Principles of adaptive filters and self-learning systems

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Zaknich, Anthony (VerfasserIn)
Format: Buch
Sprache:English
Veröffentlicht: London Springer 2005
Schriftenreihe:Advanced textbooks in control and signal processing
Schlagworte:
Online-Zugang:Inhaltsverzeichnis
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nam a2200000zc 4500
001 BV021989867
003 DE-604
005 20051019000000.0
007 t
008 050927s2005 d||| |||| 00||| eng d
020 |a 1852339845  |9 1-85233-984-5 
020 |a 9781852339845  |9 978-1-85233-984-5 
028 5 2 |a 10978566 
035 |a (OCoLC)60767398 
035 |a (DE-599)BVBBV021989867 
040 |a DE-604  |b ger 
041 0 |a eng 
049 |a DE-706 
050 0 |a TK7872.F5 
082 0 |a 621.3815/324  |2 22 
100 1 |a Zaknich, Anthony  |e Verfasser  |4 aut 
245 1 0 |a Principles of adaptive filters and self-learning systems  |c A. Zaknich 
264 1 |a London  |b Springer  |c 2005 
300 |a XXII, 386 S.  |b graph. Darst. 
336 |b txt  |2 rdacontent 
337 |b n  |2 rdamedia 
338 |b nc  |2 rdacarrier 
490 0 |a Advanced textbooks in control and signal processing 
500 |a Literaturverz. S. [373] - 380 
650 4 |a Filtres adaptatifs - Conception - Mathématiques 
650 4 |a Intelligence artificielle 
650 4 |a Künstliche Intelligenz 
650 4 |a Mathematik 
650 4 |a Adaptive filters  |x Design and construction  |x Mathematics 
650 4 |a Artificial intelligence 
650 0 7 |a Adaptives Filter  |0 (DE-588)4141377-5  |2 gnd  |9 rswk-swf 
650 0 7 |a Lernendes System  |0 (DE-588)4120666-6  |2 gnd  |9 rswk-swf 
689 0 0 |a Lernendes System  |0 (DE-588)4120666-6  |D s 
689 0 |5 DE-604 
689 1 0 |a Adaptives Filter  |0 (DE-588)4141377-5  |D s 
689 1 |5 DE-604 
856 4 2 |m SWB Datenaustausch  |q application/pdf  |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=015204681&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA  |3 Inhaltsverzeichnis 
999 |a oai:aleph.bib-bvb.de:BVB01-015204681 

Datensatz im Suchindex

_version_ 1804135964840296448
adam_text ADVANCED TEXTBOOKS IN CONTROL AND SIGNAL PROCESSING SERIES EDITORS PROFESSOR MICHAEL J. GRIMBLE, PROFESSOR OF INDUSTRIAL SYSTEMS AND DIRECTOR PROFESSOR EMERITUS MICHAEL A. JOHNSON, PROFESSOR OF CONTROL SYSTEMS AND DEPUTY DIRECTOR INDUSTRIAL CONTROL CENTRE, DEPARTMENT OF ELECTRONIC AND ELECTRICAL ENGINEERING, UNIVERSITY OF STRATHCLYDE, GRAHAM HILLS BUILDING, 50 GEORGE STREET, GLASGOW G1 1QE, U.K. OTHER TITLES PUBLISHED IN THIS SERIES: GENETIC ALGORITHMS K.F. MAN, K.S. TANG AND S. KWONG NEURAL NETWORKS FOR MODELLING AND CONTROL OF DYNAMIC SYSTEMS M. NOERGAARD, O. RAVN, L.K. HANSEN AND N.K. POULSEN MODELLING AND CONTROL OF ROBOT MANIPULATORS (2ND EDITION) L. SCIAVICCO AND B. SICILIANO FAULT DETECTION AND DIAGNOSIS IN INDUSTRIAL SYSTEMS L.H. CHIANG, E.L. RUSSELL AND R.D. BRAATZ SOFT COMPUTING L. FORTUNA, G. RIZZOTTO, M. LAVORGNA, G. NUNNARI, M.G. XIBILIA AND R. CAPONETTO STATISTICAL SIGNAL PROCESSING T. CHONAVEL DISCRETE-TIME STOCHASTIC PROCESSES (2ND EDITION) T. SOEDERSTROEM PARALLEL COMPUTING FOR REAL-TIME SIGNAL PROCESSING AND CONTROL M.O. TOKHI, M.A. HOSSAIN AND M.H. SHAHEED MULTIVARIABLE CONTROL SYSTEMS P. ALBERTOS AND A. SALA CONTROL SYSTEMS WITH INPUT AND OUTPUT CONSTRAINTS A.H. GLATTFELDER AND W. SCHAUFELBERGER ANALYSIS AND CONTROL OF NON-LINEAR PROCESS SYSTEMS K. HANGOS, J. BOKOR AND G. SZEDERKENYI MODEL PREDICTIVE CONTROL (2ND EDITION) E.F. CAMACHO AND C. BORDONS DIGITAL SELF-TUNING CONTROLLERS V. BOBAL, J. BOEHM, J. FESSL AND J. MACHA * CEK CONTROL OF ROBOT MANIPULATORS IN JOINT SPACE R. KELLY, V. SANTIBANEZ AND A. LORIA PUBLICATION DUE JULY 2005 ROBUST CONTROL DESIGN WITH MATLAB D.-W. GU, P.HR. PETKOV AND M.M. KONSTANTINOV PUBLICATION DUE JULY 2005 ACTIVE NOISE AND VIBRATION CONTROL M.O. TOKHI PUBLICATION DUE NOVEMBER 2005 A. ZAKNICH PRINCIPLES OF ADAPTIVE FILTERS AND SELF-LEARNING SYSTEMS WITH 95 FIGURES 123 ANTHONY ZAKNICH, PHD SCHOOL OF ENGINEERING SCIENCE, ROCKINGHAM CAMPUS, MURDOCH UNIVERSITY, SOUTH STREET, MURDOCH, WA 6150, AUSTRALIA AND CENTRE FOR INTELLIGENT INFORMATION PROCESSING SYSTEMS, SCHOOL OF ELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING, THE UNIVERSITY OF WESTERN AUSTRALIA, 35 STIRLING HIGHWAY, CRAWLEY, WA 6009, AUSTRALIA INSTRUCTORS SOLUTIONS MANUAL IN PDF CAN BE DOWNLOADED FROM THE BOOK*S PAGE AT SPRINGERONLINE.COM BRITISH LIBRARY CATALOGUING IN PUBLICATION DATA ZAKNICH, ANTHONY PRINCIPLES OF ADAPTIVE FILTERS AND SELF-LEARNING SYSTEMS. (ADVANCED TEXTBOOKS IN CONTROL AND SIGNAL PROCESSING) 1. ADAPTIVE FILTERS 2. ADAPTIVE SIGNAL PROCESSING 3. SYSTEM ANALYSIS I. TITLE 621.3*815324 ISBN-10: 1852339845 LIBRARY OF CONGRESS CONTROL NUMBER: 2005923608 APART FROM ANY FAIR DEALING FOR THE PURPOSES OF RESEARCH OR PRIVATE STUDY, OR CRITICISM OR REVIEW, AS PERMITTED UNDER THE COPYRIGHT, DESIGNS AND PATENTS ACT 1988, THIS PUBLICATION MAY ONLY BE REPRODUCED, STORED OR TRANSMITTED, IN ANY FORM OR BY ANY MEANS, WITH THE PRIOR PERMISSION IN WRITING OF THE PUBLISHERS, OR IN THE CASE OF REPROGRAPHIC REPRODUCTION IN ACCORDANCE WITH THE TERMS OF LICENCES ISSUED BY THE COPYRIGHT LICENSING AGENCY. ENQUIRIES CONCERNING REPRODUCTION OUTSIDE THOSE TERMS SHOULD BE SENT TO THE PUBLISHERS. ADVANCED TEXTBOOKS IN CONTROL AND SIGNAL PROCESSING SERIES ISSN 1439-2232 ISBN-10 1-85233-984-5 ISBN-13 978-1-85233-984-5 SPRINGER SCIENCE+BUSINESS MEDIA SPRINGERONLINE.COM SPRINGER-VERLAG LONDON LIMITED 2005 THE USE OF REGISTERED NAMES, TRADEMARKS, ETC. IN THIS PUBLICATION DOES NOT IMPLY, EVEN IN THE ABSENCE OF A SPECIFIC STATEMENT, THAT SUCH NAMES ARE EXEMPT FROM THE RELEVANT LAWS AND REGULATIONS AND THEREFORE FREE FOR GENERAL USE. THE PUBLISHER MAKES NO REPRESENTATION, EXPRESS OR IMPLIED, WITH REGARD TO THE ACCURACY OF THE INFOR- MATION CONTAINED IN THIS BOOK AND CANNOT ACCEPT ANY LEGAL RESPONSIBILITY OR LIABILITY FOR ANY ERRORS OR OMISSIONS THAT MAY BE MADE. TYPESETTING: CAMERA READY BY AUTHOR PRODUCTION: LE-TEX JELONEK, SCHMIDT & VOECKLER GBR, LEIPZIG, GERMANY PRINTED IN GERMANY 69/3141-543210 PRINTED ON ACID-FREE PAPER SPIN 10978566 CONTENTS PART I INTRODUCTION 1 1 ADAPTIVE FILTERING .............................................................................. ...............3 1.1 LINEAR ADAPTIVE FILTERS .............................................................................5 1.1.1 LINEAR ADAPTIVE FILTER ALGORITHMS ..............................................7 1.2 NONLINEAR ADAPTIVE FILTERS........................................................................9 1.2.1 ADAPTIVE VOLTERRA FILTERS.............................................................9 1.3 NONCLASSICAL ADAPTIVE SYSTEMS ..............................................................10 1.3.1 ARTIFICIAL NEURAL NETWORKS ........................................................10 1.3.2 FUZZY LOGIC...............................................................................11 1.3.3 GENETIC ALGORITHMS ...................................................................11 1.4 A BRIEF HISTORY AND OVERVIEW OF CLASSICAL THEORIES..............................12 1.4.1 LINEAR ESTIMATION THEORY.............................................. ............12 1.4.2 LINEAR ADAPTIVE FILTERS..............................................................13 1.4.3 ADAPTIVE SIGNAL PROCESSING APPLICATIONS..................................14 1.4.4 ADAPTIVE CONTROL.......................................................................16 1.5 A BRIEF HISTORY AND OVERVIEW OF NONCLASSICAL THEORIES........................17 1.5.1 ARTIFICIAL NEURAL NETWORKS ........................................................17 1.5.2 FUZZY LOGIC...............................................................................18 1.5.3 GENETIC ALGORITHMS ...................................................................18 1.6 FUNDAMENTALS OF ADAPTIVE NETWORKS......................................................19 1.7 CHOICE OF ADAPTIVE FILTER ALGORITHM ......................................................23 2 LINEAR SYSTEMS AND STOCHASTIC PROCESSES ......................................................25 2.1 BASIC CONCEPTS OF LINEAR SYSTEMS..........................................................27 2.2 DISCRETE-TIME SIGNALS AND SYSTEMS .........................................................29 2.3 THE DISCRETE FOURIER TRANSFORM (DFT) ..................................................31 2.3.1 DISCRETE LINEAR CONVOLUTION USING THE DFT..............................32 2.3.2 DIGITAL SAMPLING THEORY ...........................................................33 2.3.2.1 ANALOGUE INTERPRETATION FORMULA...............................37 2.4 THE FAST FOURIER TRANSFORM....................................................................37 2.5 THE Z-TRANSFORM .....................................................................................40 2.5.1 RELATIONSHIP BETWEEN LAPLACE TRANSFORM AND Z-TRANSFORM......40 2.5.1.1 BILATERAL Z-TRANSFORM ................................................41 CONTENTS XVI 2.5.1.2 UNILATERAL Z-TRANSFORM ..............................................42 2.5.1.3 REGION OF CONVERGENCE (ROC) FOR THE Z-TRANSFORM .42 2.5.1.4 REGION OF CONVERGENCE (ROC) FOR GENERAL SIGNALS..43 2.5.2 GENERAL PROPERTIES OF THE DFT AND Z-TRANSFORM.......................44 2.6 SUMMARY OF DISCRETE-TIME LSI SYSTEMS................................................46 2.7 SPECIAL CLASSES OF FILTERS ........................................................................48 2.7.1 PHASE RESPONSE FROM FREQUENCY MAGNITUDE RESPONSE.............50 2.8 LINEAR ALGEBRA SUMMARY........................................................................51 2.8.1 VECTORS ......................................................................................51 2.8.2 LINEAR INDEPENDENCE, VECTOR SPACES, AND BASIC VECTORS..........52 2.8.3 MATRICES...................................................................... ...............53 2.8.4 LINEAR EQUATIONS .......................................................................55 2.8.5 SPECIAL MATRICES ........................................................................56 2.8.6 QUADRATIC AND HERMITIAN FORMS ................................................59 2.8.7 EIGENVALUES AND EIGENVECTORS...................................................59 2.9 INTRODUCTION TO STOCHASTIC PROCESSES.......................................................61 2.10 RANDOM SIGNALS ......................................................................................63 2.11 BASIC DESCRIPTIVE MODELS OF RANDOM SIGNALS........................................64 2.11.1 THE MEAN SQUARE VALUE AND VARIANCE......................................64 2.11.2 THE PROBABILITY DENSITY FUNCTION..............................................65 2.11.3 JOINTLY DISTRIBUTED RANDOM VARIABLES.......................................68 2.11.4 THE EXPECTATION OPERATOR .........................................................68 2.11.5 THE AUTOCORRELATION AND RELATED FUNCTIONS..............................69 2.11.6 POWER SPECTRAL DENSITY FUNCTIONS.............................................72 2.11.7 COHERENCE FUNCTION...................................................................73 2.11.8 DISCRETE ERGODIC RANDOM SIGNAL STATISTICS ...............................74 2.11.9 AUTOCOVARIANCE AND AUTOCORRELATION MATRICES..........................75 2.11.10 SPECTRUM OF A RANDOM PROCESS.................................................76 2.11.11 FILTERING OF RANDOM PROCESSES..................................................78 2.11.12 IMPORTANT EXAMPLES OF RANDOM PROCESSES ...............................80 2.11.12.1 GAUSSIAN PROCESS .......................................................80 2.11.12.2 WHITE NOISE...............................................................80 2.11.12.3 WHITE SEQUENCES .......................................................81 2.11.12.4 GAUSS-MARKOV PROCESSES...........................................81 2.11.12.5 THE RANDOM TELEGRAPH WAVE...................................81 2.12 EXERCISES..................................................................... ............................82 2.12.1 PROBLEMS...................................................................... ..............82 PART II MODELLING 87 3 OPTIMISATION AND LEAST SQUARE ESTIMATION ..................................................89 3.1 OPTIMISATION THEORY...............................................................................89 3.2 OPTIMISATION METHODS IN DIGITAL FILTER DESIGN.......................................91 3.3 LEAST SQUARES ESTIMATION........................................................................95 3.4 LEAST SQUARES MAXIMUM LIKELIHOOD ESTIMATOR ......................................97 CONTENTS XVII 3.5 LINEAR REGRESSION * FITTING DATA TO A LINE .............................................98 3.6 GENERAL LINEAR LEAST SQUARES .................................................................99 3.7 A SHIP POSITIONING EXAMPLE OF LSE.....................................................100 3.8 ACOUSTIC POSITIONING SYSTEM EXAMPLE..................................................104 3.9 MEASURE OF LSE PRECISION ....................................................................108 3.10 MEASURE OF LSE RELIABILITY...................................................................109 3.11 LIMITATIONS OF LSE................................................................................110 3.12 ADVANTAGES OF LSE ...............................................................................110 3.13 THE SINGULAR VALUE DECOMPOSITION......................................................111 3.13.1 THE PSEUDOINVERSE...................................................................112 3.13.2 COMPUTATION OF THE SVD.........................................................112 3.13.2.1 THE JACOBI ALGORITHM ..............................................112 3.13.2.2 THE QR ALGORITHM...................................................115 3.14 EXERCISES..................................................................... ..........................116 3.14.1 PROBLEMS...................................................................... ............116 4 PARAMETRIC SIGNAL AND SYSTEM MODELLING ..................................................119 4.1 THE ESTIMATION PROBLEM .......................................................................120 4.2 DETERMINISTIC SIGNAL AND SYSTEM MODELLING.........................................121 4.2.1 THE LEAST SQUARES METHOD ......................................................122 4.2.2 THE PADE APPROXIMATION METHOD ...........................................124 4.2.3 PRONY*S METHOD .......................................................................127 4.2.3.1 ALL-POLE MODELLING USING PRONY*S METHOD..............130 4.2.3.2 LINEAR PREDICTION .....................................................131 4.2.3.3 DIGITAL WIENER FILTER................................................132 4.2.4 AUTOCORRELATION AND COVARIANCE METHODS...............................133 4.3 STOCHASTIC SIGNAL MODELLING ................................................................137 4.3.1 AUTOREGRESSIVE MOVING AVERAGE MODELS................................137 4.3.2 AUTOREGRESSIVE MODELS............................................................139 4.3.3 MOVING AVERAGE MODELS.........................................................140 4.4 THE LEVINSON-DURBIN RECURSION AND LATTICE FILTERS.............................141 4.4.1 THE LEVINSON-DURBIN RECURSION DEVELOPMENT .......................142 4.4.1.1 EXAMPLE OF THE LEVINSON-DURBIN RECURSION............145 4.4.2 THE LATTICE FILTER.....................................................................146 4.4.3 THE CHOLESKY DECOMPOSITION .................................................149 4.4.4 THE LEVINSON RECURSION..........................................................151 4.5 EXERCISES..................................................................... ..........................154 4.5.1 PROBLEMS...................................................................... ............154 PART III CLASSICAL FILTERS AND SPECTRAL ANALYSIS 157 5 OPTIMUM WIENER FILTER ................................................................................159 5.1 DERIVATION OF THE IDEAL CONTINUOUS-TIME WIENER FILTER ........................160 5.2 THE IDEAL DISCRETE-TIME FIR WIENER FILTER ...........................................162 5.2.1 GENERAL NOISE FIR WIENER FILTERING .......................................164 CONTENTS XVIII 5.2.2 FIR WIENER LINEAR PREDICTION .................................................165 5.3 DISCRETE-TIME CAUSAL IIR WIENER FILTER ................................................167 5.3.1 CAUSAL IIR WIENER FILTERING ....................................................169 5.3.2 WIENER DECONVOLUTION ............................................................170 5.4 EXERCISES..................................................................... ..........................171 5.4.1 PROBLEMS...................................................................... ............171 6 OPTIMAL KALMAN FILTER .............................................................................. ...173 6.1 BACKGROUND TO THE KALMAN FILTER ........................................................173 6.2 THE KALMAN FILTER.................................................................................174 6.2.1 KALMAN FILTER EXAMPLES ..........................................................181 6.3 KALMAN FILTER FOR SHIP MOTION..............................................................185 6.3.1 KALMAN TRACKING FILTER PROPER................................................186 6.3.2 SIMPLE EXAMPLE OF A DYNAMIC SHIP MODELS...........................189 6.3.3 STOCHASTIC MODELS ...................................................................192 6.3.4 ALTERNATE SOLUTION MODELS.......................................................192 6.3.5 ADVANTAGES OF KALMAN FILTERING..............................................193 6.3.6 DISADVANTAGES OF KALMAN FILTERING .........................................193 6.4 EXTENDED KALMAN FILTER ........................................................................194 6.5 EXERCISES..................................................................... ..........................194 6.5.1 PROBLEMS...................................................................... ............194 7 POWER SPECTRAL DENSITY ANALYSIS .................................................................197 7.1 POWER SPECTRAL DENSITY ESTIMATION TECHNIQUES ...................................198 7.2 NONPARAMETRIC SPECTRAL DENSITY ESTIMATION .........................................199 7.2.1 PERIODOGRAM POWER SPECTRAL DENSITY ESTIMATION....................199 7.2.2 MODIFIED PERIODOGRAM * DATA WINDOWING .............................203 7.2.3 BARTLETT*S METHOD * PERIODOGRAM AVERAGING ..........................205 7.2.4 WELCH*S METHOD ......................................................................206 7.2.5 BLACKMAN-TUKEY METHOD........................................................208 7.2.6 PERFORMANCE COMPARISONS OF NONPARAMETRIC MODELS.............209 7.2.7 MINIMUM VARIANCE METHOD ....................................................209 7.2.8 MAXIMUM ENTROPY (ALL POLES) METHOD...................................212 7.3 PARAMETRIC SPECTRAL DENSITY ESTIMATION................................................215 7.3.1 AUTOREGRESSIVE METHODS..........................................................215 7.3.1.1 YULE-WALKER APPROACH............................................216 7.3.1.2 COVARIANCE, LEAST SQUARES AND BURG METHODS ........217 7.3.1.3 MODEL ORDER SELECTION FOR THE AUTOREGRESSIVE METHODS ..........................................218 7.3.2 MOVING AVERAGE METHOD ........................................................218 7.3.3 AUTOREGRESSIVE MOVING AVERAGE METHOD................................219 7.3.4 HARMONIC METHODS..................................................................219 7.3.4.1 EIGENDECOMPOSITION OF THE AUTOCORRELATION MATRIX ......................................................................219 7.3.4.1.1 PISARENKO*S METHOD .................................221 7.3.4.1.2 MUSIC.....................................................222 CONTENTS XIX 7.4 EXERCISES..................................................................... ..........................223 7.4.1 PROBLEMS...................................................................... ............223 PART IV ADAPTIVE FILTER THEORY 225 8 ADAPTIVE FINITE IMPULSE RESPONSE FILTERS ...................................................227 8.1 ADAPTIVE INTERFERENCE CANCELLING .........................................................228 8.2 LEAST MEAN SQUARES ADAPTATION ...........................................................230 8.2.1 OPTIMUM WIENER SOLUTION.......................................................231 8.2.2 THE METHOD OF STEEPEST GRADIENT DESCENT SOLUTION................233 8.2.3 THE LMS ALGORITHM SOLUTION..................................................235 8.2.4 STABILITY OF THE LMS ALGORITHM...............................................237 8.2.5 THE NORMALISED LMS ALGORITHM.............................................239 8.3 RECURSIVE LEAST SQUARES ESTIMATION .....................................................239 8.3.1 THE EXPONENTIALLY WEIGHTED RECURSIVE LEAST SQUARES ALGORITHM...................................................................240 8.3.2 RECURSIVE LEAST SQUARES ALGORITHM CONVERGENCE...................243 8.3.2.1 CONVERGENCE OF THE FILTER COEFFICIENTS IN THE MEAN..................................................................243 8.3.2.2 CONVERGENCE OF THE FILTER COEFFICIENTS IN THE MEAN SQUARE......................................................244 8.3.2.3 CONVERGENCE OF THE RLS ALGORITHM IN THE MEAN SQUARE......................................................244 8.3.3 THE RLS ALGORITHM AS A KALMAN FILTER...................................244 8.4 EXERCISES..................................................................... ..........................245 8.4.1 PROBLEMS...................................................................... ............245 9 FREQUENCY DOMAIN ADAPTIVE FILTERS ...........................................................247 9.1 FREQUENCY DOMAIN PROCESSING..............................................................247 9.1.1 TIME DOMAIN BLOCK ADAPTIVE FILTERING ..................................248 9.1.2 FREQUENCY DOMAIN ADAPTIVE FILTERING ....................................249 9.1.2.1 THE OVERLAP-SAVE METHOD.......................................251 9.1.2.2 THE OVERLAP-ADD METHOD .......................................254 9.1.2.3 THE CIRCULAR CONVOLUTION METHOD...........................255 9.1.2.4 COMPUTATIONAL COMPLEXITY......................................256 9.2 EXERCISES..................................................................... ..........................256 9.2.1 PROBLEMS...................................................................... ............256 10 ADAPTIVE VOLTERRA FILTERS .............................................................................2 57 10.1 NONLINEAR FILTERS ...................................................................................257 10.2 THE VOLTERRA SERIES EXPANSION .............................................................259 10.3 A LMS ADAPTIVE SECOND-ORDER VOLTERRA FILTER ....................................259 10.4 A LMS ADAPTIVE QUADRATIC FILTER ........................................................261 10.5 A RLS ADAPTIVE QUADRATIC FILTER .........................................................262 10.6 EXERCISES..................................................................... ..........................264 CONTENTS XX 10.6.1 PROBLEMS...................................................................... ............264 11 ADAPTIVE CONTROL SYSTEMS ............................................................................267 11.1 MAIN THEORETICAL ISSUES........................................................................268 11.2 INTRODUCTION TO MODEL-REFERENCE ADAPTIVE SYSTEMS..............................270 11.2.1 THE GRADIENT APPROACH...........................................................271 11.2.2 LEAST SQUARES ESTIMATION ........................................................273 11.2.3 A GENERAL SINGLE-INPUT-SINGLE-OUTPUT MRAS..........................274 11.2.4 LYAPUNOV*S STABILITY THEORY ...................................................277 11.3 INTRODUCTION TO SELF-TUNING REGULATORS..................................................280 11.3.1 INDIRECT SELF-TUNING REGULATORS................................................282 11.3.2 DIRECT SELF-TUNING REGULATORS..................................................283 11.4 RELATIONS BETWEEN MRAS AND STR......................................................284 11.5 APPLICATIONS.................................................................. ........................285 PART V NONCLASSICAL ADAPTIVE SYSTEMS 287 12 INTRODUCTION TO NEURAL NETWORKS ................................................................289 12.1 ARTIFICIAL NEURAL NETWORKS....................................................................289 12.1.1 DEFINITIONS................................................................... ............290 12.1.2 THREE MAIN TYPES ...................................................................290 12.1.3 SPECIFIC ARTIFICIAL NEURAL NETWORK PARADIGMS........................292 12.1.4 ARTIFICIAL NEURAL NETWORKS AS BLACK BOXED ............................293 12.1.5 IMPLEMENTATION OF ARTIFICIAL NEURAL NETWORKS........................294 12.1.6 WHEN TO USE AN ARTIFICIAL NEURAL NETWORK .............................295 12.1.7 HOW TO USE AN ARTIFICIAL NEURAL NETWORK ...............................295 12.1.8 ARTIFICIAL NEURAL NETWORK GENERAL APPLICATIONS.....................296 12.1.9 SIMPLE APPLICATION EXAMPLES .................................................297 12.1.9.1 SHEEP EATING PHASE IDENTIFICATION FROM JAW SOUNDS .....................................................................298 12.1.9.2 HYDRATE PARTICLE ISOLATION IN SEM IMAGES...............298 12.1.9.3 OXALATE NEEDLE DETECTION IN MICROSCOPE IMAGES....299 12.1.9.4 WATER LEVEL DETERMINATION FROM RESONANT SOUND ANALYSIS ........................................................299 12.1.9.5 NONLINEAR SIGNAL FILTERING .......................................299 12.1.9.6 A MOTOR CONTROL EXAMPLE.......................................300 12.2 A THREE-LAYER MULTI-LAYER PERCEPTRON MODEL .......................................300 12.2.1 MLP BACKPROPAGATION-OF-ERROR LEARNING................................302 12.2.2 DERIVATION OF BACKPROPAGATION-OF-ERROR LEARNING ..................303 12.2.2.1 CHANGE IN ERROR DUE TO OUTPUT LAYER WEIGHTS ........303 12.2.2.2 CHANGE IN ERROR DUE TO HIDDEN LAYER WEIGHTS........304 12.2.2.3 THE WEIGHT ADJUSTMENTS .........................................305 12.2.2.4 ADDITIONAL MOMENTUM FACTOR .................................307 12.2.3 NOTES ON CLASSIFICATION AND FUNCTION MAPPING.......................308 12.2.4 MLP APPLICATION AND TRAINING ISSUES.....................................308 CONTENTS XXI 12.3 EXERCISES..................................................................... ..........................310 12.3.1 PROBLEMS...................................................................... ............310 13 INTRODUCTION TO FUZZY LOGIC SYSTEMS ..........................................................313 13.1 BASIC FUZZY LOGIC ................................................................................313 13.1.1 FUZZY LOGIC MEMBERSHIP FUNCTIONS .......................................314 13.1.2 FUZZY LOGIC OPERATIONS ..........................................................315 13.1.3 FUZZY LOGIC RULES...................................................................316 13.1.4 FUZZY LOGIC DEFUZZIFICATION ...................................................317 13.2 FUZZY LOGIC CONTROL DESIGN .................................................................318 13.2.1 FUZZY LOGIC CONTROLLERS..........................................................319 13.2.1.1 CONTROL RULE CONSTRUCTION.......................................319 13.2.1.2 PARAMETER TUNING ....................................................321 13.2.1.3 CONTROL RULE REVISION .............................................322 13.3 FUZZY ARTIFICIAL NEURAL NETWORKS.........................................................322 13.4 FUZZY APPLICATIONS ...............................................................................323 14 INTRODUCTION TO GENETIC ALGORITHMS ............................................................325 14.1 A GENERAL GENETIC ALGORITHM ...............................................................326 14.2 THE COMMON HYPOTHESIS REPRESENTATION.............................................327 14.3 GENETIC ALGORITHM OPERATORS................................................................329 14.4 FITNESS FUNCTIONS ..................................................................................330 14.5 HYPOTHESIS SEARCHING............................................................................330 14.6 GENETIC PROGRAMMING ...........................................................................331 14.7 APPLICATIONS OF GENETIC PROGRAMMING..................................................332 14.7.1 FILTER CIRCUIT DESIGN APPLICATIONS OF GAS AND GP .................333 14.7.2 TIC-TAC-TO GAME PLAYING APPLICATION OF GAS .........................334 PART VI ADAPTIVE FILTER APPLICATION 337 15 APPLICATIONS OF ADAPTIVE SIGNAL PROCESSING ...............................................339 15.1 ADAPTIVE PREDICTION ..............................................................................340 15.2 ADAPTIVE MODELLING ..............................................................................342 15.3 ADAPTIVE TELEPHONE ECHO CANCELLING...................................................343 15.4 ADAPTIVE EQUALISATION OF COMMUNICATION CHANNELS.............................344 15.5 ADAPTIVE SELF-TUNING FILTERS..................................................................346 15.6 ADAPTIVE NOISE CANCELLING ...................................................................346 15.7 FOCUSED TIME DELAY ESTIMATION FOR RANGING .......................................348 15.7.1 ADAPTIVE ARRAY PROCESSING......................................................349 15.8 OTHER ADAPTIVE FILTER APPLICATIONS.......................................................350 15.8.1 ADAPTIVE 3-D SOUND SYSTEMS..................................................350 15.8.2 MICROPHONE ARRAYS..................................................................351 15.8.3 NETWORK AND ACOUSTIC ECHO CANCELLATION...............................352 15.8.4 REAL-WORLD ADAPTIVE FILTERING APPLICATIONS............................353 CONTENTS XXII 16 GENERIC ADAPTIVE FILTER STRUCTURES .............................................................355 16.1 SUB-BAND ADAPTIVE FILTERS ....................................................................355 16.2 SUB-SPACE ADAPTIVE FILTERS ...................................................................358 16.2.1 MPNN MODEL..........................................................................360 16.2.2 APPROXIMATELY PIECEWISE LINEAR REGRESSION MODEL...............362 16.2.3 THE SUB-SPACE ADAPTIVE FILTER MODEL.....................................364 16.2.4 EXAMPLE APPLICATIONS OF THE SSAF MODEL..............................366 16.2.4.1 LOUDSPEAKER 3-D FREQUENCY RESPONSE MODEL ........367 16.2.4.2 VELOCITY OF SOUND IN WATER 3-D MODEL...................369 16.3 DISCUSSION AND OVERVIEW OF THE SSAF .................................................370 REFERENCES .............................................................................. .............................373 INDEX .............................................................................. ......................................381
adam_txt ADVANCED TEXTBOOKS IN CONTROL AND SIGNAL PROCESSING SERIES EDITORS PROFESSOR MICHAEL J. GRIMBLE, PROFESSOR OF INDUSTRIAL SYSTEMS AND DIRECTOR PROFESSOR EMERITUS MICHAEL A. JOHNSON, PROFESSOR OF CONTROL SYSTEMS AND DEPUTY DIRECTOR INDUSTRIAL CONTROL CENTRE, DEPARTMENT OF ELECTRONIC AND ELECTRICAL ENGINEERING, UNIVERSITY OF STRATHCLYDE, GRAHAM HILLS BUILDING, 50 GEORGE STREET, GLASGOW G1 1QE, U.K. OTHER TITLES PUBLISHED IN THIS SERIES: GENETIC ALGORITHMS K.F. MAN, K.S. TANG AND S. KWONG NEURAL NETWORKS FOR MODELLING AND CONTROL OF DYNAMIC SYSTEMS M. NOERGAARD, O. RAVN, L.K. HANSEN AND N.K. POULSEN MODELLING AND CONTROL OF ROBOT MANIPULATORS (2ND EDITION) L. SCIAVICCO AND B. SICILIANO FAULT DETECTION AND DIAGNOSIS IN INDUSTRIAL SYSTEMS L.H. CHIANG, E.L. RUSSELL AND R.D. BRAATZ SOFT COMPUTING L. FORTUNA, G. RIZZOTTO, M. LAVORGNA, G. NUNNARI, M.G. XIBILIA AND R. CAPONETTO STATISTICAL SIGNAL PROCESSING T. CHONAVEL DISCRETE-TIME STOCHASTIC PROCESSES (2ND EDITION) T. SOEDERSTROEM PARALLEL COMPUTING FOR REAL-TIME SIGNAL PROCESSING AND CONTROL M.O. TOKHI, M.A. HOSSAIN AND M.H. SHAHEED MULTIVARIABLE CONTROL SYSTEMS P. ALBERTOS AND A. SALA CONTROL SYSTEMS WITH INPUT AND OUTPUT CONSTRAINTS A.H. GLATTFELDER AND W. SCHAUFELBERGER ANALYSIS AND CONTROL OF NON-LINEAR PROCESS SYSTEMS K. HANGOS, J. BOKOR AND G. SZEDERKENYI MODEL PREDICTIVE CONTROL (2ND EDITION) E.F. CAMACHO AND C. BORDONS DIGITAL SELF-TUNING CONTROLLERS V. BOBAL, J. BOEHM, J. FESSL AND J. MACHA * CEK CONTROL OF ROBOT MANIPULATORS IN JOINT SPACE R. KELLY, V. SANTIBANEZ AND A. LORIA PUBLICATION DUE JULY 2005 ROBUST CONTROL DESIGN WITH MATLAB D.-W. GU, P.HR. PETKOV AND M.M. KONSTANTINOV PUBLICATION DUE JULY 2005 ACTIVE NOISE AND VIBRATION CONTROL M.O. TOKHI PUBLICATION DUE NOVEMBER 2005 A. ZAKNICH PRINCIPLES OF ADAPTIVE FILTERS AND SELF-LEARNING SYSTEMS WITH 95 FIGURES 123 ANTHONY ZAKNICH, PHD SCHOOL OF ENGINEERING SCIENCE, ROCKINGHAM CAMPUS, MURDOCH UNIVERSITY, SOUTH STREET, MURDOCH, WA 6150, AUSTRALIA AND CENTRE FOR INTELLIGENT INFORMATION PROCESSING SYSTEMS, SCHOOL OF ELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING, THE UNIVERSITY OF WESTERN AUSTRALIA, 35 STIRLING HIGHWAY, CRAWLEY, WA 6009, AUSTRALIA INSTRUCTORS SOLUTIONS MANUAL IN PDF CAN BE DOWNLOADED FROM THE BOOK*S PAGE AT SPRINGERONLINE.COM BRITISH LIBRARY CATALOGUING IN PUBLICATION DATA ZAKNICH, ANTHONY PRINCIPLES OF ADAPTIVE FILTERS AND SELF-LEARNING SYSTEMS. (ADVANCED TEXTBOOKS IN CONTROL AND SIGNAL PROCESSING) 1. ADAPTIVE FILTERS 2. ADAPTIVE SIGNAL PROCESSING 3. SYSTEM ANALYSIS I. TITLE 621.3*815324 ISBN-10: 1852339845 LIBRARY OF CONGRESS CONTROL NUMBER: 2005923608 APART FROM ANY FAIR DEALING FOR THE PURPOSES OF RESEARCH OR PRIVATE STUDY, OR CRITICISM OR REVIEW, AS PERMITTED UNDER THE COPYRIGHT, DESIGNS AND PATENTS ACT 1988, THIS PUBLICATION MAY ONLY BE REPRODUCED, STORED OR TRANSMITTED, IN ANY FORM OR BY ANY MEANS, WITH THE PRIOR PERMISSION IN WRITING OF THE PUBLISHERS, OR IN THE CASE OF REPROGRAPHIC REPRODUCTION IN ACCORDANCE WITH THE TERMS OF LICENCES ISSUED BY THE COPYRIGHT LICENSING AGENCY. ENQUIRIES CONCERNING REPRODUCTION OUTSIDE THOSE TERMS SHOULD BE SENT TO THE PUBLISHERS. ADVANCED TEXTBOOKS IN CONTROL AND SIGNAL PROCESSING SERIES ISSN 1439-2232 ISBN-10 1-85233-984-5 ISBN-13 978-1-85233-984-5 SPRINGER SCIENCE+BUSINESS MEDIA SPRINGERONLINE.COM SPRINGER-VERLAG LONDON LIMITED 2005 THE USE OF REGISTERED NAMES, TRADEMARKS, ETC. IN THIS PUBLICATION DOES NOT IMPLY, EVEN IN THE ABSENCE OF A SPECIFIC STATEMENT, THAT SUCH NAMES ARE EXEMPT FROM THE RELEVANT LAWS AND REGULATIONS AND THEREFORE FREE FOR GENERAL USE. THE PUBLISHER MAKES NO REPRESENTATION, EXPRESS OR IMPLIED, WITH REGARD TO THE ACCURACY OF THE INFOR- MATION CONTAINED IN THIS BOOK AND CANNOT ACCEPT ANY LEGAL RESPONSIBILITY OR LIABILITY FOR ANY ERRORS OR OMISSIONS THAT MAY BE MADE. TYPESETTING: CAMERA READY BY AUTHOR PRODUCTION: LE-TEX JELONEK, SCHMIDT & VOECKLER GBR, LEIPZIG, GERMANY PRINTED IN GERMANY 69/3141-543210 PRINTED ON ACID-FREE PAPER SPIN 10978566 CONTENTS PART I INTRODUCTION 1 1 ADAPTIVE FILTERING . .3 1.1 LINEAR ADAPTIVE FILTERS .5 1.1.1 LINEAR ADAPTIVE FILTER ALGORITHMS .7 1.2 NONLINEAR ADAPTIVE FILTERS.9 1.2.1 ADAPTIVE VOLTERRA FILTERS.9 1.3 NONCLASSICAL ADAPTIVE SYSTEMS .10 1.3.1 ARTIFICIAL NEURAL NETWORKS .10 1.3.2 FUZZY LOGIC.11 1.3.3 GENETIC ALGORITHMS .11 1.4 A BRIEF HISTORY AND OVERVIEW OF CLASSICAL THEORIES.12 1.4.1 LINEAR ESTIMATION THEORY. .12 1.4.2 LINEAR ADAPTIVE FILTERS.13 1.4.3 ADAPTIVE SIGNAL PROCESSING APPLICATIONS.14 1.4.4 ADAPTIVE CONTROL.16 1.5 A BRIEF HISTORY AND OVERVIEW OF NONCLASSICAL THEORIES.17 1.5.1 ARTIFICIAL NEURAL NETWORKS .17 1.5.2 FUZZY LOGIC.18 1.5.3 GENETIC ALGORITHMS .18 1.6 FUNDAMENTALS OF ADAPTIVE NETWORKS.19 1.7 CHOICE OF ADAPTIVE FILTER ALGORITHM .23 2 LINEAR SYSTEMS AND STOCHASTIC PROCESSES .25 2.1 BASIC CONCEPTS OF LINEAR SYSTEMS.27 2.2 DISCRETE-TIME SIGNALS AND SYSTEMS .29 2.3 THE DISCRETE FOURIER TRANSFORM (DFT) .31 2.3.1 DISCRETE LINEAR CONVOLUTION USING THE DFT.32 2.3.2 DIGITAL SAMPLING THEORY .33 2.3.2.1 ANALOGUE INTERPRETATION FORMULA.37 2.4 THE FAST FOURIER TRANSFORM.37 2.5 THE Z-TRANSFORM .40 2.5.1 RELATIONSHIP BETWEEN LAPLACE TRANSFORM AND Z-TRANSFORM.40 2.5.1.1 BILATERAL Z-TRANSFORM .41 CONTENTS XVI 2.5.1.2 UNILATERAL Z-TRANSFORM .42 2.5.1.3 REGION OF CONVERGENCE (ROC) FOR THE Z-TRANSFORM .42 2.5.1.4 REGION OF CONVERGENCE (ROC) FOR GENERAL SIGNALS.43 2.5.2 GENERAL PROPERTIES OF THE DFT AND Z-TRANSFORM.44 2.6 SUMMARY OF DISCRETE-TIME LSI SYSTEMS.46 2.7 SPECIAL CLASSES OF FILTERS .48 2.7.1 PHASE RESPONSE FROM FREQUENCY MAGNITUDE RESPONSE.50 2.8 LINEAR ALGEBRA SUMMARY.51 2.8.1 VECTORS .51 2.8.2 LINEAR INDEPENDENCE, VECTOR SPACES, AND BASIC VECTORS.52 2.8.3 MATRICES. .53 2.8.4 LINEAR EQUATIONS .55 2.8.5 SPECIAL MATRICES .56 2.8.6 QUADRATIC AND HERMITIAN FORMS .59 2.8.7 EIGENVALUES AND EIGENVECTORS.59 2.9 INTRODUCTION TO STOCHASTIC PROCESSES.61 2.10 RANDOM SIGNALS .63 2.11 BASIC DESCRIPTIVE MODELS OF RANDOM SIGNALS.64 2.11.1 THE MEAN SQUARE VALUE AND VARIANCE.64 2.11.2 THE PROBABILITY DENSITY FUNCTION.65 2.11.3 JOINTLY DISTRIBUTED RANDOM VARIABLES.68 2.11.4 THE EXPECTATION OPERATOR .68 2.11.5 THE AUTOCORRELATION AND RELATED FUNCTIONS.69 2.11.6 POWER SPECTRAL DENSITY FUNCTIONS.72 2.11.7 COHERENCE FUNCTION.73 2.11.8 DISCRETE ERGODIC RANDOM SIGNAL STATISTICS .74 2.11.9 AUTOCOVARIANCE AND AUTOCORRELATION MATRICES.75 2.11.10 SPECTRUM OF A RANDOM PROCESS.76 2.11.11 FILTERING OF RANDOM PROCESSES.78 2.11.12 IMPORTANT EXAMPLES OF RANDOM PROCESSES .80 2.11.12.1 GAUSSIAN PROCESS .80 2.11.12.2 WHITE NOISE.80 2.11.12.3 WHITE SEQUENCES .81 2.11.12.4 GAUSS-MARKOV PROCESSES.81 2.11.12.5 THE RANDOM TELEGRAPH WAVE.81 2.12 EXERCISES. .82 2.12.1 PROBLEMS. .82 PART II MODELLING 87 3 OPTIMISATION AND LEAST SQUARE ESTIMATION .89 3.1 OPTIMISATION THEORY.89 3.2 OPTIMISATION METHODS IN DIGITAL FILTER DESIGN.91 3.3 LEAST SQUARES ESTIMATION.95 3.4 LEAST SQUARES MAXIMUM LIKELIHOOD ESTIMATOR .97 CONTENTS XVII 3.5 LINEAR REGRESSION * FITTING DATA TO A LINE .98 3.6 GENERAL LINEAR LEAST SQUARES .99 3.7 A SHIP POSITIONING EXAMPLE OF LSE.100 3.8 ACOUSTIC POSITIONING SYSTEM EXAMPLE.104 3.9 MEASURE OF LSE PRECISION .108 3.10 MEASURE OF LSE RELIABILITY.109 3.11 LIMITATIONS OF LSE.110 3.12 ADVANTAGES OF LSE .110 3.13 THE SINGULAR VALUE DECOMPOSITION.111 3.13.1 THE PSEUDOINVERSE.112 3.13.2 COMPUTATION OF THE SVD.112 3.13.2.1 THE JACOBI ALGORITHM .112 3.13.2.2 THE QR ALGORITHM.115 3.14 EXERCISES. .116 3.14.1 PROBLEMS. .116 4 PARAMETRIC SIGNAL AND SYSTEM MODELLING .119 4.1 THE ESTIMATION PROBLEM .120 4.2 DETERMINISTIC SIGNAL AND SYSTEM MODELLING.121 4.2.1 THE LEAST SQUARES METHOD .122 4.2.2 THE PADE APPROXIMATION METHOD .124 4.2.3 PRONY*S METHOD .127 4.2.3.1 ALL-POLE MODELLING USING PRONY*S METHOD.130 4.2.3.2 LINEAR PREDICTION .131 4.2.3.3 DIGITAL WIENER FILTER.132 4.2.4 AUTOCORRELATION AND COVARIANCE METHODS.133 4.3 STOCHASTIC SIGNAL MODELLING .137 4.3.1 AUTOREGRESSIVE MOVING AVERAGE MODELS.137 4.3.2 AUTOREGRESSIVE MODELS.139 4.3.3 MOVING AVERAGE MODELS.140 4.4 THE LEVINSON-DURBIN RECURSION AND LATTICE FILTERS.141 4.4.1 THE LEVINSON-DURBIN RECURSION DEVELOPMENT .142 4.4.1.1 EXAMPLE OF THE LEVINSON-DURBIN RECURSION.145 4.4.2 THE LATTICE FILTER.146 4.4.3 THE CHOLESKY DECOMPOSITION .149 4.4.4 THE LEVINSON RECURSION.151 4.5 EXERCISES. .154 4.5.1 PROBLEMS. .154 PART III CLASSICAL FILTERS AND SPECTRAL ANALYSIS 157 5 OPTIMUM WIENER FILTER .159 5.1 DERIVATION OF THE IDEAL CONTINUOUS-TIME WIENER FILTER .160 5.2 THE IDEAL DISCRETE-TIME FIR WIENER FILTER .162 5.2.1 GENERAL NOISE FIR WIENER FILTERING .164 CONTENTS XVIII 5.2.2 FIR WIENER LINEAR PREDICTION .165 5.3 DISCRETE-TIME CAUSAL IIR WIENER FILTER .167 5.3.1 CAUSAL IIR WIENER FILTERING .169 5.3.2 WIENER DECONVOLUTION .170 5.4 EXERCISES. .171 5.4.1 PROBLEMS. .171 6 OPTIMAL KALMAN FILTER . .173 6.1 BACKGROUND TO THE KALMAN FILTER .173 6.2 THE KALMAN FILTER.174 6.2.1 KALMAN FILTER EXAMPLES .181 6.3 KALMAN FILTER FOR SHIP MOTION.185 6.3.1 KALMAN TRACKING FILTER PROPER.186 6.3.2 SIMPLE EXAMPLE OF A DYNAMIC SHIP MODELS.189 6.3.3 STOCHASTIC MODELS .192 6.3.4 ALTERNATE SOLUTION MODELS.192 6.3.5 ADVANTAGES OF KALMAN FILTERING.193 6.3.6 DISADVANTAGES OF KALMAN FILTERING .193 6.4 EXTENDED KALMAN FILTER .194 6.5 EXERCISES. .194 6.5.1 PROBLEMS. .194 7 POWER SPECTRAL DENSITY ANALYSIS .197 7.1 POWER SPECTRAL DENSITY ESTIMATION TECHNIQUES .198 7.2 NONPARAMETRIC SPECTRAL DENSITY ESTIMATION .199 7.2.1 PERIODOGRAM POWER SPECTRAL DENSITY ESTIMATION.199 7.2.2 MODIFIED PERIODOGRAM * DATA WINDOWING .203 7.2.3 BARTLETT*S METHOD * PERIODOGRAM AVERAGING .205 7.2.4 WELCH*S METHOD .206 7.2.5 BLACKMAN-TUKEY METHOD.208 7.2.6 PERFORMANCE COMPARISONS OF NONPARAMETRIC MODELS.209 7.2.7 MINIMUM VARIANCE METHOD .209 7.2.8 MAXIMUM ENTROPY (ALL POLES) METHOD.212 7.3 PARAMETRIC SPECTRAL DENSITY ESTIMATION.215 7.3.1 AUTOREGRESSIVE METHODS.215 7.3.1.1 YULE-WALKER APPROACH.216 7.3.1.2 COVARIANCE, LEAST SQUARES AND BURG METHODS .217 7.3.1.3 MODEL ORDER SELECTION FOR THE AUTOREGRESSIVE METHODS .218 7.3.2 MOVING AVERAGE METHOD .218 7.3.3 AUTOREGRESSIVE MOVING AVERAGE METHOD.219 7.3.4 HARMONIC METHODS.219 7.3.4.1 EIGENDECOMPOSITION OF THE AUTOCORRELATION MATRIX .219 7.3.4.1.1 PISARENKO*S METHOD .221 7.3.4.1.2 MUSIC.222 CONTENTS XIX 7.4 EXERCISES. .223 7.4.1 PROBLEMS. .223 PART IV ADAPTIVE FILTER THEORY 225 8 ADAPTIVE FINITE IMPULSE RESPONSE FILTERS .227 8.1 ADAPTIVE INTERFERENCE CANCELLING .228 8.2 LEAST MEAN SQUARES ADAPTATION .230 8.2.1 OPTIMUM WIENER SOLUTION.231 8.2.2 THE METHOD OF STEEPEST GRADIENT DESCENT SOLUTION.233 8.2.3 THE LMS ALGORITHM SOLUTION.235 8.2.4 STABILITY OF THE LMS ALGORITHM.237 8.2.5 THE NORMALISED LMS ALGORITHM.239 8.3 RECURSIVE LEAST SQUARES ESTIMATION .239 8.3.1 THE EXPONENTIALLY WEIGHTED RECURSIVE LEAST SQUARES ALGORITHM.240 8.3.2 RECURSIVE LEAST SQUARES ALGORITHM CONVERGENCE.243 8.3.2.1 CONVERGENCE OF THE FILTER COEFFICIENTS IN THE MEAN.243 8.3.2.2 CONVERGENCE OF THE FILTER COEFFICIENTS IN THE MEAN SQUARE.244 8.3.2.3 CONVERGENCE OF THE RLS ALGORITHM IN THE MEAN SQUARE.244 8.3.3 THE RLS ALGORITHM AS A KALMAN FILTER.244 8.4 EXERCISES. .245 8.4.1 PROBLEMS. .245 9 FREQUENCY DOMAIN ADAPTIVE FILTERS .247 9.1 FREQUENCY DOMAIN PROCESSING.247 9.1.1 TIME DOMAIN BLOCK ADAPTIVE FILTERING .248 9.1.2 FREQUENCY DOMAIN ADAPTIVE FILTERING .249 9.1.2.1 THE OVERLAP-SAVE METHOD.251 9.1.2.2 THE OVERLAP-ADD METHOD .254 9.1.2.3 THE CIRCULAR CONVOLUTION METHOD.255 9.1.2.4 COMPUTATIONAL COMPLEXITY.256 9.2 EXERCISES. .256 9.2.1 PROBLEMS. .256 10 ADAPTIVE VOLTERRA FILTERS .2 57 10.1 NONLINEAR FILTERS .257 10.2 THE VOLTERRA SERIES EXPANSION .259 10.3 A LMS ADAPTIVE SECOND-ORDER VOLTERRA FILTER .259 10.4 A LMS ADAPTIVE QUADRATIC FILTER .261 10.5 A RLS ADAPTIVE QUADRATIC FILTER .262 10.6 EXERCISES. .264 CONTENTS XX 10.6.1 PROBLEMS. .264 11 ADAPTIVE CONTROL SYSTEMS .267 11.1 MAIN THEORETICAL ISSUES.268 11.2 INTRODUCTION TO MODEL-REFERENCE ADAPTIVE SYSTEMS.270 11.2.1 THE GRADIENT APPROACH.271 11.2.2 LEAST SQUARES ESTIMATION .273 11.2.3 A GENERAL SINGLE-INPUT-SINGLE-OUTPUT MRAS.274 11.2.4 LYAPUNOV*S STABILITY THEORY .277 11.3 INTRODUCTION TO SELF-TUNING REGULATORS.280 11.3.1 INDIRECT SELF-TUNING REGULATORS.282 11.3.2 DIRECT SELF-TUNING REGULATORS.283 11.4 RELATIONS BETWEEN MRAS AND STR.284 11.5 APPLICATIONS. .285 PART V NONCLASSICAL ADAPTIVE SYSTEMS 287 12 INTRODUCTION TO NEURAL NETWORKS .289 12.1 ARTIFICIAL NEURAL NETWORKS.289 12.1.1 DEFINITIONS. .290 12.1.2 THREE MAIN TYPES .290 12.1.3 SPECIFIC ARTIFICIAL NEURAL NETWORK PARADIGMS.292 12.1.4 ARTIFICIAL NEURAL NETWORKS AS BLACK BOXED .293 12.1.5 IMPLEMENTATION OF ARTIFICIAL NEURAL NETWORKS.294 12.1.6 WHEN TO USE AN ARTIFICIAL NEURAL NETWORK .295 12.1.7 HOW TO USE AN ARTIFICIAL NEURAL NETWORK .295 12.1.8 ARTIFICIAL NEURAL NETWORK GENERAL APPLICATIONS.296 12.1.9 SIMPLE APPLICATION EXAMPLES .297 12.1.9.1 SHEEP EATING PHASE IDENTIFICATION FROM JAW SOUNDS .298 12.1.9.2 HYDRATE PARTICLE ISOLATION IN SEM IMAGES.298 12.1.9.3 OXALATE NEEDLE DETECTION IN MICROSCOPE IMAGES.299 12.1.9.4 WATER LEVEL DETERMINATION FROM RESONANT SOUND ANALYSIS .299 12.1.9.5 NONLINEAR SIGNAL FILTERING .299 12.1.9.6 A MOTOR CONTROL EXAMPLE.300 12.2 A THREE-LAYER MULTI-LAYER PERCEPTRON MODEL .300 12.2.1 MLP BACKPROPAGATION-OF-ERROR LEARNING.302 12.2.2 DERIVATION OF BACKPROPAGATION-OF-ERROR LEARNING .303 12.2.2.1 CHANGE IN ERROR DUE TO OUTPUT LAYER WEIGHTS .303 12.2.2.2 CHANGE IN ERROR DUE TO HIDDEN LAYER WEIGHTS.304 12.2.2.3 THE WEIGHT ADJUSTMENTS .305 12.2.2.4 ADDITIONAL MOMENTUM FACTOR .307 12.2.3 NOTES ON CLASSIFICATION AND FUNCTION MAPPING.308 12.2.4 MLP APPLICATION AND TRAINING ISSUES.308 CONTENTS XXI 12.3 EXERCISES. .310 12.3.1 PROBLEMS. .310 13 INTRODUCTION TO FUZZY LOGIC SYSTEMS .313 13.1 BASIC FUZZY LOGIC .313 13.1.1 FUZZY LOGIC MEMBERSHIP FUNCTIONS .314 13.1.2 FUZZY LOGIC OPERATIONS .315 13.1.3 FUZZY LOGIC RULES.316 13.1.4 FUZZY LOGIC DEFUZZIFICATION .317 13.2 FUZZY LOGIC CONTROL DESIGN .318 13.2.1 FUZZY LOGIC CONTROLLERS.319 13.2.1.1 CONTROL RULE CONSTRUCTION.319 13.2.1.2 PARAMETER TUNING .321 13.2.1.3 CONTROL RULE REVISION .322 13.3 FUZZY ARTIFICIAL NEURAL NETWORKS.322 13.4 FUZZY APPLICATIONS .323 14 INTRODUCTION TO GENETIC ALGORITHMS .325 14.1 A GENERAL GENETIC ALGORITHM .326 14.2 THE COMMON HYPOTHESIS REPRESENTATION.327 14.3 GENETIC ALGORITHM OPERATORS.329 14.4 FITNESS FUNCTIONS .330 14.5 HYPOTHESIS SEARCHING.330 14.6 GENETIC PROGRAMMING .331 14.7 APPLICATIONS OF GENETIC PROGRAMMING.332 14.7.1 FILTER CIRCUIT DESIGN APPLICATIONS OF GAS AND GP .333 14.7.2 TIC-TAC-TO GAME PLAYING APPLICATION OF GAS .334 PART VI ADAPTIVE FILTER APPLICATION 337 15 APPLICATIONS OF ADAPTIVE SIGNAL PROCESSING .339 15.1 ADAPTIVE PREDICTION .340 15.2 ADAPTIVE MODELLING .342 15.3 ADAPTIVE TELEPHONE ECHO CANCELLING.343 15.4 ADAPTIVE EQUALISATION OF COMMUNICATION CHANNELS.344 15.5 ADAPTIVE SELF-TUNING FILTERS.346 15.6 ADAPTIVE NOISE CANCELLING .346 15.7 FOCUSED TIME DELAY ESTIMATION FOR RANGING .348 15.7.1 ADAPTIVE ARRAY PROCESSING.349 15.8 OTHER ADAPTIVE FILTER APPLICATIONS.350 15.8.1 ADAPTIVE 3-D SOUND SYSTEMS.350 15.8.2 MICROPHONE ARRAYS.351 15.8.3 NETWORK AND ACOUSTIC ECHO CANCELLATION.352 15.8.4 REAL-WORLD ADAPTIVE FILTERING APPLICATIONS.353 CONTENTS XXII 16 GENERIC ADAPTIVE FILTER STRUCTURES .355 16.1 SUB-BAND ADAPTIVE FILTERS .355 16.2 SUB-SPACE ADAPTIVE FILTERS .358 16.2.1 MPNN MODEL.360 16.2.2 APPROXIMATELY PIECEWISE LINEAR REGRESSION MODEL.362 16.2.3 THE SUB-SPACE ADAPTIVE FILTER MODEL.364 16.2.4 EXAMPLE APPLICATIONS OF THE SSAF MODEL.366 16.2.4.1 LOUDSPEAKER 3-D FREQUENCY RESPONSE MODEL .367 16.2.4.2 VELOCITY OF SOUND IN WATER 3-D MODEL.369 16.3 DISCUSSION AND OVERVIEW OF THE SSAF .370 REFERENCES . .373 INDEX . .381
any_adam_object 1
any_adam_object_boolean 1
author Zaknich, Anthony
author_facet Zaknich, Anthony
author_role aut
author_sort Zaknich, Anthony
author_variant a z az
building Verbundindex
bvnumber BV021989867
callnumber-first T - Technology
callnumber-label TK7872
callnumber-raw TK7872.F5
callnumber-search TK7872.F5
callnumber-sort TK 47872 F5
callnumber-subject TK - Electrical and Nuclear Engineering
ctrlnum (OCoLC)60767398
(DE-599)BVBBV021989867
dewey-full 621.3815/324
dewey-hundreds 600 - Technology (Applied sciences)
dewey-ones 621 - Applied physics
dewey-raw 621.3815/324
dewey-search 621.3815/324
dewey-sort 3621.3815 3324
dewey-tens 620 - Engineering and allied operations
discipline Elektrotechnik / Elektronik / Nachrichtentechnik
discipline_str_mv Elektrotechnik / Elektronik / Nachrichtentechnik
format Book
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01777nam a2200481zc 4500</leader><controlfield tag="001">BV021989867</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20051019000000.0</controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">050927s2005 d||| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1852339845</subfield><subfield code="9">1-85233-984-5</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781852339845</subfield><subfield code="9">978-1-85233-984-5</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">10978566</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)60767398</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV021989867</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-706</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TK7872.F5</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">621.3815/324</subfield><subfield code="2">22</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Zaknich, Anthony</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Principles of adaptive filters and self-learning systems</subfield><subfield code="c">A. Zaknich</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">London</subfield><subfield code="b">Springer</subfield><subfield code="c">2005</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XXII, 386 S.</subfield><subfield code="b">graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Advanced textbooks in control and signal processing</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Literaturverz. S. [373] - 380</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Filtres adaptatifs - Conception - Mathématiques</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Intelligence artificielle</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Künstliche Intelligenz</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Adaptive filters</subfield><subfield code="x">Design and construction</subfield><subfield code="x">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Artificial intelligence</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Adaptives Filter</subfield><subfield code="0">(DE-588)4141377-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Lernendes System</subfield><subfield code="0">(DE-588)4120666-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Lernendes System</subfield><subfield code="0">(DE-588)4120666-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Adaptives Filter</subfield><subfield code="0">(DE-588)4141377-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">SWB Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&amp;doc_library=BVB01&amp;local_base=BVB01&amp;doc_number=015204681&amp;sequence=000001&amp;line_number=0001&amp;func_code=DB_RECORDS&amp;service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-015204681</subfield></datafield></record></collection>
id DE-604.BV021989867
illustrated Illustrated
index_date 2024-07-02T16:10:31Z
indexdate 2024-07-09T20:48:52Z
institution BVB
isbn 1852339845
9781852339845
language English
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-015204681
oclc_num 60767398
open_access_boolean
owner DE-706
owner_facet DE-706
physical XXII, 386 S. graph. Darst.
publishDate 2005
publishDateSearch 2005
publishDateSort 2005
publisher Springer
record_format marc
series2 Advanced textbooks in control and signal processing
spelling Zaknich, Anthony Verfasser aut
Principles of adaptive filters and self-learning systems A. Zaknich
London Springer 2005
XXII, 386 S. graph. Darst.
txt rdacontent
n rdamedia
nc rdacarrier
Advanced textbooks in control and signal processing
Literaturverz. S. [373] - 380
Filtres adaptatifs - Conception - Mathématiques
Intelligence artificielle
Künstliche Intelligenz
Mathematik
Adaptive filters Design and construction Mathematics
Artificial intelligence
Adaptives Filter (DE-588)4141377-5 gnd rswk-swf
Lernendes System (DE-588)4120666-6 gnd rswk-swf
Lernendes System (DE-588)4120666-6 s
DE-604
Adaptives Filter (DE-588)4141377-5 s
SWB Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=015204681&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis
spellingShingle Zaknich, Anthony
Principles of adaptive filters and self-learning systems
Filtres adaptatifs - Conception - Mathématiques
Intelligence artificielle
Künstliche Intelligenz
Mathematik
Adaptive filters Design and construction Mathematics
Artificial intelligence
Adaptives Filter (DE-588)4141377-5 gnd
Lernendes System (DE-588)4120666-6 gnd
subject_GND (DE-588)4141377-5
(DE-588)4120666-6
title Principles of adaptive filters and self-learning systems
title_auth Principles of adaptive filters and self-learning systems
title_exact_search Principles of adaptive filters and self-learning systems
title_exact_search_txtP Principles of adaptive filters and self-learning systems
title_full Principles of adaptive filters and self-learning systems A. Zaknich
title_fullStr Principles of adaptive filters and self-learning systems A. Zaknich
title_full_unstemmed Principles of adaptive filters and self-learning systems A. Zaknich
title_short Principles of adaptive filters and self-learning systems
title_sort principles of adaptive filters and self learning systems
topic Filtres adaptatifs - Conception - Mathématiques
Intelligence artificielle
Künstliche Intelligenz
Mathematik
Adaptive filters Design and construction Mathematics
Artificial intelligence
Adaptives Filter (DE-588)4141377-5 gnd
Lernendes System (DE-588)4120666-6 gnd
topic_facet Filtres adaptatifs - Conception - Mathématiques
Intelligence artificielle
Künstliche Intelligenz
Mathematik
Adaptive filters Design and construction Mathematics
Artificial intelligence
Adaptives Filter
Lernendes System
url http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=015204681&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA
work_keys_str_mv AT zaknichanthony principlesofadaptivefiltersandselflearningsystems