A concise introduction to mathematical logic

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Rautenberg, Wolfgang (VerfasserIn)
Format: Buch
Sprache:English
German
Veröffentlicht: New York Springer 2006
Ausgabe:2. ed.
Schriftenreihe:Universitext
Schlagworte:
Online-Zugang:Inhaltstext
Inhaltsverzeichnis
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nam a2200000 c 4500
001 BV021827699
003 DE-604
005 20090921
007 t|
008 061124s2006 xx ad|| |||| 00||| eng d
020 |a 0387302948  |9 0-387-30294-8 
020 |a 9780387302942  |9 978-0387-30294-2 
035 |a (OCoLC)66527737 
035 |a (DE-599)BVBBV021827699 
040 |a DE-604  |b ger  |e rakwb 
041 1 |a eng  |h ger 
049 |a DE-19  |a DE-11 
050 0 |a QA9 
082 0 |a 510 
084 |a SK 130  |0 (DE-625)143216:  |2 rvk 
100 1 |a Rautenberg, Wolfgang  |e Verfasser  |4 aut 
240 1 0 |a Einführung in die mathematische Logik 
245 1 0 |a A concise introduction to mathematical logic  |c Wolfgang Rautenberg 
250 |a 2. ed. 
264 1 |a New York  |b Springer  |c 2006 
300 |a XVII, 256 S.  |b Ill., graph. Darst. 
336 |b txt  |2 rdacontent 
337 |b n  |2 rdamedia 
338 |b nc  |2 rdacarrier 
490 0 |a Universitext 
500 |a Includes bibliographical references (S. 241-246) and index 
650 4 |a Mathematik 
650 4 |a Logic, Symbolic and mathematical 
650 4 |a Mathematics 
650 0 7 |a Stufe 1  |0 (DE-588)4362503-4  |2 gnd  |9 rswk-swf 
650 0 7 |a Prädikatenlogik  |0 (DE-588)4046974-8  |2 gnd  |9 rswk-swf 
650 0 7 |a Gödelscher Unvollständigkeitssatz  |0 (DE-588)4021417-5  |2 gnd  |9 rswk-swf 
650 0 7 |a Modelltheorie  |0 (DE-588)4114617-7  |2 gnd  |9 rswk-swf 
650 0 7 |a Unentscheidbarkeit  |0 (DE-588)4294363-2  |2 gnd  |9 rswk-swf 
650 0 7 |a Mathematische Logik  |0 (DE-588)4037951-6  |2 gnd  |9 rswk-swf 
650 0 7 |a Aussagenlogik  |0 (DE-588)4136098-9  |2 gnd  |9 rswk-swf 
655 7 |0 (DE-588)4123623-3  |a Lehrbuch  |2 gnd-content 
689 0 0 |a Mathematische Logik  |0 (DE-588)4037951-6  |D s 
689 0 |5 DE-604 
689 1 0 |a Prädikatenlogik  |0 (DE-588)4046974-8  |D s 
689 1 1 |a Stufe 1  |0 (DE-588)4362503-4  |D s 
689 1 2 |a Unentscheidbarkeit  |0 (DE-588)4294363-2  |D s 
689 1 |8 1\p  |5 DE-604 
689 2 0 |a Aussagenlogik  |0 (DE-588)4136098-9  |D s 
689 2 |8 2\p  |5 DE-604 
689 3 0 |a Gödelscher Unvollständigkeitssatz  |0 (DE-588)4021417-5  |D s 
689 3 |8 3\p  |5 DE-604 
689 4 0 |a Modelltheorie  |0 (DE-588)4114617-7  |D s 
689 4 |8 4\p  |5 DE-604 
856 4 2 |a text/html  |u http://deposit.dnb.de/cgi-bin/dokserv?id=2696666&prov=M&dok_var=1&dok_ext=htm  |3 Inhaltstext 
856 4 2 |m HEBIS Datenaustausch Darmstadt  |q application/pdf  |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=015039737&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA  |3 Inhaltsverzeichnis 
883 1 |8 1\p  |a cgwrk  |d 20201028  |q DE-101  |u https://d-nb.info/provenance/plan#cgwrk 
883 1 |8 2\p  |a cgwrk  |d 20201028  |q DE-101  |u https://d-nb.info/provenance/plan#cgwrk 
883 1 |8 3\p  |a cgwrk  |d 20201028  |q DE-101  |u https://d-nb.info/provenance/plan#cgwrk 
883 1 |8 4\p  |a cgwrk  |d 20201028  |q DE-101  |u https://d-nb.info/provenance/plan#cgwrk 
943 1 |a oai:aleph.bib-bvb.de:BVB01-015039737 

Datensatz im Suchindex

_version_ 1819725109616705536
adam_text WOLFGANG RAUTENBERG A CONCISE INTRODUCTION TO MATHEMATICAL LOGIC SECOND EDITION 4Y SPRINGER CONTENTS INTRODUCTION XNI NOTATION XVI 1 PROPOSITIONAL LOGIC 1 1.1 BOOLEAN FUNCTIONS AND FORMULAS 2 1.2 SEMANTIC EQUIVALENCE AND NORMAL FORMS 9 1.3 TAUTOLOGIES AND LOGICAL CONSEQUENCE 14 1.4 A COMPLETE CALCULUS FOR 1 = 18 1.5 APPLICATIONS OF THE COMPACTNESS THEOREM 25 1.6 HILBERT CALCULI 29 2 PREDICATE LOGIC 33 2.1 MATHEMATICAL STRUCTURES 34 2.2 SYNTAX OF ELEMENTARY LANGUAGES 43 2.3 SEMANTICS OF ELEMENTARY LANGUAGES 49 2.4 GENERAL VALIDITY AND LOGICAL EQUIVALENCE 58 2.5 LOGICAL CONSEQUENCE AND THEORIES 62 2.6 EXPLICIT DEFINITIONS*EXPANDING LANGUAGES 67 3 GODEL S COMPLETENESS THEOREM 71 3.1 A CALCULUS OF NATURAL DEDUCTION 72 3.2 THE COMPLETENESS PROOF 76 3.3 FIRST APPLICATIONS*NONSTANDARD MODELS 81 3.4 ZFC AND SKOLEM S PARADOX 87 3.5 ENUMERABILITY AND DECIDABILITY 92 3.6 COMPLETE HILBERT CALCULI 95 3.7 FIRST-ORDER FRAGMENTS AND EXTENSIONS 99 4 THE FOUNDATIONS OF LOGIC PROGRAMMING 105 4.1 TERM MODELS AND HORN FORMULAS 106 4.2 PREPOSITIONAL RESOLUTION 112 4.3 UNIFICATION 119 4.4 LOGIC PROGRAMMING 122 4.5 PROOF OF THE MAIN THEOREM 129 5 ELEMENTS OF MODEL THEORY 131 5.1 ELEMENTARY EXTENSIONS 132 5.2 COMPLETE AND K-CATEGORICAL THEORIES 137 5.3 EHRENFEUCHT S GAME 142 5.4 EMBEDDING AND CHARACTERIZATION THEOREMS 145 5.5 MODEL COMPLETENESS 151 5.6 QUANTIFIER ELIMINATION 157 5.7 REDUCED PRODUCTS AND ULTRAPRODUCTS 163 6 INCOMPLETENESS AND UNDECIDABILITY 167 6.1 RECURSIVE AND PRIMITIVE RECURSIVE FUNCTIONS 169 6.2 ARITHMETIZATION 176 6.3 REPRESENTABILITY OF ARITHMETICAL PREDICATES 182 6.4 THE REPRESENTABILITY THEOREM 189 6.5 THE THEOREMS OF GODEL, TARSKI, CHURCH 194 6.6 TRANSFER BY INTERPRETATION ... .... 200 6.7 THE ARITHMETICAL HIERARCHY 205 7 ON THE THEORY OF SELF-REFERENCE 209 7.1 THE DERIVABILITY CONDITIONS 210 7.2 THE THEOREMS OF GODEL AND LOB 217 7.3 THE PROVABILITY LOGIC G *, 221 7.4 THE MODAL TREATMENT OF SELF-REFERENCE 223 7.5 A BIMODAL PROVABILITY LOGIC FOR PA 226 7.6 MODAL OPERATORS IN ZFC 228 HINTS TO THE EXERCISES 231 LITERATURE 241 INDEX OF TERMS AND NAMES 247 INDEX OF SYMBOLS 255
any_adam_object 1
author Rautenberg, Wolfgang
author_facet Rautenberg, Wolfgang
author_role aut
author_sort Rautenberg, Wolfgang
author_variant w r wr
building Verbundindex
bvnumber BV021827699
callnumber-first Q - Science
callnumber-label QA9
callnumber-raw QA9
callnumber-search QA9
callnumber-sort QA 19
callnumber-subject QA - Mathematics
classification_rvk SK 130
ctrlnum (OCoLC)66527737
(DE-599)BVBBV021827699
dewey-full 510
dewey-hundreds 500 - Natural sciences and mathematics
dewey-ones 510 - Mathematics
dewey-raw 510
dewey-search 510
dewey-sort 3510
dewey-tens 510 - Mathematics
discipline Mathematik
edition 2. ed.
format Book
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02944nam a2200697 c 4500</leader><controlfield tag="001">BV021827699</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20090921 </controlfield><controlfield tag="007">t|</controlfield><controlfield tag="008">061124s2006 xx ad|| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0387302948</subfield><subfield code="9">0-387-30294-8</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780387302942</subfield><subfield code="9">978-0387-30294-2</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)66527737</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV021827699</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1="1" ind2=" "><subfield code="a">eng</subfield><subfield code="h">ger</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-19</subfield><subfield code="a">DE-11</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA9</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">510</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 130</subfield><subfield code="0">(DE-625)143216:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Rautenberg, Wolfgang</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="240" ind1="1" ind2="0"><subfield code="a">Einführung in die mathematische Logik</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">A concise introduction to mathematical logic</subfield><subfield code="c">Wolfgang Rautenberg</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">2. ed.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New York</subfield><subfield code="b">Springer</subfield><subfield code="c">2006</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XVII, 256 S.</subfield><subfield code="b">Ill., graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Universitext</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references (S. 241-246) and index</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Logic, Symbolic and mathematical</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Stufe 1</subfield><subfield code="0">(DE-588)4362503-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Prädikatenlogik</subfield><subfield code="0">(DE-588)4046974-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Gödelscher Unvollständigkeitssatz</subfield><subfield code="0">(DE-588)4021417-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Modelltheorie</subfield><subfield code="0">(DE-588)4114617-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Unentscheidbarkeit</subfield><subfield code="0">(DE-588)4294363-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mathematische Logik</subfield><subfield code="0">(DE-588)4037951-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Aussagenlogik</subfield><subfield code="0">(DE-588)4136098-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="0">(DE-588)4123623-3</subfield><subfield code="a">Lehrbuch</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Mathematische Logik</subfield><subfield code="0">(DE-588)4037951-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Prädikatenlogik</subfield><subfield code="0">(DE-588)4046974-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Stufe 1</subfield><subfield code="0">(DE-588)4362503-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="2"><subfield code="a">Unentscheidbarkeit</subfield><subfield code="0">(DE-588)4294363-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Aussagenlogik</subfield><subfield code="0">(DE-588)4136098-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="3" ind2="0"><subfield code="a">Gödelscher Unvollständigkeitssatz</subfield><subfield code="0">(DE-588)4021417-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="3" ind2=" "><subfield code="8">3\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="4" ind2="0"><subfield code="a">Modelltheorie</subfield><subfield code="0">(DE-588)4114617-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="4" ind2=" "><subfield code="8">4\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="a">text/html</subfield><subfield code="u">http://deposit.dnb.de/cgi-bin/dokserv?id=2696666&amp;prov=M&amp;dok_var=1&amp;dok_ext=htm</subfield><subfield code="3">Inhaltstext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HEBIS Datenaustausch Darmstadt</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&amp;doc_library=BVB01&amp;local_base=BVB01&amp;doc_number=015039737&amp;sequence=000001&amp;line_number=0001&amp;func_code=DB_RECORDS&amp;service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">3\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">4\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-015039737</subfield></datafield></record></collection>
genre (DE-588)4123623-3 Lehrbuch gnd-content
genre_facet Lehrbuch
id DE-604.BV021827699
illustrated Illustrated
indexdate 2024-12-23T19:44:37Z
institution BVB
isbn 0387302948
9780387302942
language English
German
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-015039737
oclc_num 66527737
open_access_boolean
owner DE-19
DE-BY-UBM
DE-11
owner_facet DE-19
DE-BY-UBM
DE-11
physical XVII, 256 S. Ill., graph. Darst.
publishDate 2006
publishDateSearch 2006
publishDateSort 2006
publisher Springer
record_format marc
series2 Universitext
spellingShingle Rautenberg, Wolfgang
A concise introduction to mathematical logic
Mathematik
Logic, Symbolic and mathematical
Mathematics
Stufe 1 (DE-588)4362503-4 gnd
Prädikatenlogik (DE-588)4046974-8 gnd
Gödelscher Unvollständigkeitssatz (DE-588)4021417-5 gnd
Modelltheorie (DE-588)4114617-7 gnd
Unentscheidbarkeit (DE-588)4294363-2 gnd
Mathematische Logik (DE-588)4037951-6 gnd
Aussagenlogik (DE-588)4136098-9 gnd
subject_GND (DE-588)4362503-4
(DE-588)4046974-8
(DE-588)4021417-5
(DE-588)4114617-7
(DE-588)4294363-2
(DE-588)4037951-6
(DE-588)4136098-9
(DE-588)4123623-3
title A concise introduction to mathematical logic
title_alt Einführung in die mathematische Logik
title_auth A concise introduction to mathematical logic
title_exact_search A concise introduction to mathematical logic
title_full A concise introduction to mathematical logic Wolfgang Rautenberg
title_fullStr A concise introduction to mathematical logic Wolfgang Rautenberg
title_full_unstemmed A concise introduction to mathematical logic Wolfgang Rautenberg
title_short A concise introduction to mathematical logic
title_sort a concise introduction to mathematical logic
topic Mathematik
Logic, Symbolic and mathematical
Mathematics
Stufe 1 (DE-588)4362503-4 gnd
Prädikatenlogik (DE-588)4046974-8 gnd
Gödelscher Unvollständigkeitssatz (DE-588)4021417-5 gnd
Modelltheorie (DE-588)4114617-7 gnd
Unentscheidbarkeit (DE-588)4294363-2 gnd
Mathematische Logik (DE-588)4037951-6 gnd
Aussagenlogik (DE-588)4136098-9 gnd
topic_facet Mathematik
Logic, Symbolic and mathematical
Mathematics
Stufe 1
Prädikatenlogik
Gödelscher Unvollständigkeitssatz
Modelltheorie
Unentscheidbarkeit
Mathematische Logik
Aussagenlogik
Lehrbuch
url http://deposit.dnb.de/cgi-bin/dokserv?id=2696666&prov=M&dok_var=1&dok_ext=htm
http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=015039737&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA
work_keys_str_mv AT rautenbergwolfgang einfuhrungindiemathematischelogik
AT rautenbergwolfgang aconciseintroductiontomathematicallogic