Spectroscopic methods in mineralogy university texbook

Gespeichert in:
Bibliographische Detailangaben
Format: Buch
Sprache:English
Veröffentlicht: Budapest Eötvös Univ. Press 2004
Schriftenreihe:EMU notes in mineralogy 6
Schlagworte:
Online-Zugang:Inhaltsverzeichnis
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nam a2200000 cb4500
001 BV021805194
003 DE-604
005 20061120
007 t
008 061110s2004 ad|| |||| 00||| eng d
020 |a 9634636624  |9 963-463-662-4 
035 |a (OCoLC)57724740 
035 |a (DE-599)BVBBV021805194 
040 |a DE-604  |b ger 
041 0 |a eng 
049 |a DE-703  |a DE-19  |a DE-634 
050 0 |a QE369.S65 
082 0 |a 549 
084 |a RB 10115  |0 (DE-625)142220:12621  |2 rvk 
245 1 0 |a Spectroscopic methods in mineralogy  |b university texbook  |c ed. by Anton Beran ... 
264 1 |a Budapest  |b Eötvös Univ. Press  |c 2004 
300 |a XIV, 661 S.  |b Ill., graph. Darst. 
336 |b txt  |2 rdacontent 
337 |b n  |2 rdamedia 
338 |b nc  |2 rdacarrier 
490 1 |a EMU notes in mineralogy  |v 6 
650 4 |a Infrared spectroscopy  |v Congresses 
650 4 |a Luminescence spectroscopy  |v Congresses 
650 4 |a Minerals  |x Spectra  |v Congresses 
650 4 |a Mössbauer spectroscopy  |v Congresses 
650 4 |a Nuclear magnetic resonance spectroscopy  |v Congresses 
650 4 |a Nuclear spectroscopy  |v Congresses 
650 4 |a Raman spectroscopy  |v Congresses 
650 4 |a Spectrum analysis  |v Congresses 
650 4 |a X-ray spectroscopy  |v Congresses 
655 7 |0 (DE-588)1071861417  |a Konferenzschrift  |2 gnd-content 
700 1 |a Beran, Anton  |e Sonstige  |4 oth 
830 0 |a EMU notes in mineralogy  |v 6  |w (DE-604)BV014391074  |9 6 
856 4 2 |m HEBIS Datenaustausch  |q application/pdf  |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=015017570&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA  |3 Inhaltsverzeichnis 
999 |a oai:aleph.bib-bvb.de:BVB01-015017570 

Datensatz im Suchindex

_version_ 1804135722636017664
adam_text Contents Chapter 1 An introduction to spectroscopic methods in the mineral sciences and geochemistry by Charles A GEIGER 1 Introduction 1 Brief history of spectroscopy with an emphasis on investigations of geomaterials 3 Radiation 8 Electromagnetic radiation: Wave theory, particle-like behaviour, energy and interaction with matter 9 Short description and review of the “standard” spectroscopies 13 Spectroscopic and transition types 13 IR absorption spectroscopy 15 Optical absorption spectroscopy 17 X-ray absorption spectroscopy 19 Mössbauer spectroscopy 21 Magnetic resonance spectroscopies 23 Nuclear magnetic resonance 24 Electron spin resonance 24 Raman spectroscopy 26 Spectroscopic investigations in the mineral sciences and geochemistry 28 Compositional information 28 Structural and crystal-chemical information 28 Dynamical information 31 Acknowledgements 33 References 33 Appendix I: Some books on general solid-state spectroscopy and those relevant for investigations in the mineral sciences and geochemistry and also on chemical bonding 34 Appendix II: Two case spectroscopic studies 34 1 Fe in natural cordierite 35 2 H20 in synthetic alkali-free hydrous beryl 40 Chapter 2 Luminescence techniques in Earth Sciences by Lutz NASDALA, Jens GÖTZE, John M HANCHAR, Michael GAFT and Matthias R KRBETSCHEK 43 Introduction 43 Basic definitions 44 Theoretical and experimental background 46 Generation of the luminescence emission 46 Factors affecting the luminescence emission 49 Time-resolved luminescence 53 Luminescence-based image generation 56 Luminescence-based age determination 58 Afterglow-type luminescence 58 Use of afterglow-type luminescence for dating 59 Applications of luminescence: General overview 62 Selected examples for the application of luminescence spectroscopy 67 Photoluminescence (steady-state): Quantification of Cr in ruby 67 Photo luminescence (time-resolved): Europium luminescence of apatite 68 Europium luminescence 68 Europium in the apatite structure 69 Cathodoluminescence of REE3+ used for materials identification and characterisation 71 Application of CL REE emission spectra to materials characterisation 71 Dy3+-doped crystalline and non-crystalline synthetic titanite 72 Dy3+ in natural zircon CL spectra 73 VI Characterisation of point defects in quartz using CL spectroscopy 75 Cathodoluminescence of quartz 75 Band assignment 76 Example: growth generations of Si02 in petrified wood 79 Example: defect-CL of radiation-damaged quartz 79 Acknowledgements 80 References 80 Chapter 3 Optical absorption spectroscopy in geosciences Part I: Basic concepts of crystal field theory by Manfred WILDNER, Michael ANDRUT and Czeslaw Z RUDOWICZ 93 0 Scope of the optical absorption spectroscopy chapters (Part I and Part II) 93 1 Introduction 94 1 1 Optical absorption processes 94 1 2 Applications of crystal field theory in geosciences 96 2 Optical spectra 98 2 1 Units used in optical spectroscopy 98 211 Measurement of the optical transition energies 98 212 Measurement of the intensities of the transitions 99 Bouguer-Lambert law 100 Beer-Lambert-Bouguer law 100 2 2 Instrumentation 100 3 Principles of crystal field theory 101 3 1 Recommended textbooks 101 3 2 One-electron systems 101 321 Schrödinger equation and quantum numbers 101 322 Aufbau principle, Pauli exclusion principle and Hund’s rule 104 323 Crystal field splitting - an overview 104 Jahn-Teller effect 109 324 Crystal field stabilisation energy (CFSE) 109 Intra- and inter-crystalline transition ion distribution 110 325 Electronic transitions Ill 3 3 Many-electron concept Ill 331 Many-electron Hamiltonian Ill 332 Russell-Saunders coupling and free-ion terms 113 333 Term splittings in crystal fields of different symmetry 114 334 Tanabe-Sugano diagrams 117 335 Descent in symmetry and crystal field distortion parameters 118 3 4 Selection rules 121 341 Laporte (or parity) selection rule: A/ = ± 1 (A/ * 0) 122 342 Spin selection rule: A(25 + 1) = 0 125 Spin-orbit coupling and “intensity stealing” 126 343 Electronic selection rule: Ae^ =1 127 344 Selection rules arising from symmetry considerations 127 345A worked example: Al203:Cr3+ (ruby) 129 3 5 d-d absorption bands 132 351 Band widths - general aspects 132 352 Influence of temperature and pressure 133 353 Franck-Condon principle and vibrational structure 133 3 6 Qualitative appraisal of the parameters Dq, B and C 136 Acknowledgements 140 References 140 VII Chapter 4 Optical absorption spectroscopy in geosciences Part II: Quantitative aspects of crystal fields by Michael ANDRUT, Manfred WILDNER and Czeslaw Z RUDOWICZ 145 1 Introduction 145 2 The relationship between lODq and the interatomic distance R for a regular octahedron 146 2 1 Applications and consequences 147 211 Pressure dependence 147 212 Temperature dependence 148 213 Compositional dependence 149 3 Vegard’s rule (and its relationship to local interatomic distances) 149 4 Local interatomic distances in coordination polyhedra 150 4 1 Concept of the virtual crystal approximation 150 4 2 Hard sphere model 151 5 Superposition model of crystal fields (SPM) 151 5 1 The regular octahedron 156 5 2 The distorted octahedron - one selected example 158 5 3 Strategy for the determination of crystal field parameters using SPM 160 6 Applications of the superposition model in geosciences 162 6 1 Superposition model parameters for Co2+ in oxygen-based crystal fields 163 6 2 Extraction of crystal field parameters for Cr3+ from the binary solid solution uvarovite-grossular 166 621 Introduction 166 622 Birefringent garnets 167 623 Sample material 167 624 Crystal structures 167 Crystal structures of natural birefringent uvarovite-grossular solid solutions 167 Crystal structure of synthetic uvarovite 168 625 Individual octahedral size and Cr3+ occupation 169 626 Single-crystal absorption spectra 171 626 Single-crystal absorption spectra 173 628 Conclusions 177 6 3 Local interatomic bond lengths and angles derived from optical absorption spectra: The Cr06 polyhedron in ruby, Al203:Cr3+ 177 631 Introduction 177 632 Brief description of the crystal structures of corundum and eskolaite 177 633 Absorption spectroscopic investigations 179 634 Crystal field SPM calculations 180 635 Conclusions 183 Acknowledgements 183 References 183 Chapter 5 IR spectroscopy as a tool for the characterisation of ceramic precursor phases by Anton BERAN, Dietmar VOLL and Hartmut SCHNEIDER 189 Introduction i : 189 Theoretical background 189 Bohr’s frequency condition 189 Group theoretical basis 190 Harmonic oscillator model 190 Vibrational modes 191 Group frequencies 193 Characterisation of cordierite and mullite ceramic precursors 195 Preparation of the precursors 195 Cordierite precursor 195 Mullite precursor 196 Dehydration behaviour 196 VIII Absorption features assigned to the hydrous components 197 Cordierite precursors 199 Mullite precursors 201 Specification of the hydrous component 202 Absorption features assigned to lattice vibrations 203 Cordierite precursors 203 Mullite precursors 204 Assignment of absorption bands 206 Structural behaviour of the hydrous component 207 Structural ordering phenomena 208 Cordierite precursors 208 Mullite precursors 210 Conclusion 211 IR band assignment of mullite 211 FTIR powder spectroscopy 213 FTIR single-crystal spectroscopy 215 Interpretation of the FTIR spectra 218 Conclusion 221 The FTIR spectrum of sillimanite 221 Appendix 222 Acknowledgements 224 References 224 Chapter 6 IR spectroscopic characterisation of hydrous species in minerals by Eugen LIBOWITZKY and Anton BERAN 227 Thematic introduction 227 Technical introduction 228 IR spectroscopic methodology 229 Polarised IR measurements - a key to the orientation and total absorbance of vibrating molecules in a crystal 229 Background 229 Technical aspects 231 The band position - a sensitive tool to local structure 231 Background 231 The distance-frequency correlation for hydrogen bonds 233 Phase transitions pursued by IR spectroscopy 234 The band intensity - a simple measure of concentration? 235 Background 235 Calibration of IR band intensities to quantify hydrogen (OH, H20) in minerals 236 Problems and limitations 237 Selected examples from recent research 238 Amphibole group 238 Mica group 239 Vesuvianite 242 Lawsonite 243 Hemimorphite 245 MOOH minerals 246 Examples of very strong hydrogen bonds 248 Beryl 250 Feldspar 251 Garnet group 252 Zircon 254 Olivine group 257 Pyroxene group 260 Kyanite and sillimanite 265 Perovskite-type structures 266 IX Rutile-type structures 267 Corundum and spinel 268 Further IR spectroscopic studies of hydrous species in minerals 270 References 270 Chapter 7 Raman spectroscopy: Analytical perspectives in mineralogical research by Lutz NASD ALA, David C SMITH, Reinhard KAINDL and Martin A ZIEMANN 281 Introduction 281 Theoretical background and practical aspects 282 The Raman Effect 282 Electrodynamical model 282 Quantum-mechanical model 284 Interpretation of spectra 285 The Raman spectrum 285 Vibrations of molecules and crystal lattices 286 Directional dependence of Raman scattering 290 Potential analytical artefacts 294 Instrumentation for Raman analysis 297 Generalities on Raman systems 297 Confocality and the Raman microprobe 299 Mobile Raman microscopy for truly in situ analysis 301 Images based on Raman scattered light 303 Raman imaging 303 Raman mapping 305 Applications of Raman spectroscopy 305 Generalities on applications in mineralogy and geology 305 Applications to the study of inclusions in minerals 307 Applications in high-pressure and high-temperature studies 308 Applications in archaeometry: The Raman Microscope (RM) 309 Selected examples of Raman applications in the Geosciences 311 Semi-quantitative micro-Raman spectroscopy of a gas inclusion 311 Semi-quantitative chemical analysis by Raman spectroscopy 313 Characterisation of the real structure of natural carbon 316 Internal heterogeneities of diamond crystals 316 Estimation of the order/disorder of graphitic carbon 318 Gemstone identification by Raman spectroscopy analysis through glass 321 In situ Raman spectroscopy of quartz: A new pressure sensor 324 Summary: Advantages and disadvantages 326 Acknowledgements 329 References 329 Chapter 8 Mössbauer spectroscopy: Basic principles by Georg AMTHAUER, Michael GRODZICKI, Werner LOTTERMOSER and Günther REDHAMMER 345 1 Introduction 345 2 The Mössbauer effect 346 3 Experimental 348 4 Evaluation 350 5 Hyperfine interactions 351 5 1 Electric monopole interaction (isomer shift 5) 351 5 2 The electric quadrupole interaction (quadrupole splitting AEQ) 354 5 3 Magnetic hyperfine interaction (magnetic hyperfine splitting A£M) 362 5 4 Combined electric and magnetic hyperfine interactions 364 6 Conclusions 366 References 366 X Chapter 9 Mössbauer spectroscopy: Applications by Catherine A McCAMMON 369 Introduction 369 Methodology 369 Experimental aspects 369 Analytical aspects 371 Rock-forming minerals 372 Case study: Accurate site populations of Fe2+ and Fe3+ in majorite garnet 375 Glasses and other amorphous materials 380 Case study: Determination of Fe3+/EFe in a basaltic glass 384 Microscopic absorbers 387 Applications 391 Concluding remarks 394 Acknowledgements 395 References 395 Chapter 10 NMR studies of silicate glasses by Simon C KOHN 399 Introduction 399 The effect of composition on the structure of glasses 400 Si02 400 Aluminium-free alkali and alkaline earth silicate glasses 402 29Si NMR data 402 l70 NMR data 405 Other nuclei 406 Aluminosilicates 409 NMR studies of the dissolution mechanisms of volatiles in silicate melts 410 Water 410 Carbon dioxide 413 Fluorine 414 Sulphur 414 NMR studies of silicate melts, and the relationship between melt and glass structure 415 Acknowledgements 415 References 416 Chapter 11 Solid state NMR spectroscopy as supporting method in Rietveld structure refinements of rock-forming minerals: New developments and examples by Michael FECHTELKORD 421 Introduction 421 Common magnetic and electric interactions in nuclear magnetic resonance 423 Zeeman interaction 423 Chemical shift interaction 424 Dipolar interaction 425 Quadrupolar interaction 428 Routine techniques in solid state nuclear magnetic resonance 430 Magic angle spinning (MAS) 430 Pulse sequences 432 Relaxation times 434 Cross-polarisation (CP) 436 Latest methodical developments in solid state nuclear magnetic resonance 438 Rotational echo double resonance (REDOR) 438 Satellite transition spectroscopy (SATRAS) 441 Dynamic angle spinning (DAS), double rotation (DOR), and multiple quantum magic angle spinning (MQMAS) 443 XI Combined structure determination by Rietveld powder refinements and solid state NMR spectroscopy 448 Information from the 207Pb chemical shift interaction about the lead phosphate structure 448 Sodium cation dynamics in the high- and room temperature structure of nitrate cancrinite 450 Order and disorder of anions in carbonate and formate mixed sodalites 455 Concluding remarks 460 Acknowledgements 460 References 460 Chapter 12 X-ray absorption spectroscopy in mineralogy: Theory and experiment in the XANES region by Annibale MOTTANA 465 1 Introduction 465 1 1 The historical development of XAS spectroscopy 468 111 Basic knowledge 469 112 Mineral studies 473 2 The XANES region: Definition and limits 475 3 Theory of XANES spectroscopy 479 3 1 General theory 480 3 2 Theoretical calculations 485 321 The CONTINUUM and MXAN computer codes 485 322 The FEFF and FEFFIT codes 488 323 Other codes 489 4 Experimental methods 489 4 1 Beam line apparatus 491 411 Insertion devices 491 412 Collimation devices 493 413 Monochromatisation devices 494 414 Detection modes 497 4141 Transmission mode 497 4142 Fluorescence mode 499 4143 Electron yield mode 500 4144 Dispersive mode 501 4 2 Sample preparation 502 421 Powders 503 4211 Purity 504 4212 Grain size 504 4213 Particle orientation 504 422 Single crystals 505 4 3 Spectrum optimisation 508 431 Energy calibration 509 432 Spectrum fitting 510 5 Information contained in XANES spectra 510 5 1 Edge and pre-edge (PE) sub-region 511 511 Causes of PE features 512 5111 Transition elements 512 5112 Non-transition elements 514 512 Applications 515 5 2 Full multiple-scattering (FMS) sub-region 517 521 Spectral shape 518 522 Energy shift 519 523 Bond length determination 520 524 Applications 521 5 3 Intermediate multiple scattering (IMS) sub-region 522 531 Applications 524 XII Addendum: A short manual on how to practically record, treat and interpret XANES spectra 526 A1A note of introduction, with some preliminary information 526 A 2 Raw XANES data treatment 527 A21 Energy calibration 527 A22 Background subtraction 527 A23 “Fingerprinting” 529 A24 Pre-edge analysis 529 A 3 Simulation of XANES spectra 531 Acknowledgements 538 References 538 Chapter 13 X-ray absorption spectroscopy in geosciences: Information from the EXAFS region by Laurence GALOISY 553 Introduction 553 Fundamentals of EXAFS 554 Synchrotron radiation 554 The X-ray absorption phenomenon 555 Origin of EXAFS 555 EXAFS theory 556 Data collection 558 Monochromator 558 Detection 559 Transmission mode 559 Fluorescence detection 559 Electron yield detection 560 ReflEXAFS 560 Energy dispersive EXAFS 561 Micro-EXAFS 561 Polarised EXAFS studies 561 Sample environment 562 EXAFS data reduction 562 Extraction of structural information from the EXAFS signal 562 Subtraction of the pre-edge background 564 Identification of the threshold energy E0 564 Normalisation to m0 564 Removal of a smooth post-edge background approximating m0(k) 564 Extraction of the EXAFS signal 564 Fourier transform of the weighted c(k) EXAFS signal 564 Fourier filtering 565 Recent programs for EXAFS data reduction 566 FEFFIT 566 EXCURVE 567 SixPACK 567 Recent progress in data reduction 568 Continuous Cauchy wavelet transform (CCWT) analysis of EXAFS 568 EXAFS data reduction through principal components analysis 569 Anharmonicity effects 570 Multiple scattering interferences 571 EXAFS studies in geosciences 571 Structural environment and chemical bonding of trace elements in minerals 572 Environments of trace elements in disordered mineralogical systems 575 Environmental mineralogy 581 References 583 XIII Chapter 14 Spectroscopic investigations relating to the structural, crystal-chemical and lattice-dynamic properties of (Fe2+,Mn2+,Mg,Ca)3Al2Si3012 garnet: A review and analysis by Charles A GEIGER 589 Introduction and philosophical approach 589 The structure, crystal chemistry and lattice dynamic properties of garnet as determined from diffraction experiments 592 Garnet end members - almandine, spessartine, pyrope and grossular 592 Garnet solid solutions 597 The structure, crystal chemistry and lattice-dynamic properties of garnet as determined from spectroscopic experiments 598 Vibrational (Raman and IR) spectroscopy 599 Raman spectra of garnet end members at ambient conditions and at low temperatures 600 Raman spectra of pyrope and grossular at high pressure and high temperature 602 Raman spectra of binary almandine-spessartine and pyrope-grossular solid solutions 604 Infrared spectra of garnet end members at ambient conditions 605 Infrared spectra at elevated pressures and temperatures 606 Infrared spectra of binary solid solutions 607 MAS NMR spectroscopy 610 29Si NMR spectra of pyrope and grossular 611 29Si NMR spectra of pyrope-grossular solid solutions 612 Optical absorption spectroscopy 614 Optical absorption spectra of almandine, almandine-rich garnet and spessartine 614 High-pressure optical absorption spectra of almandine and spessartine 617 Optical absorption spectra of almandine-pyrope/spessartine solid solutions 619 Optical absorption spectra of pyrope containing minor concentrations of transition metals 620 Mössbauer spectroscopy 621 57Fe Mössbauer spectrum of almandine at 1 atm and as a function of temperature 622 High-pressure 57Fe Mössbauer spectrum of almandine 625 57Fe Mössbauer spectra of binary almandine-pyrope/spessartine/grossular solid solutions 625 Electron spin resonance spectroscopy 627 Electron spin resonance spectrum of Ti3+ in pyrope 627 X-ray absorption spectroscopy 628 X-ray absorption spectra of almandine, pyrope, spessartine and grossular and their solid solutions: The major elements Fe, Mn, Ca and A1 629 X-ray absorption spectra of pyrope and grossular: The minor element Yb3+ 633 Discussion and analysis 633 X-site cation order/disorder in solid solutions 634 Lattice dynamic properties 636 Microscopic energetic properties and microscopic-macroscopic relationships 638 Trace element substitution and behaviour 640 General outlook 640 Acknowledgements 642 References 642 Name index 647
adam_txt Contents Chapter 1 An introduction to spectroscopic methods in the mineral sciences and geochemistry by Charles A GEIGER 1 Introduction 1 Brief history of spectroscopy with an emphasis on investigations of geomaterials 3 Radiation 8 Electromagnetic radiation: Wave theory, particle-like behaviour, energy and interaction with matter 9 Short description and review of the “standard” spectroscopies 13 Spectroscopic and transition types 13 IR absorption spectroscopy 15 Optical absorption spectroscopy 17 X-ray absorption spectroscopy 19 Mössbauer spectroscopy 21 Magnetic resonance spectroscopies 23 Nuclear magnetic resonance 24 Electron spin resonance 24 Raman spectroscopy 26 Spectroscopic investigations in the mineral sciences and geochemistry 28 Compositional information 28 Structural and crystal-chemical information 28 Dynamical information 31 Acknowledgements 33 References 33 Appendix I: Some books on general solid-state spectroscopy and those relevant for investigations in the mineral sciences and geochemistry and also on chemical bonding 34 Appendix II: Two case spectroscopic studies 34 1 Fe in natural cordierite 35 2 H20 in synthetic alkali-free hydrous beryl 40 Chapter 2 Luminescence techniques in Earth Sciences by Lutz NASDALA, Jens GÖTZE, John M HANCHAR, Michael GAFT and Matthias R KRBETSCHEK 43 Introduction 43 Basic definitions 44 Theoretical and experimental background 46 Generation of the luminescence emission 46 Factors affecting the luminescence emission 49 Time-resolved luminescence 53 Luminescence-based image generation 56 Luminescence-based age determination 58 Afterglow-type luminescence 58 Use of afterglow-type luminescence for dating 59 Applications of luminescence: General overview 62 Selected examples for the application of luminescence spectroscopy 67 Photoluminescence (steady-state): Quantification of Cr in ruby 67 Photo luminescence (time-resolved): Europium luminescence of apatite 68 Europium luminescence 68 Europium in the apatite structure 69 Cathodoluminescence of REE3+ used for materials identification and characterisation 71 Application of CL REE emission spectra to materials characterisation 71 Dy3+-doped crystalline and non-crystalline synthetic titanite 72 Dy3+ in natural zircon CL spectra 73 VI Characterisation of point defects in quartz using CL spectroscopy 75 Cathodoluminescence of quartz 75 Band assignment 76 Example: growth generations of Si02 in petrified wood 79 Example: defect-CL of radiation-damaged quartz 79 Acknowledgements 80 References 80 Chapter 3 Optical absorption spectroscopy in geosciences Part I: Basic concepts of crystal field theory by Manfred WILDNER, Michael ANDRUT and Czeslaw Z RUDOWICZ 93 0 Scope of the optical absorption spectroscopy chapters (Part I and Part II) 93 1 Introduction 94 1 1 Optical absorption processes 94 1 2 Applications of crystal field theory in geosciences 96 2 Optical spectra 98 2 1 Units used in optical spectroscopy 98 211 Measurement of the optical transition energies 98 212 Measurement of the intensities of the transitions 99 Bouguer-Lambert law 100 Beer-Lambert-Bouguer law 100 2 2 Instrumentation 100 3 Principles of crystal field theory 101 3 1 Recommended textbooks 101 3 2 One-electron systems 101 321 Schrödinger equation and quantum numbers 101 322 Aufbau principle, Pauli exclusion principle and Hund’s rule 104 323 Crystal field splitting - an overview 104 Jahn-Teller effect 109 324 Crystal field stabilisation energy (CFSE) 109 Intra- and inter-crystalline transition ion distribution 110 325 Electronic transitions Ill 3 3 Many-electron concept Ill 331 Many-electron Hamiltonian Ill 332 Russell-Saunders coupling and free-ion terms 113 333 Term splittings in crystal fields of different symmetry 114 334 Tanabe-Sugano diagrams 117 335 Descent in symmetry and crystal field distortion parameters 118 3 4 Selection rules 121 341 Laporte (or parity) selection rule: A/ = ± 1 (A/ * 0) 122 342 Spin selection rule: A(25' + 1) = 0 125 Spin-orbit coupling and “intensity stealing” 126 343 Electronic selection rule: Ae^ =1 127 344 Selection rules arising from symmetry considerations 127 345A worked example: Al203:Cr3+ (ruby) 129 3 5 d-d absorption bands 132 351 Band widths - general aspects 132 352 Influence of temperature and pressure 133 353 Franck-Condon principle and vibrational structure 133 3 6 Qualitative appraisal of the parameters Dq, B and C 136 Acknowledgements 140 References 140 VII Chapter 4 Optical absorption spectroscopy in geosciences Part II: Quantitative aspects of crystal fields by Michael ANDRUT, Manfred WILDNER and Czeslaw Z RUDOWICZ 145 1 Introduction 145 2 The relationship between lODq and the interatomic distance R for a regular octahedron 146 2 1 Applications and consequences 147 211 Pressure dependence 147 212 Temperature dependence 148 213 Compositional dependence 149 3 Vegard’s rule (and its relationship to local interatomic distances) 149 4 Local interatomic distances in coordination polyhedra 150 4 1 Concept of the virtual crystal approximation 150 4 2 Hard sphere model 151 5 Superposition model of crystal fields (SPM) 151 5 1 The regular octahedron 156 5 2 The distorted octahedron - one selected example 158 5 3 Strategy for the determination of crystal field parameters using SPM 160 6 Applications of the superposition model in geosciences 162 6 1 Superposition model parameters for Co2+ in oxygen-based crystal fields 163 6 2 Extraction of crystal field parameters for Cr3+ from the binary solid solution uvarovite-grossular 166 621 Introduction 166 622 Birefringent garnets 167 623 Sample material 167 624 Crystal structures 167 Crystal structures of natural birefringent uvarovite-grossular solid solutions 167 Crystal structure of synthetic uvarovite 168 625 Individual octahedral size and Cr3+ occupation 169 626 Single-crystal absorption spectra 171 626 Single-crystal absorption spectra 173 628 Conclusions 177 6 3 Local interatomic bond lengths and angles derived from optical absorption spectra: The Cr06 polyhedron in ruby, Al203:Cr3+ 177 631 Introduction 177 632 Brief description of the crystal structures of corundum and eskolaite 177 633 Absorption spectroscopic investigations 179 634 Crystal field SPM calculations 180 635 Conclusions 183 Acknowledgements 183 References 183 Chapter 5 IR spectroscopy as a tool for the characterisation of ceramic precursor phases by Anton BERAN, Dietmar VOLL and Hartmut SCHNEIDER 189 Introduction i : 189 Theoretical background 189 Bohr’s frequency condition 189 Group theoretical basis 190 Harmonic oscillator model 190 Vibrational modes 191 Group frequencies 193 Characterisation of cordierite and mullite ceramic precursors 195 Preparation of the precursors 195 Cordierite precursor 195 Mullite precursor 196 Dehydration behaviour 196 VIII Absorption features assigned to the hydrous components 197 Cordierite precursors 199 Mullite precursors 201 Specification of the hydrous component 202 Absorption features assigned to lattice vibrations 203 Cordierite precursors 203 Mullite precursors 204 Assignment of absorption bands 206 Structural behaviour of the hydrous component 207 Structural ordering phenomena 208 Cordierite precursors 208 Mullite precursors 210 Conclusion 211 IR band assignment of mullite 211 FTIR powder spectroscopy 213 FTIR single-crystal spectroscopy 215 Interpretation of the FTIR spectra 218 Conclusion 221 The FTIR spectrum of sillimanite 221 Appendix 222 Acknowledgements 224 References 224 Chapter 6 IR spectroscopic characterisation of hydrous species in minerals by Eugen LIBOWITZKY and Anton BERAN 227 Thematic introduction 227 Technical introduction 228 IR spectroscopic methodology 229 Polarised IR measurements - a key to the orientation and total absorbance of vibrating molecules in a crystal 229 Background 229 Technical aspects 231 The band position - a sensitive tool to local structure 231 Background 231 The distance-frequency correlation for hydrogen bonds 233 Phase transitions pursued by IR spectroscopy 234 The band intensity - a simple measure of concentration? 235 Background 235 Calibration of IR band intensities to quantify hydrogen (OH, H20) in minerals 236 Problems and limitations 237 Selected examples from recent research 238 Amphibole group 238 Mica group 239 Vesuvianite 242 Lawsonite 243 Hemimorphite 245 MOOH minerals 246 Examples of very strong hydrogen bonds 248 Beryl 250 Feldspar 251 Garnet group 252 Zircon 254 Olivine group 257 Pyroxene group 260 Kyanite and sillimanite 265 Perovskite-type structures 266 IX Rutile-type structures 267 Corundum and spinel 268 Further IR spectroscopic studies of hydrous species in minerals 270 References 270 Chapter 7 Raman spectroscopy: Analytical perspectives in mineralogical research by Lutz NASD ALA, David C SMITH, Reinhard KAINDL and Martin A ZIEMANN 281 Introduction 281 Theoretical background and practical aspects 282 The Raman Effect 282 Electrodynamical model 282 Quantum-mechanical model 284 Interpretation of spectra 285 The Raman spectrum 285 Vibrations of molecules and crystal lattices 286 Directional dependence of Raman scattering 290 Potential analytical artefacts 294 Instrumentation for Raman analysis 297 Generalities on Raman systems 297 Confocality and the Raman microprobe 299 Mobile Raman microscopy for truly in situ analysis 301 Images based on Raman scattered light 303 Raman imaging 303 Raman mapping 305 Applications of Raman spectroscopy 305 Generalities on applications in mineralogy and geology 305 Applications to the study of inclusions in minerals 307 Applications in high-pressure and high-temperature studies 308 Applications in archaeometry: The Raman Microscope (RM) 309 Selected examples of Raman applications in the Geosciences 311 Semi-quantitative micro-Raman spectroscopy of a gas inclusion 311 Semi-quantitative chemical analysis by Raman spectroscopy 313 Characterisation of the real structure of natural carbon 316 Internal heterogeneities of diamond crystals 316 Estimation of the order/disorder of graphitic carbon 318 Gemstone identification by Raman spectroscopy analysis through glass 321 In situ Raman spectroscopy of quartz: A new pressure sensor 324 Summary: Advantages and disadvantages 326 Acknowledgements 329 References 329 Chapter 8 Mössbauer spectroscopy: Basic principles by Georg AMTHAUER, Michael GRODZICKI, Werner LOTTERMOSER and Günther REDHAMMER 345 1 Introduction 345 2 The Mössbauer effect 346 3 Experimental 348 4 Evaluation 350 5 Hyperfine interactions 351 5 1 Electric monopole interaction (isomer shift 5) 351 5 2 The electric quadrupole interaction (quadrupole splitting AEQ) 354 5 3 Magnetic hyperfine interaction (magnetic hyperfine splitting A£M) 362 5 4 Combined electric and magnetic hyperfine interactions 364 6 Conclusions 366 References 366 X Chapter 9 Mössbauer spectroscopy: Applications by Catherine A McCAMMON 369 Introduction 369 Methodology 369 Experimental aspects 369 Analytical aspects 371 Rock-forming minerals 372 Case study: Accurate site populations of Fe2+ and Fe3+ in majorite garnet 375 Glasses and other amorphous materials 380 Case study: Determination of Fe3+/EFe in a basaltic glass 384 Microscopic absorbers 387 Applications 391 Concluding remarks 394 Acknowledgements 395 References 395 Chapter 10 NMR studies of silicate glasses by Simon C KOHN 399 Introduction 399 The effect of composition on the structure of glasses 400 Si02 400 Aluminium-free alkali and alkaline earth silicate glasses 402 29Si NMR data 402 l70 NMR data 405 Other nuclei 406 Aluminosilicates 409 NMR studies of the dissolution mechanisms of volatiles in silicate melts 410 Water 410 Carbon dioxide 413 Fluorine 414 Sulphur 414 NMR studies of silicate melts, and the relationship between melt and glass structure 415 Acknowledgements 415 References 416 Chapter 11 Solid state NMR spectroscopy as supporting method in Rietveld structure refinements of rock-forming minerals: New developments and examples by Michael FECHTELKORD 421 Introduction 421 Common magnetic and electric interactions in nuclear magnetic resonance 423 Zeeman interaction 423 Chemical shift interaction 424 Dipolar interaction 425 Quadrupolar interaction 428 Routine techniques in solid state nuclear magnetic resonance 430 Magic angle spinning (MAS) 430 Pulse sequences 432 Relaxation times 434 Cross-polarisation (CP) 436 Latest methodical developments in solid state nuclear magnetic resonance 438 Rotational echo double resonance (REDOR) 438 Satellite transition spectroscopy (SATRAS) 441 Dynamic angle spinning (DAS), double rotation (DOR), and multiple quantum magic angle spinning (MQMAS) 443 XI Combined structure determination by Rietveld powder refinements and solid state NMR spectroscopy 448 Information from the 207Pb chemical shift interaction about the lead phosphate structure 448 Sodium cation dynamics in the high- and room temperature structure of nitrate cancrinite 450 Order and disorder of anions in carbonate and formate mixed sodalites 455 Concluding remarks 460 Acknowledgements 460 References 460 Chapter 12 X-ray absorption spectroscopy in mineralogy: Theory and experiment in the XANES region by Annibale MOTTANA 465 1 Introduction 465 1 1 The historical development of XAS spectroscopy 468 111 Basic knowledge 469 112 Mineral studies 473 2 The XANES region: Definition and limits 475 3 Theory of XANES spectroscopy 479 3 1 General theory 480 3 2 Theoretical calculations 485 321 The CONTINUUM and MXAN computer codes 485 322 The FEFF and FEFFIT codes 488 323 Other codes 489 4 Experimental methods 489 4 1 Beam line apparatus 491 411 Insertion devices 491 412 Collimation devices 493 413 Monochromatisation devices 494 414 Detection modes 497 4141 Transmission mode 497 4142 Fluorescence mode 499 4143 Electron yield mode 500 4144 Dispersive mode 501 4 2 Sample preparation 502 421 Powders 503 4211 Purity 504 4212 Grain size 504 4213 Particle orientation 504 422 Single crystals 505 4 3 Spectrum optimisation 508 431 Energy calibration 509 432 Spectrum fitting 510 5 Information contained in XANES spectra 510 5 1 Edge and pre-edge (PE) sub-region 511 511 Causes of PE features 512 5111 Transition elements 512 5112 Non-transition elements 514 512 Applications 515 5 2 Full multiple-scattering (FMS) sub-region 517 521 Spectral shape 518 522 Energy shift 519 523 Bond length determination 520 524 Applications 521 5 3 Intermediate multiple scattering (IMS) sub-region 522 531 Applications 524 XII Addendum: A short manual on how to practically record, treat and interpret XANES spectra 526 A1A note of introduction, with some preliminary information 526 A 2 Raw XANES data treatment 527 A21 Energy calibration 527 A22 Background subtraction 527 A23 “Fingerprinting” 529 A24 Pre-edge analysis 529 A 3 Simulation of XANES spectra 531 Acknowledgements 538 References 538 Chapter 13 X-ray absorption spectroscopy in geosciences: Information from the EXAFS region by Laurence GALOISY 553 Introduction 553 Fundamentals of EXAFS 554 Synchrotron radiation 554 The X-ray absorption phenomenon 555 Origin of EXAFS 555 EXAFS theory 556 Data collection 558 Monochromator 558 Detection 559 Transmission mode 559 Fluorescence detection 559 Electron yield detection 560 ReflEXAFS 560 Energy dispersive EXAFS 561 Micro-EXAFS 561 Polarised EXAFS studies 561 Sample environment 562 EXAFS data reduction 562 Extraction of structural information from the EXAFS signal 562 Subtraction of the pre-edge background 564 Identification of the threshold energy E0 564 Normalisation to m0 564 Removal of a smooth post-edge background approximating m0(k) 564 Extraction of the EXAFS signal 564 Fourier transform of the weighted c(k) EXAFS signal 564 Fourier filtering 565 Recent programs for EXAFS data reduction 566 FEFFIT 566 EXCURVE 567 SixPACK 567 Recent progress in data reduction 568 Continuous Cauchy wavelet transform (CCWT) analysis of EXAFS 568 EXAFS data reduction through principal components analysis 569 Anharmonicity effects 570 Multiple scattering interferences 571 EXAFS studies in geosciences 571 Structural environment and chemical bonding of trace elements in minerals 572 Environments of trace elements in disordered mineralogical systems 575 Environmental mineralogy 581 References 583 XIII Chapter 14 Spectroscopic investigations relating to the structural, crystal-chemical and lattice-dynamic properties of (Fe2+,Mn2+,Mg,Ca)3Al2Si3012 garnet: A review and analysis by Charles A GEIGER 589 Introduction and philosophical approach 589 The structure, crystal chemistry and lattice dynamic properties of garnet as determined from diffraction experiments 592 Garnet end members - almandine, spessartine, pyrope and grossular 592 Garnet solid solutions 597 The structure, crystal chemistry and lattice-dynamic properties of garnet as determined from spectroscopic experiments 598 Vibrational (Raman and IR) spectroscopy 599 Raman spectra of garnet end members at ambient conditions and at low temperatures 600 Raman spectra of pyrope and grossular at high pressure and high temperature 602 Raman spectra of binary almandine-spessartine and pyrope-grossular solid solutions 604 Infrared spectra of garnet end members at ambient conditions 605 Infrared spectra at elevated pressures and temperatures 606 Infrared spectra of binary solid solutions 607 MAS NMR spectroscopy 610 29Si NMR spectra of pyrope and grossular 611 29Si NMR spectra of pyrope-grossular solid solutions 612 Optical absorption spectroscopy 614 Optical absorption spectra of almandine, almandine-rich garnet and spessartine 614 High-pressure optical absorption spectra of almandine and spessartine 617 Optical absorption spectra of almandine-pyrope/spessartine solid solutions 619 Optical absorption spectra of pyrope containing minor concentrations of transition metals 620 Mössbauer spectroscopy 621 57Fe Mössbauer spectrum of almandine at 1 atm and as a function of temperature 622 High-pressure 57Fe Mössbauer spectrum of almandine 625 57Fe Mössbauer spectra of binary almandine-pyrope/spessartine/grossular solid solutions 625 Electron spin resonance spectroscopy 627 Electron spin resonance spectrum of Ti3+ in pyrope 627 X-ray absorption spectroscopy 628 X-ray absorption spectra of almandine, pyrope, spessartine and grossular and their solid solutions: The major elements Fe, Mn, Ca and A1 629 X-ray absorption spectra of pyrope and grossular: The minor element Yb3+ 633 Discussion and analysis 633 X-site cation order/disorder in solid solutions 634 Lattice dynamic properties 636 Microscopic energetic properties and microscopic-macroscopic relationships 638 Trace element substitution and behaviour 640 General outlook 640 Acknowledgements 642 References 642 Name index 647
any_adam_object 1
any_adam_object_boolean 1
building Verbundindex
bvnumber BV021805194
callnumber-first Q - Science
callnumber-label QE369
callnumber-raw QE369.S65
callnumber-search QE369.S65
callnumber-sort QE 3369 S65
callnumber-subject QE - Geology
classification_rvk RB 10115
ctrlnum (OCoLC)57724740
(DE-599)BVBBV021805194
dewey-full 549
dewey-hundreds 500 - Natural sciences and mathematics
dewey-ones 549 - Mineralogy
dewey-raw 549
dewey-search 549
dewey-sort 3549
dewey-tens 540 - Chemistry and allied sciences
discipline Chemie / Pharmazie
Geographie
discipline_str_mv Chemie / Pharmazie
Geographie
format Book
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01730nam a2200445 cb4500</leader><controlfield tag="001">BV021805194</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20061120 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">061110s2004 ad|| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9634636624</subfield><subfield code="9">963-463-662-4</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)57724740</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV021805194</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-703</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QE369.S65</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">549</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">RB 10115</subfield><subfield code="0">(DE-625)142220:12621</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Spectroscopic methods in mineralogy</subfield><subfield code="b">university texbook</subfield><subfield code="c">ed. by Anton Beran ...</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Budapest</subfield><subfield code="b">Eötvös Univ. Press</subfield><subfield code="c">2004</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XIV, 661 S.</subfield><subfield code="b">Ill., graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">EMU notes in mineralogy</subfield><subfield code="v">6</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Infrared spectroscopy</subfield><subfield code="v">Congresses</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Luminescence spectroscopy</subfield><subfield code="v">Congresses</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Minerals</subfield><subfield code="x">Spectra</subfield><subfield code="v">Congresses</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mössbauer spectroscopy</subfield><subfield code="v">Congresses</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nuclear magnetic resonance spectroscopy</subfield><subfield code="v">Congresses</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nuclear spectroscopy</subfield><subfield code="v">Congresses</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Raman spectroscopy</subfield><subfield code="v">Congresses</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Spectrum analysis</subfield><subfield code="v">Congresses</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">X-ray spectroscopy</subfield><subfield code="v">Congresses</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="0">(DE-588)1071861417</subfield><subfield code="a">Konferenzschrift</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Beran, Anton</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">EMU notes in mineralogy</subfield><subfield code="v">6</subfield><subfield code="w">(DE-604)BV014391074</subfield><subfield code="9">6</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HEBIS Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&amp;doc_library=BVB01&amp;local_base=BVB01&amp;doc_number=015017570&amp;sequence=000001&amp;line_number=0001&amp;func_code=DB_RECORDS&amp;service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-015017570</subfield></datafield></record></collection>
genre (DE-588)1071861417 Konferenzschrift gnd-content
genre_facet Konferenzschrift
id DE-604.BV021805194
illustrated Illustrated
index_date 2024-07-02T15:49:06Z
indexdate 2024-07-09T20:45:01Z
institution BVB
isbn 9634636624
language English
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-015017570
oclc_num 57724740
open_access_boolean
owner DE-703
DE-19
DE-BY-UBM
DE-634
owner_facet DE-703
DE-19
DE-BY-UBM
DE-634
physical XIV, 661 S. Ill., graph. Darst.
publishDate 2004
publishDateSearch 2004
publishDateSort 2004
publisher Eötvös Univ. Press
record_format marc
series EMU notes in mineralogy
series2 EMU notes in mineralogy
spelling Spectroscopic methods in mineralogy university texbook ed. by Anton Beran ...
Budapest Eötvös Univ. Press 2004
XIV, 661 S. Ill., graph. Darst.
txt rdacontent
n rdamedia
nc rdacarrier
EMU notes in mineralogy 6
Infrared spectroscopy Congresses
Luminescence spectroscopy Congresses
Minerals Spectra Congresses
Mössbauer spectroscopy Congresses
Nuclear magnetic resonance spectroscopy Congresses
Nuclear spectroscopy Congresses
Raman spectroscopy Congresses
Spectrum analysis Congresses
X-ray spectroscopy Congresses
(DE-588)1071861417 Konferenzschrift gnd-content
Beran, Anton Sonstige oth
EMU notes in mineralogy 6 (DE-604)BV014391074 6
HEBIS Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=015017570&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis
spellingShingle Spectroscopic methods in mineralogy university texbook
EMU notes in mineralogy
Infrared spectroscopy Congresses
Luminescence spectroscopy Congresses
Minerals Spectra Congresses
Mössbauer spectroscopy Congresses
Nuclear magnetic resonance spectroscopy Congresses
Nuclear spectroscopy Congresses
Raman spectroscopy Congresses
Spectrum analysis Congresses
X-ray spectroscopy Congresses
subject_GND (DE-588)1071861417
title Spectroscopic methods in mineralogy university texbook
title_auth Spectroscopic methods in mineralogy university texbook
title_exact_search Spectroscopic methods in mineralogy university texbook
title_exact_search_txtP Spectroscopic methods in mineralogy university texbook
title_full Spectroscopic methods in mineralogy university texbook ed. by Anton Beran ...
title_fullStr Spectroscopic methods in mineralogy university texbook ed. by Anton Beran ...
title_full_unstemmed Spectroscopic methods in mineralogy university texbook ed. by Anton Beran ...
title_short Spectroscopic methods in mineralogy
title_sort spectroscopic methods in mineralogy university texbook
title_sub university texbook
topic Infrared spectroscopy Congresses
Luminescence spectroscopy Congresses
Minerals Spectra Congresses
Mössbauer spectroscopy Congresses
Nuclear magnetic resonance spectroscopy Congresses
Nuclear spectroscopy Congresses
Raman spectroscopy Congresses
Spectrum analysis Congresses
X-ray spectroscopy Congresses
topic_facet Infrared spectroscopy Congresses
Luminescence spectroscopy Congresses
Minerals Spectra Congresses
Mössbauer spectroscopy Congresses
Nuclear magnetic resonance spectroscopy Congresses
Nuclear spectroscopy Congresses
Raman spectroscopy Congresses
Spectrum analysis Congresses
X-ray spectroscopy Congresses
Konferenzschrift
url http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=015017570&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA
volume_link (DE-604)BV014391074
work_keys_str_mv AT berananton spectroscopicmethodsinmineralogyuniversitytexbook