Integrated reaction and separation operations modelling and experimental validation
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Berlin [u.a.]
Springer
2006
|
Schriftenreihe: | Verfahrenstechnik
|
Schlagworte: | |
Online-Zugang: | http://deposit.dnb.de/cgi-bin/dokserv?id=2748939&prov=M&dokv̲ar=1&doke̲xt=htm Inhaltstext Inhaltsverzeichnis |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV021786531 | ||
003 | DE-604 | ||
005 | 20101027 | ||
007 | t | ||
008 | 061027s2006 ad|| |||| 00||| eng d | ||
015 | |a 06N040454 |2 dnb | ||
016 | 7 | |a 977739120 |2 DE-101 | |
020 | |a 3540301488 |c Gb. : EUR 106.95 (freier Pr.) |9 3-540-30148-8 | ||
020 | |a 9783540301486 |9 978-3-540-30148-6 | ||
028 | 5 | 2 | |a 11427384 |
035 | |a (OCoLC)70573826 | ||
035 | |a (DE-599)BVBBV021786531 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 0 | |a eng | |
049 | |a DE-91G |a DE-703 |a DE-29T |a DE-83 |a DE-11 | ||
050 | 0 | |a TP155.75 | |
082 | 0 | |a 660/.2815 |2 22 | |
084 | |a VN 7000 |0 (DE-625)147598:253 |2 rvk | ||
084 | |a VN 7200 |0 (DE-625)147610:253 |2 rvk | ||
084 | |a CIT 300f |2 stub | ||
084 | |a CIT 001f |2 stub | ||
084 | |a 660 |2 sdnb | ||
100 | 1 | |a Schmidt-Traub, Henner |d 1940-2020 |e Verfasser |0 (DE-588)10689496X |4 aut | |
245 | 1 | 0 | |a Integrated reaction and separation operations |b modelling and experimental validation |c Henner Schmidt-Traub ; Andrzej Górak |
264 | 1 | |a Berlin [u.a.] |b Springer |c 2006 | |
300 | |a XII, 366 S. |b Ill., graph. Darst. |c 235 mm x 155 mm | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 0 | |a Verfahrenstechnik | |
650 | 4 | |a Chemical process control | |
650 | 4 | |a Chemical reactions | |
650 | 4 | |a Separation (Technology) | |
650 | 0 | 7 | |a Reaktionstechnik |0 (DE-588)4136173-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Chemische Verfahrenstechnik |0 (DE-588)4069941-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Kombinationsverfahren |0 (DE-588)4533702-0 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Trennverfahren |0 (DE-588)4078395-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Grundoperation |0 (DE-588)4306211-8 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Chemische Verfahrenstechnik |0 (DE-588)4069941-9 |D s |
689 | 0 | 1 | |a Grundoperation |0 (DE-588)4306211-8 |D s |
689 | 0 | 2 | |a Kombinationsverfahren |0 (DE-588)4533702-0 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Reaktionstechnik |0 (DE-588)4136173-8 |D s |
689 | 1 | 1 | |a Trennverfahren |0 (DE-588)4078395-9 |D s |
689 | 1 | 2 | |a Kombinationsverfahren |0 (DE-588)4533702-0 |D s |
689 | 1 | |C b |5 DE-604 | |
700 | 1 | |a Górak, Andrzej |d 1951- |e Verfasser |0 (DE-588)112747086 |4 aut | |
856 | 4 | |u http://deposit.dnb.de/cgi-bin/dokserv?id=2748939&prov=M&dokv̲ar=1&doke̲xt=htm | |
856 | 4 | 2 | |q text/html |u http://deposit.dnb.de/cgi-bin/dokserv?id=2748939&prov=M&dok_var=1&dok_ext=htm |3 Inhaltstext |
856 | 4 | 2 | |m OEBV Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=014999242&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-014999242 |
Datensatz im Suchindex
DE-BY-TUM_call_number | 0302/CIT 001f 2006 A 9810 |
---|---|
DE-BY-TUM_katkey | 1569818 |
DE-BY-TUM_media_number | 040006442253 |
_version_ | 1816712644527128576 |
adam_text | TABLE OF CONTENTS 1 INTRODUCTION
.............................................................................................
1 2 SYNTHESIS OF REACTIVE SEPARATION PROCESSES
.......................................... 7 2.1 INTRODUCTION
......................................................................................
7 .......................................... 2.2 FUNDAMENTAL PROCESS
SYNTHESIS CONCEPTS 8
............................................................... 2.3
PROCESS SYNTHESIS STRATEGY 17
...........................................................................
2.3.1 PROCESS GOALS 18 2.3.2 DATA ACQUISITION / THERMODYNAMIC ANALYSIS
............................. 18 2.3.3 INVESTIGATION OF THE REACTION
PHASE .......................................... 19
...................................................... 2.3.4
IDENTIFICATION OF INCENTIVES 19
.......................................... 2.3.5 SELECTION OF THE
SEPARATION PROCESS 19 2.3.6 KNOCK-OUT CNTERIA
.................................................................... 21
................... 2.3.7 ESTIMATION OF PRODUCT REGIONS FOR FULL
INTEGRATION 21 ..................... 2.3.8 MEASURES TO ACHIEVE THE
DESIRED PRODUCT QUALITY 25
................................................... 2.3.9 NECESSITY OF
ADDITIONAL STEPS 26 2.3.10 SIMULATION AND OPTIMIZATION
............................................... 26
..............................................................................
2.3.1 1 EXAMPLES 27
......................................................... 2.4
OPTIMIZATION OF THE PROCESS 6 1
........................................................... 2.4.1 THE
OPTIMIZATION MODEL 63 2.4.2 SOLUTION METHOD
.......................................................................
67 2.4.3 EXAMPLES
.................................................................................
70
....................................................................................
2.5 CONCLUSIONS 84
..........................................................................................
2.6 NOTATION 85 2.7 LITERATURE
........................................................................................
88 3 CATALYTIC DISTILLATION
..........................................................................
95
....................................................................................
3.1 INTRODUCTION 95 3.2 BASICS OF CATALYTIC DISTILLATION
......................................................... 96
.................................................................................
3.2.1 CATALYST 9 8
.................................................................................
3.2.2 INTERNALS 101 3.3 MODELING
.......................................................................................
103 ........................................................ 3.3.1
EQUILIBNUM STAGE MODEL 105
.............................................................. 3.3.2
RATE-BASED APPROACH 106 3.4 MODEL PARAMETERS
........................................................................
110 ....................................................... 3.4.1
VAPOR-LIQUID EQUILIBRIUM 110 3.4.2 REACTION KINETICS
................................................................. 110
3.4.3 HYDRODYNAMICS AND MASS TRANSFER
....................................... 112 3.4.4 DIFFERENTIAL MODELS
............................................................. 114 X
TABLE OF CONTENTS 3.5 CASE STUDIES
..................................................................................
115 3.5.1 METHYL ACETATE SYNTHESIS
..................................................... 115 3 .5.2 ETHYL
ACETATE SYNTHESIS
......................................................... 119 3.5.3
ETHYL ACETATE TRANSESTERIFICATION
....................................... 123 3.5.4 DIMETHYL CARBONATE
TRANSESTERIFICATION .................................. 127 3.6
CONCLUSIONS
..................................................................................
133
........................................................................................
3.7 NOTATION 135
......................................................................................
3.8 LITERATURE 137 4 REACTIVE GAS ADSORPTION
......................................................................
149 4.1 INTRODUCTION
..................................................................................
149 4.1.1 GAS-PHASE ADSORPTIVE REACTORS - OPERATION AND REGENERATION
................................................................................
STRATEGIES 151 4.1.2 COMPARISON WITH RELATED REACTOR CONCEPTS
............................. 153 4.2 MODELING OF GAS-PHASE ADSORPTIVE
REACTORS .................................. 155 4.2.1 MODEL EQUATIONS
.................................................................... 155
4.2.2 MODEL IMPLEMENTATION AND NUMERICAL FEATURES .....................
159 4.3 DESIGN PRINCIPLES OF ADSORPTIVE REACTORS
....................................... 160 .......... 4.4 CONVERSION
ENHANCEMENT OF EQUILIBRIUM-LIMITED REACTIONS 161
........................................................................
4.4.1 CLAUS REACTION 161 4.4.2 HCN-SYNTHESIS FROM CO AND NH3
........................................ 168 4.4.3 WATER-GAS SHIFI
REACTION ......................................................... 172
4.5 YIELD AND SELECTIVITY ENHANCEMENT FOR COMPLEX REACTION SCHEMES
........................................................................................
172 ......................... 4.5.1 DIRECT SYNTHESIS OF DME FROM
SYNTHESIS GAS 173 4.5.2 OXIDATIVE DEHYDROGENATION OF ETHYLBENZENE TO
STYRENE ......... 179 4.6 CONCLUSIONS
..................................................................................
184 4.7 NOTATION
.....................................................................................
185 4.8 LITERATURE
......................................................................................
187 5 REACTIVE LIQUID CHROMATOGRAPHY
....................................................... 191 5.1
INTRODUCTION
..................................................................................
191
...........................................................................
5.2 PROCESS CONCEPTS 192 .............................................
5.2.1 CHROMATOGRAPHIC BATCH REACTOR 192
.................................................... 5.2.2 CONTINUOUS
ANNULAR REACTOR 193 ................................................
5.2.3 COUNTER-CURRENT FLOW REACTORS 194
................................................ 5.2.4 DEGREE OF PROCESS
INTEGRATION 199 5.3 MODELING OF SIMULATED MOVING BED REACTORS
................................ 200 5.3.1 RIGOROUS MODELS
.................................................................... 202
.........................................................................
5.3.2 TMBR MODEL 208 5.3.3 COMPARISON OF TMBR AND SMBR
........................................ 210 5.4 EXPERIMENTAL MODEL
VALIDATION ................................................... 1 TABLE
OF CONTENTS XI ......................................................
5.4.1 PARAMETER DETERMINATION 211
.......................................... 5.4.2 PRODUCTION OF
P-PHENETHYLACETATE 214 ................................ 5.4.3 THERMAL
RACEMIZATION OF TROEGERS BASE 217 ................................. 5.5
SHORT-CUT DESIGN METHODS FOR SMB REACTORS 219
........................................ 5.5.1 REACTIONS OF TYPE A + B
T, C + D 220 .........................................................
5.5.2 OTHER TYPES OF REACTION 224 ............... 5.5.3 SHORT-CUT
CALCULATION FOR IRREVERSIBLE ESTERIFICATION 225
............................................. 5.6 DESIGN OF
CHROMATOGRAPHIC REACTORS 226 5.6.1 CHOICE OF THE CHROMATOGRAPHIC SYSTEM
.................................. 226 5.6.2 MODEL BASED OPTIMIZATION OF
DESIGN AND OPERATING PARAMETERS
..............................................................................
227 ...... 5.6.3 EVALUATION AND APPLICATION OF CHROMATOGRAPHIC REACTORS
229 5.7 NOTATION
........................................................................................
234
......................................................................................
5.8 LITERATURE 236 6 REACTIVE EXTRACTION
........................................................................
241 6.1 LNTRODUCTION
..................................................................................
241 6.2 REACTIVE EXTRACTION SYSTEMS
...................................................... 241 6.2.1
SEPARATION PROCESSES
.............................................................. 242
............................................................... 6.2.2
SYNTHESIS PROCESSES 243 6.3 SYSTEM ANALYSIS AND PLANT DESIGN
............................................... 244
............................................. 6.3.1 ANALYSIS OF THE
REACTION SYSTEM 246 6.4 MODELLING
......................................................................................
248 . . 6.4.1 MINI-PLANT DESIGN
............................................................ 249
.................................... 6.5 EXPERIMENTS IN THE CONTINUOUS
MINI-PLANT 254 6.6 CONCLUSIONS
..................................................................................
257 6.7 LITERATURE
......................................................................................
258 7 OPTIMIZATION AND CONTROL OF REACTIVE CHROMATOGRAPHY
................... 259 7.1 INTRODUCTION
..................................................................................
259 7.2 THE SIMULATED MOVING BED PROCESS
........................................... 260 ................. 7.2.1
THE VARIABLE COLUMN LENGTH (VARICOL) PROCESS 263 7.3 INTEGRATION OF
REACTION AND SEPARATION - THE HASHIMOTO SMB PROCESS
..........................................................................................
264 ............................................................... 7.4
MATHEMATICAL MODELLING 270 7.5 STEADY STATE OPTIMIZATION OF SMB
PROCESSES ................................ 272 7.5.1 GENERAL APPROACH
................................................................... 272
............................................................................
7.5.2 EXAMPLES 2 7 4 ............ 7.6 OPTIMIZATION OF THE DESIGN OF A
HASHIMOTO SMB PROCESS 282 7.7 CONTROL OF REACTIVE SMB PROCESSES
.............................................. 286
...................................................... 7.7.1 ONLINE
OPTIMIZING CONTROL 287
............................................................. 7.7.2
PARAMETER ESTIMATION 290 XI1 TABLE OF CONTENTS ............. 7.7.3
APPLICATION STUDY - RACEMISATION OF TROEGER S BASE 291
..............................................................................
7.8 CONCLUSIONS 2 9 3
........................................................................................
7.9 NOTATION 294 7.10 LITERATURE
....................................................................................
296 8 CONTROUING REACTIVE DISTILLATION
......................................................... 299 8.1
INTRODUCTION
................................................................................
299 ................................................... 8.2 THE REACTIVE
DISTILLATION COLUMN 301 . . .
.......................................................... 8.2.1
CHEMICAL PRELIMINANES 301 8.2.2 THE REACTIVE DISTILLATION COLUMN
............................................ 301
.......................................................... 8.3 CONTROL
STRUCTURE SELECTION 304
............................................................................
8.3.1 MOTIVATION 3 04 8.3.2 DEGREES OF FREEDOM AND MEASUREMENT EQUIPMENT
................. 304 8.3.3 STEADY-STATE PROCESS OPERABILITY
............................................ 305
................................................. 8.3.4 DYNARNIC PROCESS
OPERABILITY 308 ........................ 8.4 MODEL REFINEMENT BY LINEAR
SYSTEM IDENTIFICATION 312 .........................................
8.4.1 CHOICE OF THE IDENTIFICATION SIGNAL 312 8.4.2 LINEAR MODEL
IDENTIFICATION ................................................... 314
......................................................... 8.4.3 MODEL
ORDER REDUCTION 3 15 ............................................... 8.5
MODEL UNCERTAINTY ASSESSMENT 3 19
................................................................. 8.5.1
MODEL ERROR MODEL 320 8.5.2 DATA-DRIVEN COMPUTATION OF UNCERTAINTY
BOUNDS ................... 321
.................................................................... 8.6
CONTROLLER DESIGN 3 2 3 8.6.1 CONTROL PERFORMANCE SPECIFICATION
........................................ 324 8.6.2 CONTROLLER REDUCTION
.......................................................... 328
............................................................................
8.7 CONCLUSIONS 3 3 4 8.8 LITERATURE
......................................................................................
336 ................................................... 9
MULTIFUNCTIONALITY AT PARTICLE LEVEL 339
...............................................................................
9.1 LNTRODUCTION 3 3 9 9.2 INTEGRATION OF ADSORPTIVE FUNCTIONALITY ON
PARTICLE SCALE .............. 341 9.3 TEST REACTION SCHERNE
................................................................ 344 9.4
MODELING OF ADSORPTIVE CATALYST
.................................................... 345
.................................................................. 9.5
RESULTS AND DISCUSSION 349 9.5.1 PARTICLE LEVEL INTEGRATION VS .
CONVENTIONAL PARTICLES .............. 349 ................... 9.5.2
PARTICLE LEVEL INTEGRATION VS . PARTICLE STRUCTURING 350 9.5.3 RELEVANCE
OF RNACRO- AND MICROSTRUCTURING ............................ 355 9.6
CONCLUSIONS
...............................................................................
357 9.7 LITERATURE
......................................................................................
358 INDEX
........................................................................................................
361
|
adam_txt |
TABLE OF CONTENTS 1 INTRODUCTION
.
1 2 SYNTHESIS OF REACTIVE SEPARATION PROCESSES
. 7 2.1 INTRODUCTION
.
7 . 2.2 FUNDAMENTAL PROCESS
SYNTHESIS CONCEPTS 8
. 2.3
PROCESS SYNTHESIS STRATEGY 17
.
2.3.1 PROCESS GOALS 18 2.3.2 DATA ACQUISITION / THERMODYNAMIC ANALYSIS
. 18 2.3.3 INVESTIGATION OF THE REACTION
PHASE . 19
. 2.3.4
IDENTIFICATION OF INCENTIVES 19
. 2.3.5 SELECTION OF THE
SEPARATION PROCESS 19 2.3.6 KNOCK-OUT CNTERIA
. 21
. 2.3.7 ESTIMATION OF PRODUCT REGIONS FOR FULL
INTEGRATION 21 . 2.3.8 MEASURES TO ACHIEVE THE
DESIRED PRODUCT QUALITY 25
. 2.3.9 NECESSITY OF
ADDITIONAL STEPS 26 2.3.10 SIMULATION AND OPTIMIZATION
. 26
.
2.3.1 1 EXAMPLES 27
. 2.4
OPTIMIZATION OF THE PROCESS 6 1
. 2.4.1 THE
OPTIMIZATION MODEL 63 2.4.2 SOLUTION METHOD
.
67 2.4.3 EXAMPLES
.
70
.
2.5 CONCLUSIONS 84
.
2.6 NOTATION 85 2.7 LITERATURE
.
88 3 CATALYTIC DISTILLATION
.
95
.
3.1 INTRODUCTION 95 3.2 BASICS OF CATALYTIC DISTILLATION
. 96
.
3.2.1 CATALYST 9 8
.
3.2.2 INTERNALS 101 3.3 MODELING
.
103 . 3.3.1
EQUILIBNUM STAGE MODEL 105
. 3.3.2
RATE-BASED APPROACH 106 3.4 MODEL PARAMETERS
.
110 . 3.4.1
VAPOR-LIQUID EQUILIBRIUM 110 3.4.2 REACTION KINETICS
. 110
3.4.3 HYDRODYNAMICS AND MASS TRANSFER
. 112 3.4.4 DIFFERENTIAL MODELS
. 114 X
TABLE OF CONTENTS 3.5 CASE STUDIES
.
115 3.5.1 METHYL ACETATE SYNTHESIS
. 115 3 .5.2 ETHYL
ACETATE SYNTHESIS
. 119 3.5.3
ETHYL ACETATE TRANSESTERIFICATION
. 123 3.5.4 DIMETHYL CARBONATE
TRANSESTERIFICATION . 127 3.6
CONCLUSIONS
.
133
.
3.7 NOTATION 135
.
3.8 LITERATURE 137 4 REACTIVE GAS ADSORPTION
.
149 4.1 INTRODUCTION
.
149 4.1.1 GAS-PHASE ADSORPTIVE REACTORS - OPERATION AND REGENERATION
.
STRATEGIES 151 4.1.2 COMPARISON WITH RELATED REACTOR CONCEPTS
. 153 4.2 MODELING OF GAS-PHASE ADSORPTIVE
REACTORS . 155 4.2.1 MODEL EQUATIONS
. 155
4.2.2 MODEL IMPLEMENTATION AND NUMERICAL FEATURES .
159 4.3 DESIGN PRINCIPLES OF ADSORPTIVE REACTORS
. 160 . 4.4 CONVERSION
ENHANCEMENT OF EQUILIBRIUM-LIMITED REACTIONS 161
.
4.4.1 CLAUS REACTION 161 4.4.2 HCN-SYNTHESIS FROM CO AND NH3
. 168 4.4.3 WATER-GAS SHIFI
REACTION . 172
4.5 YIELD AND SELECTIVITY ENHANCEMENT FOR COMPLEX REACTION SCHEMES
.
172 . 4.5.1 DIRECT SYNTHESIS OF DME FROM
SYNTHESIS GAS 173 4.5.2 OXIDATIVE DEHYDROGENATION OF ETHYLBENZENE TO
STYRENE . 179 4.6 CONCLUSIONS
.
184 4.7 NOTATION
.
185 4.8 LITERATURE
.
187 5 REACTIVE LIQUID CHROMATOGRAPHY
. 191 5.1
INTRODUCTION
.
191
.
5.2 PROCESS CONCEPTS 192 .
5.2.1 CHROMATOGRAPHIC BATCH REACTOR 192
. 5.2.2 CONTINUOUS
ANNULAR REACTOR 193 .
5.2.3 COUNTER-CURRENT FLOW REACTORS 194
. 5.2.4 DEGREE OF PROCESS
INTEGRATION 199 5.3 MODELING OF SIMULATED MOVING BED REACTORS
. 200 5.3.1 RIGOROUS MODELS
. 202
.
5.3.2 TMBR MODEL 208 5.3.3 COMPARISON OF TMBR AND SMBR
. 210 5.4 EXPERIMENTAL MODEL
VALIDATION . 1 TABLE
OF CONTENTS XI .
5.4.1 PARAMETER DETERMINATION 211
. 5.4.2 PRODUCTION OF
P-PHENETHYLACETATE 214 . 5.4.3 THERMAL
RACEMIZATION OF TROEGERS BASE 217 . 5.5
SHORT-CUT DESIGN METHODS FOR SMB REACTORS 219
. 5.5.1 REACTIONS OF TYPE A + B
T, C + D 220 .
5.5.2 OTHER TYPES OF REACTION 224 . 5.5.3 SHORT-CUT
CALCULATION FOR IRREVERSIBLE ESTERIFICATION 225
. 5.6 DESIGN OF
CHROMATOGRAPHIC REACTORS 226 5.6.1 CHOICE OF THE CHROMATOGRAPHIC SYSTEM
. 226 5.6.2 MODEL BASED OPTIMIZATION OF
DESIGN AND OPERATING PARAMETERS
.
227 . 5.6.3 EVALUATION AND APPLICATION OF CHROMATOGRAPHIC REACTORS
229 5.7 NOTATION
.
234
.
5.8 LITERATURE 236 6 REACTIVE EXTRACTION
.
241 6.1 LNTRODUCTION
.
241 6.2 REACTIVE EXTRACTION SYSTEMS
. 241 6.2.1
SEPARATION PROCESSES
. 242
. 6.2.2
SYNTHESIS PROCESSES 243 6.3 SYSTEM ANALYSIS AND PLANT DESIGN
. 244
. 6.3.1 ANALYSIS OF THE
REACTION SYSTEM 246 6.4 MODELLING
.
248 . . 6.4.1 MINI-PLANT DESIGN
. 249
. 6.5 EXPERIMENTS IN THE CONTINUOUS
MINI-PLANT 254 6.6 CONCLUSIONS
.
257 6.7 LITERATURE
.
258 7 OPTIMIZATION AND CONTROL OF REACTIVE CHROMATOGRAPHY
. 259 7.1 INTRODUCTION
.
259 7.2 THE SIMULATED MOVING BED PROCESS
. 260 . 7.2.1
THE VARIABLE COLUMN LENGTH (VARICOL) PROCESS 263 7.3 INTEGRATION OF
REACTION AND SEPARATION - THE HASHIMOTO SMB PROCESS
.
264 . 7.4
MATHEMATICAL MODELLING 270 7.5 STEADY STATE OPTIMIZATION OF SMB
PROCESSES . 272 7.5.1 GENERAL APPROACH
. 272
.
7.5.2 EXAMPLES 2 7 4 . 7.6 OPTIMIZATION OF THE DESIGN OF A
HASHIMOTO SMB PROCESS 282 7.7 CONTROL OF REACTIVE SMB PROCESSES
. 286
. 7.7.1 ONLINE
OPTIMIZING CONTROL 287
. 7.7.2
PARAMETER ESTIMATION 290 XI1 TABLE OF CONTENTS . 7.7.3
APPLICATION STUDY - RACEMISATION OF TROEGER'S BASE 291
.
7.8 CONCLUSIONS 2 9 3
.
7.9 NOTATION 294 7.10 LITERATURE
.
296 8 CONTROUING REACTIVE DISTILLATION
. 299 8.1
INTRODUCTION
.
299 . 8.2 THE REACTIVE
DISTILLATION COLUMN 301 . . .
. 8.2.1
CHEMICAL PRELIMINANES 301 8.2.2 THE REACTIVE DISTILLATION COLUMN
. 301
. 8.3 CONTROL
STRUCTURE SELECTION 304
.
8.3.1 MOTIVATION 3 04 8.3.2 DEGREES OF FREEDOM AND MEASUREMENT EQUIPMENT
. 304 8.3.3 STEADY-STATE PROCESS OPERABILITY
. 305
. 8.3.4 DYNARNIC PROCESS
OPERABILITY 308 . 8.4 MODEL REFINEMENT BY LINEAR
SYSTEM IDENTIFICATION 312 .
8.4.1 CHOICE OF THE IDENTIFICATION SIGNAL 312 8.4.2 LINEAR MODEL
IDENTIFICATION . 314
. 8.4.3 MODEL
ORDER REDUCTION 3 15 . 8.5
MODEL UNCERTAINTY ASSESSMENT 3 19
. 8.5.1
MODEL ERROR MODEL 320 8.5.2 DATA-DRIVEN COMPUTATION OF UNCERTAINTY
BOUNDS . 321
. 8.6
CONTROLLER DESIGN 3 2 3 8.6.1 CONTROL PERFORMANCE SPECIFICATION
. 324 8.6.2 CONTROLLER REDUCTION
. 328
.
8.7 CONCLUSIONS 3 3 4 8.8 LITERATURE
.
336 . 9
MULTIFUNCTIONALITY AT PARTICLE LEVEL 339
.
9.1 LNTRODUCTION 3 3 9 9.2 INTEGRATION OF ADSORPTIVE FUNCTIONALITY ON
PARTICLE SCALE . 341 9.3 TEST REACTION SCHERNE
. 344 9.4
MODELING OF ADSORPTIVE CATALYST
. 345
. 9.5
RESULTS AND DISCUSSION 349 9.5.1 PARTICLE LEVEL INTEGRATION VS .
CONVENTIONAL PARTICLES . 349 . 9.5.2
PARTICLE LEVEL INTEGRATION VS . PARTICLE STRUCTURING 350 9.5.3 RELEVANCE
OF RNACRO- AND MICROSTRUCTURING . 355 9.6
CONCLUSIONS
.
357 9.7 LITERATURE
.
358 INDEX
.
361 |
any_adam_object | 1 |
any_adam_object_boolean | 1 |
author | Schmidt-Traub, Henner 1940-2020 Górak, Andrzej 1951- |
author_GND | (DE-588)10689496X (DE-588)112747086 |
author_facet | Schmidt-Traub, Henner 1940-2020 Górak, Andrzej 1951- |
author_role | aut aut |
author_sort | Schmidt-Traub, Henner 1940-2020 |
author_variant | h s t hst a g ag |
building | Verbundindex |
bvnumber | BV021786531 |
callnumber-first | T - Technology |
callnumber-label | TP155 |
callnumber-raw | TP155.75 |
callnumber-search | TP155.75 |
callnumber-sort | TP 3155.75 |
callnumber-subject | TP - Chemical Technology |
classification_rvk | VN 7000 VN 7200 |
classification_tum | CIT 300f CIT 001f |
ctrlnum | (OCoLC)70573826 (DE-599)BVBBV021786531 |
dewey-full | 660/.2815 |
dewey-hundreds | 600 - Technology (Applied sciences) |
dewey-ones | 660 - Chemical engineering |
dewey-raw | 660/.2815 |
dewey-search | 660/.2815 |
dewey-sort | 3660 42815 |
dewey-tens | 660 - Chemical engineering |
discipline | Chemie / Pharmazie Chemie-Ingenieurwesen |
discipline_str_mv | Chemie / Pharmazie Chemie-Ingenieurwesen |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02705nam a2200637 c 4500</leader><controlfield tag="001">BV021786531</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20101027 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">061027s2006 ad|| |||| 00||| eng d</controlfield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">06N040454</subfield><subfield code="2">dnb</subfield></datafield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">977739120</subfield><subfield code="2">DE-101</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">3540301488</subfield><subfield code="c">Gb. : EUR 106.95 (freier Pr.)</subfield><subfield code="9">3-540-30148-8</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783540301486</subfield><subfield code="9">978-3-540-30148-6</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">11427384</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)70573826</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV021786531</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91G</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-29T</subfield><subfield code="a">DE-83</subfield><subfield code="a">DE-11</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TP155.75</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">660/.2815</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">VN 7000</subfield><subfield code="0">(DE-625)147598:253</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">VN 7200</subfield><subfield code="0">(DE-625)147610:253</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">CIT 300f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">CIT 001f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">660</subfield><subfield code="2">sdnb</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Schmidt-Traub, Henner</subfield><subfield code="d">1940-2020</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)10689496X</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Integrated reaction and separation operations</subfield><subfield code="b">modelling and experimental validation</subfield><subfield code="c">Henner Schmidt-Traub ; Andrzej Górak</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin [u.a.]</subfield><subfield code="b">Springer</subfield><subfield code="c">2006</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XII, 366 S.</subfield><subfield code="b">Ill., graph. Darst.</subfield><subfield code="c">235 mm x 155 mm</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Verfahrenstechnik</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Chemical process control</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Chemical reactions</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Separation (Technology)</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Reaktionstechnik</subfield><subfield code="0">(DE-588)4136173-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Chemische Verfahrenstechnik</subfield><subfield code="0">(DE-588)4069941-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Kombinationsverfahren</subfield><subfield code="0">(DE-588)4533702-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Trennverfahren</subfield><subfield code="0">(DE-588)4078395-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Grundoperation</subfield><subfield code="0">(DE-588)4306211-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Chemische Verfahrenstechnik</subfield><subfield code="0">(DE-588)4069941-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Grundoperation</subfield><subfield code="0">(DE-588)4306211-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Kombinationsverfahren</subfield><subfield code="0">(DE-588)4533702-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Reaktionstechnik</subfield><subfield code="0">(DE-588)4136173-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Trennverfahren</subfield><subfield code="0">(DE-588)4078395-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="2"><subfield code="a">Kombinationsverfahren</subfield><subfield code="0">(DE-588)4533702-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="C">b</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Górak, Andrzej</subfield><subfield code="d">1951-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)112747086</subfield><subfield code="4">aut</subfield></datafield><datafield tag="856" ind1="4" ind2=" "><subfield code="u">http://deposit.dnb.de/cgi-bin/dokserv?id=2748939&prov=M&dokv̲ar=1&doke̲xt=htm</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="q">text/html</subfield><subfield code="u">http://deposit.dnb.de/cgi-bin/dokserv?id=2748939&prov=M&dok_var=1&dok_ext=htm</subfield><subfield code="3">Inhaltstext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">OEBV Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=014999242&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-014999242</subfield></datafield></record></collection> |
id | DE-604.BV021786531 |
illustrated | Illustrated |
index_date | 2024-07-02T15:43:05Z |
indexdate | 2024-11-25T17:26:05Z |
institution | BVB |
isbn | 3540301488 9783540301486 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-014999242 |
oclc_num | 70573826 |
open_access_boolean | |
owner | DE-91G DE-BY-TUM DE-703 DE-29T DE-83 DE-11 |
owner_facet | DE-91G DE-BY-TUM DE-703 DE-29T DE-83 DE-11 |
physical | XII, 366 S. Ill., graph. Darst. 235 mm x 155 mm |
publishDate | 2006 |
publishDateSearch | 2006 |
publishDateSort | 2006 |
publisher | Springer |
record_format | marc |
series2 | Verfahrenstechnik |
spellingShingle | Schmidt-Traub, Henner 1940-2020 Górak, Andrzej 1951- Integrated reaction and separation operations modelling and experimental validation Chemical process control Chemical reactions Separation (Technology) Reaktionstechnik (DE-588)4136173-8 gnd Chemische Verfahrenstechnik (DE-588)4069941-9 gnd Kombinationsverfahren (DE-588)4533702-0 gnd Trennverfahren (DE-588)4078395-9 gnd Grundoperation (DE-588)4306211-8 gnd |
subject_GND | (DE-588)4136173-8 (DE-588)4069941-9 (DE-588)4533702-0 (DE-588)4078395-9 (DE-588)4306211-8 |
title | Integrated reaction and separation operations modelling and experimental validation |
title_auth | Integrated reaction and separation operations modelling and experimental validation |
title_exact_search | Integrated reaction and separation operations modelling and experimental validation |
title_exact_search_txtP | Integrated reaction and separation operations modelling and experimental validation |
title_full | Integrated reaction and separation operations modelling and experimental validation Henner Schmidt-Traub ; Andrzej Górak |
title_fullStr | Integrated reaction and separation operations modelling and experimental validation Henner Schmidt-Traub ; Andrzej Górak |
title_full_unstemmed | Integrated reaction and separation operations modelling and experimental validation Henner Schmidt-Traub ; Andrzej Górak |
title_short | Integrated reaction and separation operations |
title_sort | integrated reaction and separation operations modelling and experimental validation |
title_sub | modelling and experimental validation |
topic | Chemical process control Chemical reactions Separation (Technology) Reaktionstechnik (DE-588)4136173-8 gnd Chemische Verfahrenstechnik (DE-588)4069941-9 gnd Kombinationsverfahren (DE-588)4533702-0 gnd Trennverfahren (DE-588)4078395-9 gnd Grundoperation (DE-588)4306211-8 gnd |
topic_facet | Chemical process control Chemical reactions Separation (Technology) Reaktionstechnik Chemische Verfahrenstechnik Kombinationsverfahren Trennverfahren Grundoperation |
url | http://deposit.dnb.de/cgi-bin/dokserv?id=2748939&prov=M&dokv̲ar=1&doke̲xt=htm http://deposit.dnb.de/cgi-bin/dokserv?id=2748939&prov=M&dok_var=1&dok_ext=htm http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=014999242&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT schmidttraubhenner integratedreactionandseparationoperationsmodellingandexperimentalvalidation AT gorakandrzej integratedreactionandseparationoperationsmodellingandexperimentalvalidation |