An approximation algorithm for Manhattan routing

Channel routing plays a central role in the development of automated layout systems for integrated circuits. One of the most common models for channel routing is known as Manhattan routing. In Manhattan routing, the channel consists of a 2-layer rectangular grid of columns and tracks(rows). Terminal...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Baker, Brenda S. (VerfasserIn), Bhatt, Sandeep Nautam (VerfasserIn), Leighton, Frank T. (VerfasserIn)
Format: Buch
Sprache:English
Veröffentlicht: Cambridge, Mass. Massachusetts Inst. of Technology, Lab. for Computer Science 1983
Schlagworte:
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nam a2200000zc 4500
001 BV021879007
003 DE-604
005 20040229000000.0
007 t
008 880707s1983 |||| 00||| eng d
035 |a (OCoLC)227593240 
035 |a (DE-599)BVBBV021879007 
040 |a DE-604  |b ger 
041 0 |a eng 
049 |a DE-706 
088 |a MIT/LCS/TM-238 
100 1 |a Baker, Brenda S.  |e Verfasser  |4 aut 
245 1 0 |a An approximation algorithm for Manhattan routing  |c B.S. Baker ; S.N. Bhatt and F.T. Leighton 
264 1 |a Cambridge, Mass.  |b Massachusetts Inst. of Technology, Lab. for Computer Science  |c 1983 
300 |a 16 S. 
336 |b txt  |2 rdacontent 
337 |b n  |2 rdamedia 
338 |b nc  |2 rdacarrier 
520 3 |a Channel routing plays a central role in the development of automated layout systems for integrated circuits. One of the most common models for channel routing is known as Manhattan routing. In Manhattan routing, the channel consists of a 2-layer rectangular grid of columns and tracks(rows). Terminals are located in the top layer of the top and bottom tracks at points where the tracks intersect a column. A set of terminals to be connected is called a net. Nets containing r terminals (r must always be larger than 1) are called r-point nets. The object of the channel routing problem is to connect the terminals in each net with wires in a way which minimizes the width of the channel. Density has long been known to be an important measure of difficulty for Manhattan routing. In this paper, the authors identify a second important measure of difficulty, which is called flux. They show that flux, like density, is a lower bound on channel width. Also presented is a linear-time algorithm which routes any multipoint net Manhattan routing problem with density d and flux f in a channel of width 2d+O(f). (For 2-point nets, the bound is d+O(f).) Thus it is shown that Manhattan routing is one of the NP-complete problems for which there is a provably good approximation algorithm. 
650 4 |a Approximation algorithm 
650 4 |a Flux 
650 7 |a Algorithms  |2 dtict 
650 7 |a Channels  |2 dtict 
650 7 |a Connectors  |2 dtict 
650 7 |a Density  |2 dtict 
650 7 |a Electrical and Electronic Equipment  |2 scgdst 
650 7 |a Grids  |2 dtict 
650 7 |a Integrated circuits  |2 dtict 
650 7 |a Nets  |2 dtict 
650 7 |a Routing  |2 dtict 
650 7 |a Terminals  |2 dtict 
650 7 |a Tracks  |2 dtict 
650 7 |a Width  |2 dtict 
650 7 |a Wire  |2 dtict 
700 1 |a Bhatt, Sandeep Nautam  |e Verfasser  |0 (DE-588)122358848  |4 aut 
700 1 |a Leighton, Frank T.  |e Verfasser  |4 aut 
999 |a oai:aleph.bib-bvb.de:BVB01-015094496 

Datensatz im Suchindex

_version_ 1804135818982326272
adam_txt
any_adam_object
any_adam_object_boolean
author Baker, Brenda S.
Bhatt, Sandeep Nautam
Leighton, Frank T.
author_GND (DE-588)122358848
author_facet Baker, Brenda S.
Bhatt, Sandeep Nautam
Leighton, Frank T.
author_role aut
aut
aut
author_sort Baker, Brenda S.
author_variant b s b bs bsb
s n b sn snb
f t l ft ftl
building Verbundindex
bvnumber BV021879007
ctrlnum (OCoLC)227593240
(DE-599)BVBBV021879007
format Book
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02694nam a2200469zc 4500</leader><controlfield tag="001">BV021879007</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20040229000000.0</controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">880707s1983 |||| 00||| eng d</controlfield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)227593240</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV021879007</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-706</subfield></datafield><datafield tag="088" ind1=" " ind2=" "><subfield code="a">MIT/LCS/TM-238</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Baker, Brenda S.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">An approximation algorithm for Manhattan routing</subfield><subfield code="c">B.S. Baker ; S.N. Bhatt and F.T. Leighton</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge, Mass.</subfield><subfield code="b">Massachusetts Inst. of Technology, Lab. for Computer Science</subfield><subfield code="c">1983</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">16 S.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">Channel routing plays a central role in the development of automated layout systems for integrated circuits. One of the most common models for channel routing is known as Manhattan routing. In Manhattan routing, the channel consists of a 2-layer rectangular grid of columns and tracks(rows). Terminals are located in the top layer of the top and bottom tracks at points where the tracks intersect a column. A set of terminals to be connected is called a net. Nets containing r terminals (r must always be larger than 1) are called r-point nets. The object of the channel routing problem is to connect the terminals in each net with wires in a way which minimizes the width of the channel. Density has long been known to be an important measure of difficulty for Manhattan routing. In this paper, the authors identify a second important measure of difficulty, which is called flux. They show that flux, like density, is a lower bound on channel width. Also presented is a linear-time algorithm which routes any multipoint net Manhattan routing problem with density d and flux f in a channel of width 2d+O(f). (For 2-point nets, the bound is d+O(f).) Thus it is shown that Manhattan routing is one of the NP-complete problems for which there is a provably good approximation algorithm.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Approximation algorithm</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Flux</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Algorithms</subfield><subfield code="2">dtict</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Channels</subfield><subfield code="2">dtict</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Connectors</subfield><subfield code="2">dtict</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Density</subfield><subfield code="2">dtict</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Electrical and Electronic Equipment</subfield><subfield code="2">scgdst</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Grids</subfield><subfield code="2">dtict</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Integrated circuits</subfield><subfield code="2">dtict</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Nets</subfield><subfield code="2">dtict</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Routing</subfield><subfield code="2">dtict</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Terminals</subfield><subfield code="2">dtict</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Tracks</subfield><subfield code="2">dtict</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Width</subfield><subfield code="2">dtict</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Wire</subfield><subfield code="2">dtict</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Bhatt, Sandeep Nautam</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)122358848</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Leighton, Frank T.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-015094496</subfield></datafield></record></collection>
id DE-604.BV021879007
illustrated Not Illustrated
index_date 2024-07-02T16:03:41Z
indexdate 2024-07-09T20:46:33Z
institution BVB
language English
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-015094496
oclc_num 227593240
open_access_boolean
owner DE-706
owner_facet DE-706
physical 16 S.
publishDate 1983
publishDateSearch 1983
publishDateSort 1983
publisher Massachusetts Inst. of Technology, Lab. for Computer Science
record_format marc
spelling Baker, Brenda S. Verfasser aut
An approximation algorithm for Manhattan routing B.S. Baker ; S.N. Bhatt and F.T. Leighton
Cambridge, Mass. Massachusetts Inst. of Technology, Lab. for Computer Science 1983
16 S.
txt rdacontent
n rdamedia
nc rdacarrier
Channel routing plays a central role in the development of automated layout systems for integrated circuits. One of the most common models for channel routing is known as Manhattan routing. In Manhattan routing, the channel consists of a 2-layer rectangular grid of columns and tracks(rows). Terminals are located in the top layer of the top and bottom tracks at points where the tracks intersect a column. A set of terminals to be connected is called a net. Nets containing r terminals (r must always be larger than 1) are called r-point nets. The object of the channel routing problem is to connect the terminals in each net with wires in a way which minimizes the width of the channel. Density has long been known to be an important measure of difficulty for Manhattan routing. In this paper, the authors identify a second important measure of difficulty, which is called flux. They show that flux, like density, is a lower bound on channel width. Also presented is a linear-time algorithm which routes any multipoint net Manhattan routing problem with density d and flux f in a channel of width 2d+O(f). (For 2-point nets, the bound is d+O(f).) Thus it is shown that Manhattan routing is one of the NP-complete problems for which there is a provably good approximation algorithm.
Approximation algorithm
Flux
Algorithms dtict
Channels dtict
Connectors dtict
Density dtict
Electrical and Electronic Equipment scgdst
Grids dtict
Integrated circuits dtict
Nets dtict
Routing dtict
Terminals dtict
Tracks dtict
Width dtict
Wire dtict
Bhatt, Sandeep Nautam Verfasser (DE-588)122358848 aut
Leighton, Frank T. Verfasser aut
spellingShingle Baker, Brenda S.
Bhatt, Sandeep Nautam
Leighton, Frank T.
An approximation algorithm for Manhattan routing
Approximation algorithm
Flux
Algorithms dtict
Channels dtict
Connectors dtict
Density dtict
Electrical and Electronic Equipment scgdst
Grids dtict
Integrated circuits dtict
Nets dtict
Routing dtict
Terminals dtict
Tracks dtict
Width dtict
Wire dtict
title An approximation algorithm for Manhattan routing
title_auth An approximation algorithm for Manhattan routing
title_exact_search An approximation algorithm for Manhattan routing
title_exact_search_txtP ˜Anœ approximation algorithm for Manhattan routing
title_full An approximation algorithm for Manhattan routing B.S. Baker ; S.N. Bhatt and F.T. Leighton
title_fullStr An approximation algorithm for Manhattan routing B.S. Baker ; S.N. Bhatt and F.T. Leighton
title_full_unstemmed An approximation algorithm for Manhattan routing B.S. Baker ; S.N. Bhatt and F.T. Leighton
title_short An approximation algorithm for Manhattan routing
title_sort an approximation algorithm for manhattan routing
topic Approximation algorithm
Flux
Algorithms dtict
Channels dtict
Connectors dtict
Density dtict
Electrical and Electronic Equipment scgdst
Grids dtict
Integrated circuits dtict
Nets dtict
Routing dtict
Terminals dtict
Tracks dtict
Width dtict
Wire dtict
topic_facet Approximation algorithm
Flux
Algorithms
Channels
Connectors
Density
Electrical and Electronic Equipment
Grids
Integrated circuits
Nets
Routing
Terminals
Tracks
Width
Wire
work_keys_str_mv AT bakerbrendas anapproximationalgorithmformanhattanrouting
AT bhattsandeepnautam anapproximationalgorithmformanhattanrouting
AT leightonfrankt anapproximationalgorithmformanhattanrouting