INDUSTRIAL SYSTEMS AND
DIRECTOR PROFESSOR EMERITUS MICHAEL A. JOHNSON, PROFESSOR OF CONTROL
SYSTEMS AND DEPUTY DIRECTOR INDUSTRIAL CONTROL CENTRE, DEPARTMENT OF
ELECTRONIC AND ELECTRICAL ENGINEERING, UNIVERSITY OF STRATHCLYDE, GRAHAM
HILLS BUILDING, 50 GEORGE STREET, GLASGOW G1 1QE, U.K. OTHER TITLES
PUBLISHED IN THIS SERIES: GENETIC ALGORITHMS K.F. MAN, K.S. TANG AND S.
KWONG NEURAL NETWORKS FOR MODELLING AND CONTROL OF DYNAMIC SYSTEMS M.
NOERGAARD, O. RAVN, L.K. HANSEN AND N.K. POULSEN MODELLING AND CONTROL OF
ROBOT MANIPULATORS (2ND EDITION) L. SCIAVICCO AND B. SICILIANO FAULT
DETECTION AND DIAGNOSIS IN INDUSTRIAL SYSTEMS L.H. CHIANG, E.L. RUSSELL
AND R.D. BRAATZ SOFT COMPUTING L. FORTUNA, G. RIZZOTTO, M. LAVORGNA, G.
NUNNARI, M.G. XIBILIA AND R. CAPONETTO STATISTICAL SIGNAL PROCESSING T.
CHONAVEL DISCRETE-TIME STOCHASTIC PROCESSES (2ND EDITION) T. SOEDERSTROEM
PARALLEL COMPUTING FOR REAL-TIME SIGNAL PROCESSING AND CONTROL M.O.
TOKHI, M.A. HOSSAIN AND M.H. SHAHEED MULTIVARIABLE CONTROL SYSTEMS P.
ALBERTOS AND A. SALA CONTROL SYSTEMS WITH INPUT AND OUTPUT CONSTRAINTS
A.H. GLATTFELDER AND W. SCHAUFELBERGER ANALYSIS AND CONTROL OF
NON-LINEAR PROCESS SYSTEMS K. HANGOS, J. BOKOR AND G. SZEDERKENYI MODEL
PREDICTIVE CONTROL (2ND EDITION) E.F. CAMACHO AND C. BORDONS DIGITAL
SELF-TUNING CONTROLLERS V. BOBAL, J. BOEHM, J. FESSL AND J. MACHA * CEK
CONTROL OF ROBOT MANIPULATORS IN JOINT SPACE R. KELLY, V. SANTIBANEZ AND
A. LORIA PUBLICATION DUE JULY 2005 ROBUST CONTROL DESIGN WITH MATLAB
D.-W. GU, P.HR. PETKOV AND M.M. KONSTANTINOV PUBLICATION DUE JULY 2005
ACTIVE NOISE AND VIBRATION CONTROL M.O. TOKHI PUBLICATION DUE NOVEMBER
2005 A. ZAKNICH PRINCIPLES OF ADAPTIVE FILTERS AND SELF-LEARNING SYSTEMS
WITH 95 FIGURES 123 ANTHONY ZAKNICH, PHD SCHOOL OF ENGINEERING SCIENCE,
ROCKINGHAM CAMPUS, MURDOCH UNIVERSITY, SOUTH STREET, MURDOCH, WA 6150,
AUSTRALIA AND CENTRE FOR INTELLIGENT INFORMATION PROCESSING SYSTEMS,
SCHOOL OF ELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING, THE
UNIVERSITY OF WESTERN AUSTRALIA, 35 STIRLING HIGHWAY, CRAWLEY, WA 6009,
AUSTRALIA INSTRUCTORS SOLUTIONS MANUAL IN PDF CAN BE DOWNLOADED FROM THE
BOOK*S PAGE AT SPRINGERONLINE.COM BRITISH LIBRARY CATALOGUING IN
PUBLICATION DATA ZAKNICH, ANTHONY PRINCIPLES OF ADAPTIVE FILTERS AND
SELF-LEARNING SYSTEMS. (ADVANCED TEXTBOOKS IN CONTROL AND SIGNAL
PROCESSING) 1. ADAPTIVE FILTERS 2. ADAPTIVE SIGNAL PROCESSING 3. SYSTEM
ANALYSIS I. TITLE 621.3*815324 ISBN-10: 1852339845 LIBRARY OF CONGRESS
CONTROL NUMBER: 2005923608 APART FROM ANY FAIR DEALING FOR THE PURPOSES
OF RESEARCH OR PRIVATE STUDY, OR CRITICISM OR REVIEW, AS PERMITTED UNDER
THE COPYRIGHT, DESIGNS AND PATENTS ACT 1988, THIS PUBLICATION MAY ONLY
BE REPRODUCED, STORED OR TRANSMITTED, IN ANY FORM OR BY ANY MEANS, WITH
THE PRIOR PERMISSION IN WRITING OF THE PUBLISHERS, OR IN THE CASE OF
REPROGRAPHIC REPRODUCTION IN ACCORDANCE WITH THE TERMS OF LICENCES
ISSUED BY THE COPYRIGHT LICENSING AGENCY. ENQUIRIES CONCERNING
REPRODUCTION OUTSIDE THOSE TERMS SHOULD BE SENT TO THE PUBLISHERS.
ADVANCED TEXTBOOKS IN CONTROL AND SIGNAL PROCESSING SERIES ISSN
1439-2232 ISBN-10 1-85233-984-5 ISBN-13 978-1-85233-984-5 SPRINGER
SCIENCE+BUSINESS MEDIA SPRINGERONLINE.COM SPRINGER-VERLAG LONDON
LIMITED 2005 THE USE OF REGISTERED NAMES, TRADEMARKS, ETC. IN THIS
PUBLICATION DOES NOT IMPLY, EVEN IN THE ABSENCE OF A SPECIFIC STATEMENT,
THAT SUCH NAMES ARE EXEMPT FROM THE RELEVANT LAWS AND REGULATIONS AND
THEREFORE FREE FOR GENERAL USE. THE PUBLISHER MAKES NO REPRESENTATION,
EXPRESS OR IMPLIED, WITH REGARD TO THE ACCURACY OF THE INFOR- MATION
CONTAINED IN THIS BOOK AND CANNOT ACCEPT ANY LEGAL RESPONSIBILITY OR
LIABILITY FOR ANY ERRORS OR OMISSIONS THAT MAY BE MADE. TYPESETTING:
CAMERA READY BY AUTHOR PRODUCTION: LE-TEX JELONEK, SCHMIDT & VOECKLER
GBR, LEIPZIG, GERMANY PRINTED IN GERMANY 69/3141-543210 PRINTED ON
ACID-FREE PAPER SPIN 10978566 CONTENTS PART I INTRODUCTION 1 1
ADAPTIVE FILTERING
.
.3 1.1 LINEAR ADAPTIVE FILTERS
.5
1.1.1 LINEAR ADAPTIVE FILTER ALGORITHMS
.7 1.2 NONLINEAR ADAPTIVE
FILTERS.9
1.2.1 ADAPTIVE VOLTERRA
FILTERS.9
1.3 NONCLASSICAL ADAPTIVE SYSTEMS
.10
1.3.1 ARTIFICIAL NEURAL NETWORKS
.10 1.3.2
FUZZY
LOGIC.11
1.3.3 GENETIC ALGORITHMS
.11
1.4 A BRIEF HISTORY AND OVERVIEW OF CLASSICAL
THEORIES.12 1.4.1 LINEAR ESTIMATION
THEORY. .12
1.4.2 LINEAR ADAPTIVE
FILTERS.13
1.4.3 ADAPTIVE SIGNAL PROCESSING
APPLICATIONS.14 1.4.4 ADAPTIVE
CONTROL.16
1.5 A BRIEF HISTORY AND OVERVIEW OF NONCLASSICAL
THEORIES.17 1.5.1 ARTIFICIAL NEURAL NETWORKS
.17 1.5.2
FUZZY
LOGIC.18
1.5.3 GENETIC ALGORITHMS
.18
1.6 FUNDAMENTALS OF ADAPTIVE
NETWORKS.19 1.7
CHOICE OF ADAPTIVE FILTER ALGORITHM
.23 2 LINEAR
SYSTEMS AND STOCHASTIC PROCESSES
.25 2.1 BASIC
CONCEPTS OF LINEAR
SYSTEMS.27
2.2 DISCRETE-TIME SIGNALS AND SYSTEMS
.29 2.3 THE
DISCRETE FOURIER TRANSFORM (DFT)
.31 2.3.1 DISCRETE
LINEAR CONVOLUTION USING THE DFT.32
2.3.2 DIGITAL SAMPLING THEORY
.33
2.3.2.1 ANALOGUE INTERPRETATION FORMULA.37
2.4 THE FAST FOURIER
TRANSFORM.37
2.5 THE Z-TRANSFORM
.40
2.5.1 RELATIONSHIP BETWEEN LAPLACE TRANSFORM AND
Z-TRANSFORM.40 2.5.1.1 BILATERAL Z-TRANSFORM
.41 CONTENTS XVI
2.5.1.2 UNILATERAL Z-TRANSFORM
.42 2.5.1.3 REGION
OF CONVERGENCE (ROC) FOR THE Z-TRANSFORM .42 2.5.1.4 REGION OF
CONVERGENCE (ROC) FOR GENERAL SIGNALS.43 2.5.2 GENERAL PROPERTIES
OF THE DFT AND Z-TRANSFORM.44 2.6 SUMMARY OF
DISCRETE-TIME LSI
SYSTEMS.46 2.7 SPECIAL
CLASSES OF FILTERS
.48
2.7.1 PHASE RESPONSE FROM FREQUENCY MAGNITUDE
RESPONSE.50 2.8 LINEAR ALGEBRA
SUMMARY.51
2.8.1 VECTORS
.51
2.8.2 LINEAR INDEPENDENCE, VECTOR SPACES, AND BASIC
VECTORS.52 2.8.3
MATRICES.
.53 2.8.4 LINEAR EQUATIONS
.55
2.8.5 SPECIAL MATRICES
.56
2.8.6 QUADRATIC AND HERMITIAN FORMS
.59 2.8.7
EIGENVALUES AND
EIGENVECTORS.59 2.9
INTRODUCTION TO STOCHASTIC
PROCESSES.61
2.10 RANDOM SIGNALS
.63
2.11 BASIC DESCRIPTIVE MODELS OF RANDOM
SIGNALS.64 2.11.1 THE MEAN
SQUARE VALUE AND VARIANCE.64
2.11.2 THE PROBABILITY DENSITY
FUNCTION.65 2.11.3
JOINTLY DISTRIBUTED RANDOM
VARIABLES.68 2.11.4 THE
EXPECTATION OPERATOR
.68 2.11.5
THE AUTOCORRELATION AND RELATED
FUNCTIONS.69 2.11.6 POWER SPECTRAL
DENSITY FUNCTIONS.72
2.11.7 COHERENCE
FUNCTION.73
2.11.8 DISCRETE ERGODIC RANDOM SIGNAL STATISTICS
.74 2.11.9 AUTOCOVARIANCE AND
AUTOCORRELATION MATRICES.75 2.11.10
SPECTRUM OF A RANDOM
PROCESS.76 2.11.11
FILTERING OF RANDOM
PROCESSES.78
2.11.12 IMPORTANT EXAMPLES OF RANDOM PROCESSES
.80 2.11.12.1 GAUSSIAN PROCESS
.80
2.11.12.2 WHITE
NOISE.80
2.11.12.3 WHITE SEQUENCES
.81
2.11.12.4 GAUSS-MARKOV
PROCESSES.81 2.11.12.5
THE RANDOM TELEGRAPH WAVE.81 2.12
EXERCISES.
.82 2.12.1
PROBLEMS.
.82 PART II MODELLING 87 3 OPTIMISATION AND LEAST SQUARE
ESTIMATION .89 3.1
OPTIMISATION
THEORY.89
3.2 OPTIMISATION METHODS IN DIGITAL FILTER
DESIGN.91 3.3 LEAST SQUARES
ESTIMATION.95
3.4 LEAST SQUARES MAXIMUM LIKELIHOOD ESTIMATOR
.97 CONTENTS XVII 3.5
LINEAR REGRESSION * FITTING DATA TO A LINE
.98 3.6 GENERAL LINEAR
LEAST SQUARES
.99
3.7 A SHIP POSITIONING EXAMPLE OF
LSE.100 3.8
ACOUSTIC POSITIONING SYSTEM
EXAMPLE.104 3.9
MEASURE OF LSE PRECISION
.108
3.10 MEASURE OF LSE
RELIABILITY.109
3.11 LIMITATIONS OF
LSE.110
3.12 ADVANTAGES OF LSE
.110
3.13 THE SINGULAR VALUE
DECOMPOSITION.111
3.13.1 THE
PSEUDOINVERSE.112
3.13.2 COMPUTATION OF THE
SVD.112
3.13.2.1 THE JACOBI ALGORITHM
.112 3.13.2.2 THE
QR ALGORITHM.115
3.14
EXERCISES.
.116 3.14.1
PROBLEMS.
.116 4 PARAMETRIC SIGNAL AND SYSTEM MODELLING
.119 4.1 THE
ESTIMATION PROBLEM
.120
4.2 DETERMINISTIC SIGNAL AND SYSTEM
MODELLING.121 4.2.1 THE
LEAST SQUARES METHOD
.122 4.2.2 THE
PADE APPROXIMATION METHOD .124
4.2.3 PRONY*S METHOD
.127
4.2.3.1 ALL-POLE MODELLING USING PRONY*S METHOD.130
4.2.3.2 LINEAR PREDICTION
.131 4.2.3.3
DIGITAL WIENER FILTER.132
4.2.4 AUTOCORRELATION AND COVARIANCE
METHODS.133 4.3 STOCHASTIC SIGNAL
MODELLING
.137
4.3.1 AUTOREGRESSIVE MOVING AVERAGE
MODELS.137 4.3.2 AUTOREGRESSIVE
MODELS.139
4.3.3 MOVING AVERAGE
MODELS.140 4.4
THE LEVINSON-DURBIN RECURSION AND LATTICE
FILTERS.141 4.4.1 THE LEVINSON-DURBIN
RECURSION DEVELOPMENT .142 4.4.1.1 EXAMPLE
OF THE LEVINSON-DURBIN RECURSION.145 4.4.2 THE LATTICE
FILTER.146
4.4.3 THE CHOLESKY DECOMPOSITION
.149 4.4.4 THE
LEVINSON
RECURSION.151
4.5
EXERCISES.
.154 4.5.1
PROBLEMS.
.154 PART III CLASSICAL FILTERS AND SPECTRAL ANALYSIS 157 5
OPTIMUM WIENER FILTER
.159
5.1 DERIVATION OF THE IDEAL CONTINUOUS-TIME WIENER FILTER
.160 5.2 THE IDEAL DISCRETE-TIME FIR WIENER
FILTER .162 5.2.1 GENERAL
NOISE FIR WIENER FILTERING .164
CONTENTS XVIII 5.2.2 FIR WIENER LINEAR PREDICTION
.165 5.3 DISCRETE-TIME
CAUSAL IIR WIENER FILTER
.167 5.3.1 CAUSAL
IIR WIENER FILTERING
.169 5.3.2
WIENER DECONVOLUTION
.170 5.4
EXERCISES.
.171 5.4.1
PROBLEMS.
.171 6 OPTIMAL KALMAN FILTER
.
.173 6.1 BACKGROUND TO THE KALMAN FILTER
.173 6.2 THE
KALMAN
FILTER.174
6.2.1 KALMAN FILTER EXAMPLES
.181 6.3
KALMAN FILTER FOR SHIP
MOTION.185
6.3.1 KALMAN TRACKING FILTER
PROPER.186 6.3.2
SIMPLE EXAMPLE OF A DYNAMIC SHIP MODELS.189
6.3.3 STOCHASTIC MODELS
.192
6.3.4 ALTERNATE SOLUTION
MODELS.192
6.3.5 ADVANTAGES OF KALMAN
FILTERING.193 6.3.6
DISADVANTAGES OF KALMAN FILTERING
.193 6.4 EXTENDED KALMAN
FILTER
.194
6.5
EXERCISES.
.194 6.5.1
PROBLEMS.
.194 7 POWER SPECTRAL DENSITY ANALYSIS
.197
7.1 POWER SPECTRAL DENSITY ESTIMATION TECHNIQUES
.198 7.2 NONPARAMETRIC SPECTRAL
DENSITY ESTIMATION .199
7.2.1 PERIODOGRAM POWER SPECTRAL DENSITY
ESTIMATION.199 7.2.2 MODIFIED PERIODOGRAM * DATA
WINDOWING .203 7.2.3 BARTLETT*S METHOD
* PERIODOGRAM AVERAGING .205 7.2.4 WELCH*S
METHOD
.206
7.2.5 BLACKMAN-TUKEY
METHOD.208
7.2.6 PERFORMANCE COMPARISONS OF NONPARAMETRIC MODELS.209
7.2.7 MINIMUM VARIANCE METHOD
.209 7.2.8
MAXIMUM ENTROPY (ALL POLES) METHOD.212
7.3 PARAMETRIC SPECTRAL DENSITY
ESTIMATION.215 7.3.1
AUTOREGRESSIVE
METHODS.215
7.3.1.1 YULE-WALKER
APPROACH.216 7.3.1.2
COVARIANCE, LEAST SQUARES AND BURG METHODS .217 7.3.1.3
MODEL ORDER SELECTION FOR THE AUTOREGRESSIVE METHODS
.218 7.3.2 MOVING AVERAGE
METHOD .218
7.3.3 AUTOREGRESSIVE MOVING AVERAGE
METHOD.219 7.3.4 HARMONIC
METHODS.219
7.3.4.1 EIGENDECOMPOSITION OF THE AUTOCORRELATION
MATRIX
.219
7.3.4.1.1 PISARENKO*S METHOD
.221 7.3.4.1.2
MUSIC.222
CONTENTS XIX 7.4
EXERCISES.
.223 7.4.1
PROBLEMS.
.223 PART IV ADAPTIVE FILTER THEORY 225 8 ADAPTIVE FINITE
IMPULSE RESPONSE FILTERS
.227 8.1 ADAPTIVE
INTERFERENCE CANCELLING
.228 8.2 LEAST
MEAN SQUARES ADAPTATION
.230
8.2.1 OPTIMUM WIENER
SOLUTION.231
8.2.2 THE METHOD OF STEEPEST GRADIENT DESCENT
SOLUTION.233 8.2.3 THE LMS ALGORITHM
SOLUTION.235 8.2.4
STABILITY OF THE LMS
ALGORITHM.237 8.2.5
THE NORMALISED LMS
ALGORITHM.239 8.3
RECURSIVE LEAST SQUARES ESTIMATION
.239 8.3.1 THE
EXPONENTIALLY WEIGHTED RECURSIVE LEAST SQUARES
ALGORITHM.240
8.3.2 RECURSIVE LEAST SQUARES ALGORITHM
CONVERGENCE.243 8.3.2.1 CONVERGENCE OF THE
FILTER COEFFICIENTS IN THE
MEAN.243
8.3.2.2 CONVERGENCE OF THE FILTER COEFFICIENTS IN THE
MEAN SQUARE.244
8.3.2.3 CONVERGENCE OF THE RLS ALGORITHM IN THE MEAN
SQUARE.244
8.3.3 THE RLS ALGORITHM AS A KALMAN
FILTER.244 8.4
EXERCISES.
.245 8.4.1
PROBLEMS.
.245 9 FREQUENCY DOMAIN ADAPTIVE FILTERS
.247 9.1
FREQUENCY DOMAIN
PROCESSING.247
9.1.1 TIME DOMAIN BLOCK ADAPTIVE FILTERING
.248 9.1.2 FREQUENCY DOMAIN
ADAPTIVE FILTERING .249
9.1.2.1 THE OVERLAP-SAVE
METHOD.251 9.1.2.2 THE
OVERLAP-ADD METHOD .254
9.1.2.3 THE CIRCULAR CONVOLUTION METHOD.255
9.1.2.4 COMPUTATIONAL
COMPLEXITY.256 9.2
EXERCISES.
.256 9.2.1
PROBLEMS.
.256 10 ADAPTIVE VOLTERRA FILTERS
.2
57 10.1 NONLINEAR FILTERS
.257
10.2 THE VOLTERRA SERIES EXPANSION
.259 10.3
A LMS ADAPTIVE SECOND-ORDER VOLTERRA FILTER
.259 10.4 A LMS ADAPTIVE QUADRATIC
FILTER .261
10.5 A RLS ADAPTIVE QUADRATIC FILTER
.262 10.6
EXERCISES.
.264 CONTENTS XX 10.6.1
PROBLEMS.
.264 11 ADAPTIVE CONTROL SYSTEMS
.267
11.1 MAIN THEORETICAL
ISSUES.268
11.2 INTRODUCTION TO MODEL-REFERENCE ADAPTIVE
SYSTEMS.270 11.2.1 THE GRADIENT
APPROACH.271
11.2.2 LEAST SQUARES ESTIMATION
.273 11.2.3
A GENERAL SINGLE-INPUT-SINGLE-OUTPUT MRAS.274
11.2.4 LYAPUNOV*S STABILITY THEORY
.277 11.3
INTRODUCTION TO SELF-TUNING
REGULATORS.280
11.3.1 INDIRECT SELF-TUNING
REGULATORS.282
11.3.2 DIRECT SELF-TUNING
REGULATORS.283 11.4
RELATIONS BETWEEN MRAS AND
STR.284 11.5
APPLICATIONS.
.285 PART V NONCLASSICAL ADAPTIVE SYSTEMS 287
12 INTRODUCTION TO NEURAL NETWORKS
.289
12.1 ARTIFICIAL NEURAL
NETWORKS.289
12.1.1
DEFINITIONS.
.290 12.1.2 THREE MAIN TYPES
.290
12.1.3 SPECIFIC ARTIFICIAL NEURAL NETWORK
PARADIGMS.292 12.1.4 ARTIFICIAL NEURAL
NETWORKS AS BLACK BOXED .293 12.1.5
IMPLEMENTATION OF ARTIFICIAL NEURAL NETWORKS.294
12.1.6 WHEN TO USE AN ARTIFICIAL NEURAL NETWORK
.295 12.1.7 HOW TO USE AN ARTIFICIAL
NEURAL NETWORK .295 12.1.8 ARTIFICIAL
NEURAL NETWORK GENERAL APPLICATIONS.296 12.1.9
SIMPLE APPLICATION EXAMPLES
.297 12.1.9.1
SHEEP EATING PHASE IDENTIFICATION FROM JAW SOUNDS
.298
12.1.9.2 HYDRATE PARTICLE ISOLATION IN SEM
IMAGES.298 12.1.9.3 OXALATE NEEDLE DETECTION IN
MICROSCOPE IMAGES.299 12.1.9.4 WATER LEVEL DETERMINATION FROM
RESONANT SOUND ANALYSIS
.299
12.1.9.5 NONLINEAR SIGNAL FILTERING
.299 12.1.9.6 A MOTOR
CONTROL EXAMPLE.300 12.2 A
THREE-LAYER MULTI-LAYER PERCEPTRON MODEL
.300 12.2.1 MLP
BACKPROPAGATION-OF-ERROR LEARNING.302
12.2.2 DERIVATION OF BACKPROPAGATION-OF-ERROR LEARNING
.303 12.2.2.1 CHANGE IN ERROR DUE TO OUTPUT
LAYER WEIGHTS .303 12.2.2.2 CHANGE IN ERROR DUE TO HIDDEN
LAYER WEIGHTS.304 12.2.2.3 THE WEIGHT ADJUSTMENTS
.305 12.2.2.4 ADDITIONAL
MOMENTUM FACTOR .307 12.2.3 NOTES
ON CLASSIFICATION AND FUNCTION MAPPING.308
12.2.4 MLP APPLICATION AND TRAINING
ISSUES.308 CONTENTS XXI
12.3
EXERCISES.
.310 12.3.1
PROBLEMS.
.310 13 INTRODUCTION TO FUZZY LOGIC SYSTEMS
.313 13.1
BASIC FUZZY LOGIC
.313
13.1.1 FUZZY LOGIC MEMBERSHIP FUNCTIONS
.314 13.1.2 FUZZY LOGIC
OPERATIONS .315
13.1.3 FUZZY LOGIC
RULES.316
13.1.4 FUZZY LOGIC DEFUZZIFICATION
.317 13.2 FUZZY
LOGIC CONTROL DESIGN
.318
13.2.1 FUZZY LOGIC
CONTROLLERS.319
13.2.1.1 CONTROL RULE
CONSTRUCTION.319 13.2.1.2
PARAMETER TUNING .321
13.2.1.3 CONTROL RULE REVISION
.322 13.3 FUZZY ARTIFICIAL
NEURAL
NETWORKS.322
13.4 FUZZY APPLICATIONS
.323
14 INTRODUCTION TO GENETIC ALGORITHMS
.325 14.1
A GENERAL GENETIC ALGORITHM
.326
14.2 THE COMMON HYPOTHESIS
REPRESENTATION.327 14.3
GENETIC ALGORITHM
OPERATORS.329
14.4 FITNESS FUNCTIONS
.330
14.5 HYPOTHESIS
SEARCHING.330
14.6 GENETIC PROGRAMMING
.331
14.7 APPLICATIONS OF GENETIC
PROGRAMMING.332
14.7.1 FILTER CIRCUIT DESIGN APPLICATIONS OF GAS AND GP
.333 14.7.2 TIC-TAC-TO GAME PLAYING APPLICATION OF
GAS .334 PART VI ADAPTIVE FILTER APPLICATION 337
15 APPLICATIONS OF ADAPTIVE SIGNAL PROCESSING
.339 15.1 ADAPTIVE
PREDICTION
.340
15.2 ADAPTIVE MODELLING
.342
15.3 ADAPTIVE TELEPHONE ECHO
CANCELLING.343 15.4
ADAPTIVE EQUALISATION OF COMMUNICATION
CHANNELS.344 15.5 ADAPTIVE SELF-TUNING
FILTERS.346
15.6 ADAPTIVE NOISE CANCELLING
.346
15.7 FOCUSED TIME DELAY ESTIMATION FOR RANGING
.348 15.7.1 ADAPTIVE ARRAY
PROCESSING.349
15.8 OTHER ADAPTIVE FILTER
APPLICATIONS.350
15.8.1 ADAPTIVE 3-D SOUND
SYSTEMS.350 15.8.2
MICROPHONE
ARRAYS.351
15.8.3 NETWORK AND ACOUSTIC ECHO
CANCELLATION.352 15.8.4 REAL-WORLD
ADAPTIVE FILTERING APPLICATIONS.353 CONTENTS
XXII 16 GENERIC ADAPTIVE FILTER STRUCTURES
.355
16.1 SUB-BAND ADAPTIVE FILTERS
.355
16.2 SUB-SPACE ADAPTIVE FILTERS
.358
16.2.1 MPNN
MODEL.360
16.2.2 APPROXIMATELY PIECEWISE LINEAR REGRESSION
MODEL.362 16.2.3 THE SUB-SPACE ADAPTIVE FILTER
MODEL.364 16.2.4 EXAMPLE
APPLICATIONS OF THE SSAF MODEL.366
16.2.4.1 LOUDSPEAKER 3-D FREQUENCY RESPONSE MODEL .367
16.2.4.2 VELOCITY OF SOUND IN WATER 3-D MODEL.369
16.3 DISCUSSION AND OVERVIEW OF THE SSAF
.370 REFERENCES
.
.373 INDEX
.
.381 |
any_adam_object | 1 |
any_adam_object_boolean | 1 |
author | Zaknich, Anthony |
author_facet | Zaknich, Anthony |
author_role | aut |
author_sort | Zaknich, Anthony |
author_variant | a z az |
building | Verbundindex |
bvnumber | BV021989867 |
callnumber-first | T - Technology |
callnumber-label | TK7872 |
callnumber-raw | TK7872.F5 |
callnumber-search | TK7872.F5 |
callnumber-sort | TK 47872 F5 |
callnumber-subject | TK - Electrical and Nuclear Engineering |
ctrlnum | (OCoLC)60767398 (DE-599)BVBBV021989867 |
dewey-full | 621.3815/324 |
dewey-hundreds | 600 - Technology (Applied sciences) |
dewey-ones | 621 - Applied physics |
dewey-raw | 621.3815/324 |
dewey-search | 621.3815/324 |
dewey-sort | 3621.3815 3324 |
dewey-tens | 620 - Engineering and allied operations |
discipline | Elektrotechnik / Elektronik / Nachrichtentechnik |
discipline_str_mv | Elektrotechnik / Elektronik / Nachrichtentechnik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01777nam a2200481zc 4500</leader><controlfield tag="001">BV021989867</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20051019000000.0</controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">050927s2005 d||| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1852339845</subfield><subfield code="9">1-85233-984-5</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781852339845</subfield><subfield code="9">978-1-85233-984-5</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">10978566</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)60767398</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV021989867</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-706</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TK7872.F5</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">621.3815/324</subfield><subfield code="2">22</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Zaknich, Anthony</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Principles of adaptive filters and self-learning systems</subfield><subfield code="c">A. Zaknich</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">London</subfield><subfield code="b">Springer</subfield><subfield code="c">2005</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XXII, 386 S.</subfield><subfield code="b">graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Advanced textbooks in control and signal processing</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Literaturverz. S. [373] - 380</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Filtres adaptatifs - Conception - Mathématiques</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Intelligence artificielle</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Künstliche Intelligenz</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Adaptive filters</subfield><subfield code="x">Design and construction</subfield><subfield code="x">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Artificial intelligence</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Adaptives Filter</subfield><subfield code="0">(DE-588)4141377-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Lernendes System</subfield><subfield code="0">(DE-588)4120666-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Lernendes System</subfield><subfield code="0">(DE-588)4120666-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Adaptives Filter</subfield><subfield code="0">(DE-588)4141377-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">SWB Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=015204681&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-015204681</subfield></datafield></record></collection> |
id | DE-604.BV021989867 |
illustrated | Illustrated |
index_date | 2024-07-02T16:10:31Z |
indexdate | 2024-07-09T20:48:52Z |
institution | BVB |
isbn | 1852339845 9781852339845 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-015204681 |
oclc_num | 60767398 |
open_access_boolean | |
owner | DE-706 |
owner_facet | DE-706 |
physical | XXII, 386 S. graph. Darst. |
publishDate | 2005 |
publishDateSearch | 2005 |
publishDateSort | 2005 |
publisher | Springer |
record_format | marc |
series2 | Advanced textbooks in control and signal processing |
spelling | Zaknich, Anthony Verfasser aut Principles of adaptive filters and self-learning systems A. Zaknich London Springer 2005 XXII, 386 S. graph. Darst. txt rdacontent n rdamedia nc rdacarrier Advanced textbooks in control and signal processing Literaturverz. S. [373] - 380 Filtres adaptatifs - Conception - Mathématiques Intelligence artificielle Künstliche Intelligenz Mathematik Adaptive filters Design and construction Mathematics Artificial intelligence Adaptives Filter (DE-588)4141377-5 gnd rswk-swf Lernendes System (DE-588)4120666-6 gnd rswk-swf Lernendes System (DE-588)4120666-6 s DE-604 Adaptives Filter (DE-588)4141377-5 s SWB Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=015204681&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Zaknich, Anthony Principles of adaptive filters and self-learning systems Filtres adaptatifs - Conception - Mathématiques Intelligence artificielle Künstliche Intelligenz Mathematik Adaptive filters Design and construction Mathematics Artificial intelligence Adaptives Filter (DE-588)4141377-5 gnd Lernendes System (DE-588)4120666-6 gnd |
subject_GND | (DE-588)4141377-5 (DE-588)4120666-6 |
title | Principles of adaptive filters and self-learning systems |
title_auth | Principles of adaptive filters and self-learning systems |
title_exact_search | Principles of adaptive filters and self-learning systems |
title_exact_search_txtP | Principles of adaptive filters and self-learning systems |
title_full | Principles of adaptive filters and self-learning systems A. Zaknich |
title_fullStr | Principles of adaptive filters and self-learning systems A. Zaknich |
title_full_unstemmed | Principles of adaptive filters and self-learning systems A. Zaknich |
title_short | Principles of adaptive filters and self-learning systems |
title_sort | principles of adaptive filters and self learning systems |
topic | Filtres adaptatifs - Conception - Mathématiques Intelligence artificielle Künstliche Intelligenz Mathematik Adaptive filters Design and construction Mathematics Artificial intelligence Adaptives Filter (DE-588)4141377-5 gnd Lernendes System (DE-588)4120666-6 gnd |
topic_facet | Filtres adaptatifs - Conception - Mathématiques Intelligence artificielle Künstliche Intelligenz Mathematik Adaptive filters Design and construction Mathematics Artificial intelligence Adaptives Filter Lernendes System |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=015204681&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT zaknichanthony principlesofadaptivefiltersandselflearningsystems |