Computational electrodynamics the finite-difference time-domain method

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Taflove, Allen (VerfasserIn), Hagness, Susan C. (VerfasserIn)
Format: Buch
Sprache:English
Veröffentlicht: Boston [u.a.] Artech House 2005
Ausgabe:3. ed.
Schriftenreihe:Artech House antennas and propagation library
Schlagworte:
Online-Zugang:Inhaltsverzeichnis
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nam a2200000 c 4500
001 BV021702542
003 DE-604
005 20151105
007 t
008 060822s2005 ad|| |||| 00||| eng d
020 |a 9781580538329  |9 978-1-58053-832-9 
035 |a (OCoLC)439544847 
035 |a (DE-599)BVBBV021702542 
040 |a DE-604  |b ger  |e rakwb 
041 0 |a eng 
049 |a DE-91  |a DE-20  |a DE-83  |a DE-703  |a DE-355  |a DE-29T  |a DE-19  |a DE-384  |a DE-11  |a DE-91G 
080 |a 537 
084 |a UH 1000  |0 (DE-625)145634:  |2 rvk 
084 |a ZN 3240  |0 (DE-625)157303:  |2 rvk 
084 |a ELT 044f  |2 stub 
084 |a PHY 303f  |2 stub 
100 1 |a Taflove, Allen  |e Verfasser  |4 aut 
245 1 0 |a Computational electrodynamics  |b the finite-difference time-domain method  |c Allen Taflove ; Susan C. Hagness 
250 |a 3. ed. 
264 1 |a Boston [u.a.]  |b Artech House  |c 2005 
300 |a XXII, 1006 S.  |b Ill., graph. Darst. 
336 |b txt  |2 rdacontent 
337 |b n  |2 rdamedia 
338 |b nc  |2 rdacarrier 
490 0 |a Artech House antennas and propagation library 
650 4 |a Electrodynamics - Mathematics 
650 4 |a Finite differences 
650 4 |a Time-domain analysis 
650 4 |a Datenverarbeitung 
650 4 |a Electromagnetism 
650 4 |a Integro-differential equations  |x Numerical solutions 
650 4 |a Maxwell equations  |x Data processing 
650 4 |a Maxwell equations  |x Numerical solutions 
650 4 |a Moments method (Statistics) 
650 0 7 |a Zeitbereich  |0 (DE-588)4130720-3  |2 gnd  |9 rswk-swf 
650 0 7 |a Numerisches Verfahren  |0 (DE-588)4128130-5  |2 gnd  |9 rswk-swf 
650 0 7 |a Maxwellsche Gleichungen  |0 (DE-588)4221398-8  |2 gnd  |9 rswk-swf 
650 0 7 |a Elektrodynamik  |0 (DE-588)4014251-6  |2 gnd  |9 rswk-swf 
650 0 7 |a Finite-Differenzen-Methode  |0 (DE-588)4194626-1  |2 gnd  |9 rswk-swf 
689 0 0 |a Maxwellsche Gleichungen  |0 (DE-588)4221398-8  |D s 
689 0 1 |a Finite-Differenzen-Methode  |0 (DE-588)4194626-1  |D s 
689 0 2 |a Zeitbereich  |0 (DE-588)4130720-3  |D s 
689 0 |5 DE-604 
689 1 0 |a Elektrodynamik  |0 (DE-588)4014251-6  |D s 
689 1 1 |a Numerisches Verfahren  |0 (DE-588)4128130-5  |D s 
689 1 |5 DE-604 
700 1 |a Hagness, Susan C.  |e Verfasser  |4 aut 
856 4 2 |m HBZ Datenaustausch  |q application/pdf  |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=014916470&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA  |3 Inhaltsverzeichnis 
999 |a oai:aleph.bib-bvb.de:BVB01-014916470 

Datensatz im Suchindex

DE-BY-TUM_call_number 0202/PHY 303 2015 B 1839(3)
0002/PHY 303 2006 B 2560(3)
DE-BY-TUM_katkey 1560705
DE-BY-TUM_media_number 040006269230
040008192403
_version_ 1816712583205355521
adam_text Contents Preface to the Third Edition xix 1 Electrodynamics Entering the 21st Century 1 1.1 Introduction 1 1.2 The Heritage of Military Defense Applications 1 1.3 Frequency Domain Solution Techniques 2 1.4 Rise of Finite Difference Time Domain Methods 3 1.5 History of FDTD Techniques for Maxwell s Equations 4 1.6 Characteristics of FDTD and Related Space Grid Time Domain Techniques 6 1.6.1 Classes of Algorithms 6 1.6.2 Predictive Dynamic Range 7 1.6.3 Scaling to Very Large Problem Sizes 8 1.7 Examples of Applications 9 1.7.1 Impulsive Around the World Extremely Low Frequency Propagation 10 1.7.2 Cellphone Radiation Interacting with the Human Head 11 1.7.3 Early Stage Detection of Breast Cancer Using an Ultrawideband Microwave Radar 11 1.7.4 Homing Accuracy of a Radar Guided Missile 12 1.7.5 Electromagnetic Wave Vulnerabilities of a Military Jet Plane 12 1.7.6 Millimeter Wave Propagation in a Defect Mode Electromagnetic Bandgap Structure 13 1.7.7 Photonic Crystal Microcavity Laser 14 1.7.8 Photonic Crystal Cross Waveguide Switch 15 1.8 Conclusions 16 References 16 2 The One Dimensional Scalar Wave Equation 21 2.1 Introduction 21 2.2 Propagating Wave Solutions 21 2.3 Dispersion Relation 22 2.4 Finite Differences 23 2.5 Finite Difference Approximation of the Scalar Wave Equation 24 2.6 Numerical Dispersion Relation 27 2.6.1 Case 1: Very Fine Sampling in Time and Space 28 2.6.2 Case 2: Magic Time Step 29 2.6.3 Case 3: Dispersive Wave Propagation 29 2.6.4 Example of Calculation of Numerical Phase Velocity and Attenuation 34 2.6.5 Examples of Calculations of Pulse Propagation 34 2.7 Numerical Stability 39 2.7.1 Complex Frequency Analysis 40 2.7.2 Examples of Calculations Involving Numerical Instability 43 2.8 Summary 45 Appendix 2A: Order of Accuracy 47 2A.1 Lax Richtmyer Equivalence Theorem 47 2A.2 Limitations 48 References 48 Selected Bibliography on Stability of Finite Difference Methods 49 Problems 49 v 3 Introduction to Maxwell s Equations and the Yee Algorithm Allen Taflove and Jamesina Simpson 51 3.1 Introduction 51 3.2 Maxwell s Equations in Three Dimensions 51 3.3 Reduction to Two Dimensions 54 3.3.1 TMzMode 55 3.3.2 TEzMode 55 3.4 Reduction to One Dimension 56 3.4.1 x Directed, z Polarized TEM Mode 56 3.4.2 x Directed, y Polarized TEM Mode 57 3.5 Equivalence to the Wave Equation in One Dimension 57 3.6 The Yee Algorithm 58 3.6.1 Basic Ideas 58 3.6.2 Finite Differences and Notation 60 3.6.3 Finite Difference Expressions for Maxwell s Equations in Three Dimensions 62 3.6.4 Space Region with a Continuous Variation of Material Properties 67 3.6.5 Space Region with a Finite Number of Distinct Media 69 3.6.6 Space Region with Nonpermeable Media 71 3.6.7 Reduction to the Two Dimensional TMz and TEz Modes 73 3.6.8 Interpretation as Faraday s and Ampere s Laws in Integral Form 75 3.6.9 Divergence Free Nature 78 3.7 Alternative Finite Difference Grids 80 3.7.1 Cartesian Grids 80 3.7.2 Hexagonal Grids 82 3.8 Emerging Application: Gridding the Planet Earth 85 3.8.1 Background 85 3.8.2 The Latitude Longitude Space Lattice 86 3.8.3 The Geodesic (Hexagon Pentagon) Grid 99 3.9 Summary 103 References 104 Problems 105 4 Numerical Dispersion and Stability 107 4.1 Introduction 107 4.2 Derivation of the Numerical Dispersion Relation for Two Dimensional Wave Propagation 107 4.3 Extension to Three Dimensions 110 4.4 Comparison with the Ideal Dispersion Case 111 4.5 Anisotropy of the Numerical Phase Velocity 111 4.5.1 Sample Values of Numerical Phase Velocity 111 4.5.2 Intrinsic Grid Velocity Anisotropy 116 4.6 Complex Valued Numerical Wavenumbers 120 4.6.1 Case 1: Numerical Wave Propagation Along the Principal Lattice Axes 121 4.6.2 Case 2: Numerical Wave Propagation Along a Grid Diagonal 123 4.6.3 Example of Calculation of Numerical Phase Velocity and Attenuation 126 4.6.4 Example of Calculation of Wave Propagation 126 4.7 Numerical Stability 128 4.7.1 Complex Frequency Analysis 130 4.7.2 Example of a Numerically Unstable Two Dimensional FDTD Model 135 4.7.3 Linear Growth Mode When the Normalized Courant Factor Equals 1 137 4.8 Generalized Stability Problem 137 4.8.1 Absorbing and Impedance Boundary Conditions 137 4.8.2 Variable and Unstructured Meshing 137 4.8.3 Lossy, Dispersive, Nonlinear, and Gain Materials 138 4.9 Modified Yee Based Algorithms for Mitigating Numerical Dispersion 138 4.9.1 Strategy 1: Center a Specific Numerical Phase Velocity Curve About c 138 4.9.2 Strategy 2: Use Fourth Order Accurate Explicit Spatial Differences 139 4.9.3 Strategy 3: Use a Hexagonal Grid, If Possible 146 4.9.4 Strategy 4: Use Discrete Fourier Transforms to Calculate the Spatial Derivatives 150 4.10 Alternating Direction Implicit Time Stepping Algorithm for Operation Beyond the Courant Limit 154 4.10.1 Numerical Formulation of the Zheng/Chen/Zhang Algorithm 155 4.10.2 Sources 161 4.10.3 Numerical Stability 161 4.10.4 Numerical Dispersion 163 4.10.5 Additional Accuracy Limitations and Their Implications 164 4.11 Summary 164 References 165 Problems 166 Projects 167 5 Incident Wave Source Conditions Allen Taflove, Geoff Waldschmidt, Christopher Wagner, John Schneider, and Susan Hagness 169 5.1 Introduction 169 5.2 Pointwise E and H Hard Sources in One Dimension 169 5.3 Pointwise E and H Hard Sources in Two Dimensions 171 5.3.1 Green Function for the Scalar Wave Equation in Two Dimensions 171 5.3.2 Obtaining Comparative FDTD Data 172 5.3.3 Results for Effective Action Radius of a Hard Sourced Field Component 173 5.4 / and M Current Sources in Three Dimensions 175 5.4.1 Sources and Charging 176 5.4.2 Sinusoidal Sources 178 5.4.3 Transient (Pulse) Sources 178 5.4.4 Intrinsic Lattice Capacitance 179 5.4.5 Intrinsic Lattice Inductance 183 5.4.6 Impact upon FDTD Simulations of Lumped Element Capacitors and Inductors 183 5.5 The Plane Wave Source Condition 185 5.6 The Total Field / Scattered Field Technique: Ideas and One Dimensional Formulation 186 5.6.1 Ideas 186 5.6.2 One Dimensional Formulation 188 5.7 Two Dimensional Formulation of the TF/ SF Technique 193 5.7.1 Consistency Conditions 193 5.7.2 Calculation of the Incident Field 197 5.7.3 Illustrative Example 201 5.8 Three Dimensional Formulation of the TF/SF Technique 204 5.8.1 Consistency Conditions 204 5.8.2 Calculation of the Incident Field 210 5.9 Advanced Dispersion Compensation in the TF/SF Technique 213 5.9.1 Matched Numerical Dispersion Technique 214 5.9.2 Analytical Field Propagation 218 5.10 Scattered Field Formulation 220 5.10.1 Application to PEC Structures 220 5.10.2 Application to Lossy Dielectric Structures 221 5.10.3 Choice of Incident Plane Wave Formulation 223 5.11 Waveguide Source Conditions 223 5.11.1 Pulsed Electric Field Modal Hard Source 223 5.11.2 Total Field / Reflected Field Modal Formulation 225 5.11.3 Resistive Source and Load Conditions 225 5.12 Summary 226 References 227 Problems 227 Projects 228 6 Analytical Absorbing Boundary Conditions 229 6.1 Introduction 229 6.2 Bayliss Turkel Radiation Operators 230 6.2.1 Spherical Coordinates 231 6.2.2 Cylindrical Coordinates 234 6.3 Engquist Majda One Way Wave Equations 236 6.3.1 One Term and Two Term Taylor Series Approximations 237 6.3.2 Mur Finite Difference Scheme 240 6.3.3 Trefethen Halpern Generalized and Higher Order ABCs 243 6.3.4 Theoretical Reflection Coefficient Analysis 245 6.3.5 Numerical Experiments 247 6.4 Higdon Radiation Operators 252 6.4.1 Formulation 252 6.4.2 First Two Higdon Operators 253 6.4.3 Discussion 254 6.5 Liao Extrapolation in Space and Time 255 6.5.1 Formulation 255 6.5.2 Discussion 257 6.6 Ramahi Complementary Operators 259 6.6.1 Basic Idea 259 6.6.2 Complementary Operators 260 6.6.3 Effect of Multiple Wave Reflections 260 6.6.4 Basis of the Concurrent Complementary Operator Method 261 6.6.5 Illustrative FDTD Modeling Results Obtained Using the C COM 267 6.7 Summary 270 References 270 Problems 271 7 Perfectly Matched Layer Absorbing Boundary Conditions Stephen Gedney 273 7.1 Introduction 273 7.2 Plane Wave Incident upon a Lossy Half Space 274 7.3 Plane Wave Incident upon Berenger s PML Medium 276 7.3.1 Two Dimensional TE2 Case 276 7.3.2 Two Dimensional TMz Case 281 7.3.3 Three Dimensional Case 281 7.4 Stretched Coordinate Formulation of Berenger s PML 282 7.5 An Anisotropic PML Absorbing Medium 285 7.5.1 Perfectly Matched Uniaxial Medium 285 7.5.2 Relationship to Berenger s Split Field PML 288 7.5.3 A Generalized Three Dimensional Formulation 289 7.5.4 Inhomogeneous Media 290 7.6 Theoretical Performance of the PML 291 7.6.1 The Continuous Space 291 7.6.2 The Discrete Space 292 7.7 Complex Frequency Shifted Tensor 294 7.7.1 Introduction 294 7.7.2 Strategy to Reduce Late Time (Low Frequency) Reflections 296 7.8 Efficient Implementation of UPML in FDTD 297 7.8.1 Derivation of the Finite Difference Expressions 298 7.8.2 Computer Implementation of the UPML 301 7.9 Efficient Implementation of CPML in FDTD 302 7.9.1 Derivation of the Finite Difference Expressions 302 7.9.2 Computer Implementation of the CPML 307 7.10 Application of CPML in FDTD to General Media 310 7.10.1 Introduction 310 7.10.2 Example: Application of CPML to the Debye Medium 310 7.11 Numerical Experiments with PML 313 7.11.1 Current Source Radiating in an Unbounded Two Dimensional Region 313 7.11.2 Highly Elongated Domains and Edge Singularities 317 7.11.3 Microstrip Patch Antenna Array 320 7.11.4 Dispersive Media 322 7.12 Summary and Conclusions 324 References 324 Projects 327 8 Near to Far Field Transformation Allen Taflove, Xu Li, and Susan Hagness 329 8.1 Introduction 329 8.2 Two Dimensional Transformation, Phasor Domain 329 8.2.1 Application of Green s Theorem 330 8.2.2 Far Field Limit 332 8.2.3 Reduction to Standard Form 334 8.3 Obtaining Phasor Quantities Via Discrete Fourier Transformation 335 8.4 Surface Equivalence Theorem 338 8.5 Extension to Three Dimensions, Phasor Domain 340 8.6 Time Domain Near to Far Field Transformation 343 8.7 Modified NTFF Procedure to More Accurately Calculate Backscattering from Strongly Forward Scattering Objects 348 8.8 Summary 351 References 351 Project 352 9 Dispersive, Nonlinear, and Gain Materials Allen Taflove, Susan Hagness, Wojciech Gwarek, Masafumi Fujii, and Shih Hui Chang 353 9.1 Introduction 353 9.2 Generic Isotropic Material Dispersions 354 9.2.1 Debye Media 354 9.2.2 Lorentz Media 354 9.2.3 Drude Media 355 9.3 Piecewise Linear Recursive Convolution Method, Linear Material Case 355 9.3.1 General Formulation 356 9.3.2 Application to Debye Media 358 9.3.3 Application to Lorentz Media 358 9.3.4 Numerical Results 360 9.4 Auxiliary Differential Equation Method, Linear Material Case 361 9.4.1 Formulation for Multiple Debye Poles 361 9.4.2 Formulation for Multiple Lorentz Pole Pairs 363 9.4.3 Formulation for Multiple Drude Poles 365 9.4.4 Illustrative Numerical Results 367 9.5 Modeling of Linear Magnetized Ferrites 369 9.5.1 Equivalent RLC Model 370 9.5.2 Time Stepping Algorithm 371 9.5.3 Extension to the Three Dimensional Case, Including Loss 373 9.5.4 Illustrative Numerical Results 374 9.5.5 Comparison of Computer Resources 375 9.6 Auxiliary Differential Equation Method, Nonlinear Dispersive Material Case 376 9.6.1 Strategy 376 9.6.2 Contribution of the Linear Debye Polarization 377 9.6.3 Contribution of the Linear Lorentz Polarization 377 9.6.4 Contributions of the Third Order Nonlinear Polarization 378 9.6.5 Electric Field Update 380 9.6.6 Illustrative Numerical Results for Temporal Solitons 381 9.6.7 Illustrative Numerical Results for Spatial Solitons 383 9.7 Auxiliary Differential Equation Method, Macroscopic Modeling of Saturable, Dispersive Optical Gain Materials 387 9.7.1 Theory 387 9.7.2 Validation Studies 390 9.8 Auxiliary Differential Equation Method, Modeling of Lasing Action in a Four Level Two Electron Atomic System 394 9.8.1 Quantum Physics Basis 394 9.8.2 Coupling to Maxwell s Equations 398 9.8.3 Time Stepping Algorithm 398 9.8.4 Illustrative Results 400 9.9 Summary and Conclusions 402 References 404 Problems 405 Projects 406 10 Local Subcell Models of Fine Geometrical Features Allen Taflove, Malgorzata Celuch Marcysiak, and Susan Hagness 407 10.1 Introduction 407 10.2 Basis of Contour Path FDTD Modeling 408 10.3 The Simplest Contour Path Subcell Models 408 10.3.1 Diagonal Split Cell Model for PEC Surfaces 410 10.3.2 Average Properties Model for Material Surfaces 410 10.4 The Contour Path Model of the Narrow Slot 411 10.5 The Contour Path Model of the Thin Wire 415 10.6 Locally Conformal Models of Curved Surfaces 420 10.6.1 Yu Mittra Technique for PEC Structures 420 10.6.2 Illustrative Results for PEC Structures 421 10.6.3 Yu Mittra Technique for Material Structures 424 10.7 Maloney Smith Technique for Thin Material Sheets 427 10.7.1 Basis 427 10.7.2 Illustrative Results 430 10.8 Surface Impedance 432 10.8.1 The Monochromatic SIBC 434 10.8.2 Convolution Based Models of the Frequency Dependent SIBC 436 10.8.3 Equivalent Circuit Model of the Frequency Dependent SIBC 442 10.8.4 Sources of Error 445 10.8.5 Discussion 446 10.9 Thin Coatings on a PEC Surface 447 10.9.1 Method of Lee etal. 447 10.9.2 Method of Karkkainen 450 10.10 Relativistic Motion of PEC Boundaries 450 10.10.1 Basis 451 10.10.2 Illustrative Results 454 10.11 Summary and Discussion 458 References 458 Selected Bibliography 460 Projects 461 11 Nonuniform Grids, Nonorthogonal Grids, Unstructured Grids, and Subgrids Stephen Gedney, Faiza Lansing, and Nicolas Chavannes 463 11.1 Introduction 463 11.2 Nonuniform Orthogonal Grids 464 11.3 Locally Conformal Grids, Globally Orthogonal 471 11.4 Global Curvilinear Coordinates 471 11.4.1 Nonorthogonal Curvilinear FDTD Algorithm 471 11.4.2 Stability Criterion 477 11.5 Irregular Nonorthogonal Structured Grids 480 11.6 Irregular Nonorthogonal Unstructured Grids 486 11.6.1 Generalized Yee Algorithm 487 11.6.2 Inhomogeneous Media 491 11.6.3 Practical Implementation of the Generalized Yee Algorithm 493 11.7 A Planar Generalized Yee Algorithm 494 11.7.1 Time Stepping Expressions 495 11.7.2 Projection Operators 496 11.7.3 Efficient Time Stepping Implementation 498 11.7.4 Modeling Example: 32 GHz Wilkinson Power Divider 499 11.8 Cartesian Subgrids 501 11.8.1 Geometry 502 11.8.2 Time Stepping Scheme 503 11.8.3 Spatial Interpolation 504 11.8.4 Numerical Stability Considerations 505 11.8.5 Reflection from the Interface of the Primary Grid and Subgrid 505 11.8.6 Illustrative Results: Helical Antenna on Generic Cellphone at 900 MHz 508 11.8.7 Computational Efficiency 510 11.9 Summary and Conclusions 510 References 511 Problems 514 Projects 515 12 Bodies of Revolution Thomas Jurgens, Jeffrey Blaschak, and Gregory Saewert 517 12.1 Introduction 517 12.2 Field Expansion 517 12.3 Difference Equations for Off Axis Cells 519 12.3.1 Ampere s Law Contour Path Integral to Calculate er 519 12.3.2 Ampere s Law Contour Path Integral to Calculate e^ 521 12.3.3 Ampere s Law Contour Path Integral to Calculate ez 523 12.3.4 Difference Equations 525 12.3.5 Surface Conforming Contour Path Integrals 528 12.4 Difference Equations for On Axis Cells 529 12.4.1 Ampere s Law Contour Path Integral to Calculate ez on the z Axis 529 12.4.2 Ampere s Law Contour Path Integral to Calculate e^ on the z Axis 532 12.4.3 Faraday s Law Calculation of hr on the z Axis 534 12.5 Numerical Stability 535 12.6 PML Absorbing Boundary Condition 536 12.6.1 BOR FDTD Background 536 12.6.2 Extension ofPML to the General BOR Case 537 12.6.3 Examples 543 12.7 Application to Particle Accelerator Physics 543 12.7.1 Definitions and Concepts 545 12.7.2 Examples 547 12.8 Summary 550 References 550 Problems 551 Projects 552 13 Periodic Structures James Maloney and Morris Kesler 553 13.1 Introduction 553 13.2 Review of Scattering from Periodic Structures 555 13.3 Direct Field Methods 559 13.3.1 Normal Incidence Case 559 13.3.2 Multiple Unit Cells for Oblique Incidence 560 13.3.3 Sine Cosine Method 562 13.3.4 Angled Update Method 563 13.4 Introduction to the Field Transformation Technique 567 13.5 Multiple Grid Approach 571 13.5.1 Formulation 571 13.5.2 Numerical Stability Analysis 573 13.5.3 Numerical Dispersion Analysis 574 13.5.4 Lossy Materials 575 13.5.5 Lossy Screen Example 577 13.6 Split Field Method, Two Dimensions 578 13.6.1 Formulation 578 13.6.2 Numerical Stability Analysis 580 13.6.3 Numerical Dispersion Analysis 581 13.6.4 Lossy Materials 582 13.6.5 Lossy Screen Example 583 13.7 Split Field Method, Three Dimensions 583 13.7.1 Formulation 584 13.7.2 Numerical Stability Analysis 589 13.7.3 UPML Absorbing Boundary Condition 590 13.8 Application of the Periodic FDTD Method 594 13.8.1 Electromagnetic Bandgap Structures 595 13.8.2 Frequency Selective Surfaces 597 13.8.3 Antenna Arrays 597 13.9 Summary and Conclusions 603 Acknowledgments 603 References 603 Projects 605 14 Antennas James Maloney, Glenn Smith, Eric Thiele, Om Gandhi, Nicolas Chavannes, and Susan Hagness 607 14.1 Introduction 607 14.2 Formulation of the Antenna Problem 607 14.2.1 Transmitting Antenna 607 14.2.2 Receiving Antenna 609 14.2.3 Symmetry 610 14.2.4 Excitation 611 14.3 Antenna Feed Models 612 14.3.1 Detailed Modeling of the Feed 613 14.3.2 Simple Gap Feed Model for a Monopole Antenna 614 14.3.3 Improved Simple Feed Model 617 14.4 Near to Far Field Transformations 621 14.4.1 Use of Symmetry 621 14.4.2 Time Domain Near to Far Field Transformation 622 14.4.3 Frequency Domain Near to Far Field Transformation 624 14.5 Plane Wave Source 625 14.5.1 Effect of an Incremental Displacement of the Surface Currents 625 14.5.2 Effect of an Incremental Time Shift 627 14.5.3 Relation to Total Field / Scattered Field Lattice Zoning 628 14.6 Case Study I: The Standard Gain Horn 628 14.7 Case Study II: The Vivaldi Slotline Array 634 14.7.1 Background 634 14.7.2 The Planar Element 635 14.7.3 The Vivaldi Pair 637 14.7.4 The Vivaldi Quad 639 14.7.5 The Linear Phased Array 640 14.7.6 Phased Array Radiation Characteristics Indicated by the FDTD Modeling 641 14.7.7 Active Impedance of the Phased Array 644 14.8 Near Field Simulations 647 14.8.1 Generic 900 MHz Cellphone Handset in Free Space 647 14.8.2 900 MHz Dipole Antenna Near a Layered Bone Brain Half Space 649 14.8.3 840 MHz Dipole Antenna Near a Rectangular Brain Phantom 650 14.8.4 900 MHz Infinitesimal Dipole Antenna Near a Spherical Brain Phantom 650 14.8.5 1.9 GHz Half Wavelength Dipole Near a Spherical Brain Phantom 652 14.9 Case Study III: The Motorola T250 Tri Band Phone 653 14.9.1 FDTD Phone Model 654 14.9.2 Measurement Procedures 656 14.9.3 Free Space Near Field Investigations and Assessment of Design Capabilities 656 14.9.4 Performance in Loaded Conditions (SAM and MRI Based Human Head Model) 657 14.9.5 Radiation Performance in Free Space and Adjacent to the SAM Head 659 14.9.6 Computational Requirements 661 14.9.7 Overall Assessment 661 14.10 Selected Additional Applications 661 14.10.1 Use of Electromagnetic Bandgap Materials 662 14.10.2 Ground Penetrating Radar 663 14.10.3 Antenna Radome Interaction 667 14.10.4 Biomedical Applications of Antennas 669 14.11 Summary and Conclusions 671 References 671 Projects 676 15 High Speed Electronic Circuits with Active and Nonlinear Components Melinda Piket May, Wojciech Gwarek, Tzong Lin Wu, Bijan Houshmand, Tatsuo Itoh, and Jamesina Simpson (HI 15.1 Introduction 677 15.2 Basic Circuit Parameters for TEM Striplines and Microstrips 679 15.2.1 Transmission Line Parameters 679 15.2.2 Impedance 680 15.2.3 S Parameters 680 15.2.4 Differential Capacitance 681 15.2.5 Differential Inductance 682 15.3 Lumped Inductance Due to a Discontinuity 682 15.3.1 Flux /Current Definition 684 15.3.2 Fitting Z( o) or S(a) to an Equivalent Circuit 684 15.3.3 Discussion: Choice of Methods 685 15.4 Inductance of Complex Power Distribution Systems 685 15.4.1 Method Description 685 15.4.2 Example: Multiplane Meshed Printed Circuit Board 687 15.4.3 Discussion 688 15.5 Parallel Coplanar Microstrips 688 15.6 Multilayered Interconnect Modeling 690 15.7 5 Parameter Extraction for General Waveguides 692 15.8 Digital Signal Processing and Spectrum Estimation 694 15.8.1 Prony s Method 695 15.8.2 Autoregressive Models 697 15.8.3 Pad6 Approximation 702 15.9 Modeling of Lumped Circuit Elements 706 15.9.1 FDTD Formulation Extended to Circuit Elements 706 15.9.2 The Resistor 708 15.9.3 The Resistive Voltage Source 708 15.9.4 The Capacitor 709 15.9.5 The Inductor 711 15.9.6 The Arbitrary Two Terminal Linear Lumped Network 711 15.9.7 The Diode 714 15.9.8 The Bipolar Junction Transistor 715 15.10 Direct Linking of FDTD and SPICE 717 15.10.1 Basic Idea 718 15.10.2 Norton Equivalent Circuit Looking Into the FDTD Space Lattice 719 15.10.3 Thevenin Equivalent Circuit Looking Into the FDTD Space Lattice 721 15.11 Case Study: A 6 GHz MESFET Amplifier Model 723 15.11.1 Large Signal Nonlinear Model 723 15.11.2 Amplifier Configuration 725 15.11.3 Analysis of the Circuit without the Packaging Structure 726 15.11.4 Analysis of the Circuit with the Packaging Structure 728 15.12 Emerging Topic: Wireless High Speed Digital Interconnects Using Defect Mode Electromagnetic Bandgap Waveguides 731 15.12.1 Stopband of the Defect Free Two Dimensional EBG Structure 732 15.12.2 Passband of the Two Dimensional EBG Structure with Waveguiding Defect 732 15.12.3 Laboratory Experiments and Supporting FDTD Modeling 734 15.13 Summary and Conclusions 736 Acknowledgments 737 References 737 Selected Bibliography 740 Projects 741 16 Photonics Geoffrey Burr, Susan Hagness, and Allen Taftove 743 16.1 Introduction 743 16.2 Introduction to Index Contrast Guided Wave Structures 743 16.3 FDTD Modeling Issues 744 16.3.1 Optical Waveguides 744 16.3.2 Material Dispersion and Nonlinearities 747 16.4 Laterally Coupled Microcavity Ring Resonators 747 16.4.1 Modeling Considerations: Two Dimensional FDTD Simulations 748 16.4.2 Coupling to Straight Waveguides 750 16.4.3 Coupling to Curved Waveguides 750 16.4.4 Elongated Ring Designs ( Racetracks ) 752 16.4.5 Resonances of the Circular Ring 752 16.5 Laterally Coupled Microcavity Disk Resonators 756 16.5.1 Resonances 756 16.5.2 Suppression of Higher Order Radial Whispering Gallery Modes 760 16.6 Vertically Coupled Racetrack 761 16.7 Introduction to Distributed Bragg Reflector Devices 765 16.8 Application to Vertical Cavity Surface Emitting Lasers 765 16.8.1 Passive Studies 766 16.8.2 Active Studies: Application of the Classical Gain Model 767 16.8.3 Application of a New Semiclassical Gain Model 769 16.9 Quasi One Dimensional DBR Structures 770 16.10 Introduction to Photonic Crystals 772 16.11 Calculation of Band Structure 774 16.11.1 The Order AT Method 775 16.11.2 Frequency Resolution 778 16.11.3 Filter Diagonalization Method 780 16.11.4 The Triangular Photonic Crystal Lattice 782 16.11.5 Sources of Error and Their Mitigation 784 16.12 Calculation of Mode Patterns 787 16.13 Variational Approach 790 16.14 Modeling of Defect Mode Photonic Crystal Waveguides 791 16.14.1 Band Diagram of a Photonic Crystal Slab 793 16.14.2 Band Diagram of a Photonic Crystal Waveguide 795 16.14.3 Intrinsic Loss in Photonic Crystal Waveguides 798 16.14.4 Transmission in Photonic Crystal Waveguides 803 16.14.5 Aperiodic Photonic Crystal Waveguides 806 16.14.6 Photonic Crystal Waveguide Extrinsic Scattering Loss from the Green Function 806 16.15 Modeling of Photonic Crystal Resonators 807 16.16 Modeling Examples of Photonic Crystal Resonators 810 16.16.1 Electrically Driven Microcavity Laser 810 16.16.2 Photonic Crystal Cross Waveguide Switch 812 16.17 Introduction to Frequency Conversion in Second Order Nonlinear Optical Materials 813 16.18 PSTD 4 Algorithm 813 16.19 Extension to Second Order Nonlinear Media 814 16.20 Application to a Nonlinear Waveguide with a QPM Grating 814 16.21 Application to Nonlinear Photonic Crystals 817 16.22 Introduction to Nanoplasmonic Devices 820 16.23 FDTD Modeling Considerations 820 16.24 FDTD Modeling Applications 821 16.25 Introduction to Biophotonics 822 16.26 FDTD Modeling Applications 822 16.26.1 Vertebrate Retinal Rod 822 16.26.2 Precancerous Cervical Cells 824 16.26.3 Sensitivity of Backscattering Signatures to Nanometer Scale Cellular Changes 827 16.27 PSTD Modeling Application to Tissue Optics 828 16.28 Summary 830 Acknowledgments 830 References 830 17 Advances in PSTD Techniques Qing Liu and Gang Zhao 847 17.1 Introduction 847 17.2 Approximation of Derivatives 847 17.2.1 Derivative Matrix for the Second Order Finite Difference Method 848 17.2.2 Derivative Matrices for Fourth Order and ATth Order Finite Difference Methods 849 17.2.3 Trigonometric Interpolation and FFT Method 850 17.2.4 Nonperiodic Functions and Chebyshev Method 851 17.3 Single Domain Fourier PSTD Method 854 17.3.1 Approximation of Spatial Derivatives 855 17.3.2 Numerical Stability and Dispersion 856 17.4 Single Domain Chebyshev PSTD Method 857 17.4.1 Spatial and Temporal Grids 857 17.4.2 Maxwell s Equations in Curvilinear Coordinates 858 17.4.3 Spatial Derivatives 860 17.4.4 Time Integration Scheme 861 17.5 Multidomain Chebyshev PSTD Method 861 17.5.1 Subdomain Spatial Derivatives and Time Integration 862 17.5.2 Subdomain Patching by Characteristics 863 17.5.3 Subdomain Patching by Physical Conditions 864 17.5.4 Filter Design for Corner Singularities 864 17.5.5 Multidomain PSTD Results for 2.5 Dimensional Problems 866 17.5.6 Multidomain PSTD Results for Three Dimensional Problems 868 17.6 Penalty Method for Multidomain PSTD Algorithm 868 17.7 Discontinuous Galerkin Method for PSTD Boundary Patching 87 3 17.7.1 Weak Form of Maxwell s Equations 873 17.7.2 Space Discretization and Domain Transformation 873 17.7.3 Mass Matrix and Stiffness Matrix 874 17.7.4 Flux on the Boundary 876 17.7.5 Numerical Results for DG PSTD Method 876 17.8 Summary and Conclusions 879 Appendix 17A: Coefficients for the Five Stage, Fourth Order Runge Kutta Method 879 References 880 18 Advances in Unconditionally Stable Techniques Hans De Raedt 883 18.1 Introduction 883 18.2 General Framework 883 18.3 Matrix Exponential Concepts 884 18.4 Product Formula Approach 887 18.4.1 The Classic Yee Algorithm as a Particular Realization 887 18.4.2 The ADI Method as a Second Realization 888 18.4.3 Unconditionally Stable Algorithms: Real Space Approach 889 18.4.4 Unconditionally Stable Algorithms: Fourier Space Approach 891 18.5 Chebyshev Polynomial Algorithm 892 18.6 Extension to Linear Dispersive Media 895 18.7 Extension to Perfectly Matched Layer Absorbing Boundary Conditions 898 18.8 Summary 899 Appendix 18 A: Some Technical Details 900 Appendix 18B: Stability Analysis of Equation (18.17) 902 Appendix 18C: Stability Analysis of Equation (18.19) 904 References 904 Projects 905 19 Advances in Hybrid FDTD FE Techniques Thomas Rylander, Fredrik Edelvik, Anders Bondeson, and Douglas Riley 907 19.1 Introduction 907 19.2 Time Domain Finite Elements 910 19.2.1 Coupled Curl Equations 910 19.2.2 Wave Equation 913 19.2.3 Equivalences Between Finite Elements and FDTD 917 19.3 Tetrahedral, Hexahedral (Brick), and Pyramidal Zeroth Order Edge and Facet Elements 918 19.3.1 Tetrahedral Finite Elements 919 19.3.2 Hexahedral (Brick) Finite Elements 921 19.3.3 Pyramidal Finite Elements 922 19.4 Stable Hybrid FDTD FE Interface 924 19.4.1 Spatial Discretization 924 19.4.2 Time Stepping on a Hybrid Space Lattice 927 19.4.3 Generalized Newmark Scheme 928 19.4.4 Proof of Stability 929 19.4.5 Alternative Time Stepping Schemes 930 19.4.6 Extensions of the Hybrid FDTD FE Concept 931 19.4.7 Reflection at the Interface of FDTD and FE Regions of a Hybrid Space Lattice 931 19.4.8 Scattering from the PEC Sphere 933 19.5 Mesh Generation Approaches 935 19.6 Subcell Wire and Slot Algorithms for Time Domain Finite Elements 936 19.6.1 Modeling Thin Wires 936 19.6.2 Modeling Thin Slots 939 19.6.3 Numerical Results for Thin Wires and Slots 941 19.7 Application to Advanced Scattering and Radiation Problems 943 19.7.1 Monostatic RCS of the NASA Almond 943 19.7.2 Bistatic RCS of the Saab Trainer Aircraft 945 19.7.3 Input Impedance of the Four Arm Sinuous Antenna 948 19.8 Summary 949 Acknowledgments 950 References 950 20 Advances in Hardware Acceleration for FDTD Ryan Schneider, Sean Krakiwsky, Laurence Turner, and Michal Okoniewski 955 20.1 Introduction 955 20.2 Background Literature 956 20.3 Fundamental Design Considerations 957 20.4 Conceptual Massively Parallel FPGA Implementation 958 20.5 Case Study of Using the FPGA as a Coprocessor 962 20.6 Performance of Custom Hardware Implementations 964 20.7 Fundamentals of Graphics Processor Units 965 20.7.1 Overview 965 20.7.2 Graphics Pipeline 965 20.7.3 Memory Interface 967 20.7.4 Programmable Fragment and Vertex Processors 968 20.8 Implementing FDTD on a Graphics Processor Unit 969 20.8.1 Initialization 969 20.8.2 Electric and Magnetic Field Updates 970 20.8.3 Boundaries 972 20.8.4 Source Excitation 974 20.8.5 Archiving Observation Nodes 975 20.8.6 Multipass Rendering 975 20.8.7 Display 977 20.9 Performance Measurements of the GPU Accelerator 977 20.10 Summary and Conclusions 978 References 978 Acronyms and Common Symbols 981 About the Authors 985 Index 997
adam_txt Contents Preface to the Third Edition xix 1 Electrodynamics Entering the 21st Century 1 1.1 Introduction 1 1.2 The Heritage of Military Defense Applications 1 1.3 Frequency Domain Solution Techniques 2 1.4 Rise of Finite Difference Time Domain Methods 3 1.5 History of FDTD Techniques for Maxwell' s Equations 4 1.6 Characteristics of FDTD and Related Space Grid Time Domain Techniques 6 1.6.1 Classes of Algorithms 6 1.6.2 Predictive Dynamic Range 7 1.6.3 Scaling to Very Large Problem Sizes 8 1.7 Examples of Applications 9 1.7.1 Impulsive Around the World Extremely Low Frequency Propagation 10 1.7.2 Cellphone Radiation Interacting with the Human Head 11 1.7.3 Early Stage Detection of Breast Cancer Using an Ultrawideband Microwave Radar 11 1.7.4 Homing Accuracy of a Radar Guided Missile 12 1.7.5 Electromagnetic Wave Vulnerabilities of a Military Jet Plane 12 1.7.6 Millimeter Wave Propagation in a Defect Mode Electromagnetic Bandgap Structure 13 1.7.7 Photonic Crystal Microcavity Laser 14 1.7.8 Photonic Crystal Cross Waveguide Switch 15 1.8 Conclusions 16 References 16 2 The One Dimensional Scalar Wave Equation 21 2.1 Introduction 21 2.2 Propagating Wave Solutions 21 2.3 Dispersion Relation 22 2.4 Finite Differences 23 2.5 Finite Difference Approximation of the Scalar Wave Equation 24 2.6 Numerical Dispersion Relation 27 2.6.1 Case 1: Very Fine Sampling in Time and Space 28 2.6.2 Case 2: Magic Time Step 29 2.6.3 Case 3: Dispersive Wave Propagation 29 2.6.4 Example of Calculation of Numerical Phase Velocity and Attenuation 34 2.6.5 Examples of Calculations of Pulse Propagation 34 2.7 Numerical Stability 39 2.7.1 Complex Frequency Analysis 40 2.7.2 Examples of Calculations Involving Numerical Instability 43 2.8 Summary 45 Appendix 2A: Order of Accuracy 47 2A.1 Lax Richtmyer Equivalence Theorem 47 2A.2 Limitations 48 References 48 Selected Bibliography on Stability of Finite Difference Methods 49 Problems 49 v 3 Introduction to Maxwell's Equations and the Yee Algorithm Allen Taflove and Jamesina Simpson 51 3.1 Introduction 51 3.2 Maxwell's Equations in Three Dimensions 51 3.3 Reduction to Two Dimensions 54 3.3.1 TMzMode 55 3.3.2 TEzMode 55 3.4 Reduction to One Dimension 56 3.4.1 x Directed, z Polarized TEM Mode 56 3.4.2 x Directed, y Polarized TEM Mode 57 3.5 Equivalence to the Wave Equation in One Dimension 57 3.6 The Yee Algorithm 58 3.6.1 Basic Ideas 58 3.6.2 Finite Differences and Notation 60 3.6.3 Finite Difference Expressions for Maxwell's Equations in Three Dimensions 62 3.6.4 Space Region with a Continuous Variation of Material Properties 67 3.6.5 Space Region with a Finite Number of Distinct Media 69 3.6.6 Space Region with Nonpermeable Media 71 3.6.7 Reduction to the Two Dimensional TMz and TEz Modes 73 3.6.8 Interpretation as Faraday's and Ampere's Laws in Integral Form 75 3.6.9 Divergence Free Nature 78 3.7 Alternative Finite Difference Grids 80 3.7.1 Cartesian Grids 80 3.7.2 Hexagonal Grids 82 3.8 Emerging Application: Gridding the Planet Earth 85 3.8.1 Background 85 3.8.2 The Latitude Longitude Space Lattice 86 3.8.3 The Geodesic (Hexagon Pentagon) Grid 99 3.9 Summary 103 References 104 Problems 105 4 Numerical Dispersion and Stability 107 4.1 Introduction 107 4.2 Derivation of the Numerical Dispersion Relation for Two Dimensional Wave Propagation 107 4.3 Extension to Three Dimensions 110 4.4 Comparison with the Ideal Dispersion Case 111 4.5 Anisotropy of the Numerical Phase Velocity 111 4.5.1 Sample Values of Numerical Phase Velocity 111 4.5.2 Intrinsic Grid Velocity Anisotropy 116 4.6 Complex Valued Numerical Wavenumbers 120 4.6.1 Case 1: Numerical Wave Propagation Along the Principal Lattice Axes 121 4.6.2 Case 2: Numerical Wave Propagation Along a Grid Diagonal 123 4.6.3 Example of Calculation of Numerical Phase Velocity and Attenuation 126 4.6.4 Example of Calculation of Wave Propagation 126 4.7 Numerical Stability 128 4.7.1 Complex Frequency Analysis 130 4.7.2 Example of a Numerically Unstable Two Dimensional FDTD Model 135 4.7.3 Linear Growth Mode When the Normalized Courant Factor Equals 1 137 4.8 Generalized Stability Problem 137 4.8.1 Absorbing and Impedance Boundary Conditions 137 4.8.2 Variable and Unstructured Meshing 137 4.8.3 Lossy, Dispersive, Nonlinear, and Gain Materials 138 4.9 Modified Yee Based Algorithms for Mitigating Numerical Dispersion 138 4.9.1 Strategy 1: Center a Specific Numerical Phase Velocity Curve About c 138 4.9.2 Strategy 2: Use Fourth Order Accurate Explicit Spatial Differences 139 4.9.3 Strategy 3: Use a Hexagonal Grid, If Possible 146 4.9.4 Strategy 4: Use Discrete Fourier Transforms to Calculate the Spatial Derivatives 150 4.10 Alternating Direction Implicit Time Stepping Algorithm for Operation Beyond the Courant Limit 154 4.10.1 Numerical Formulation of the Zheng/Chen/Zhang Algorithm 155 4.10.2 Sources 161 4.10.3 Numerical Stability 161 4.10.4 Numerical Dispersion 163 4.10.5 Additional Accuracy Limitations and Their Implications 164 4.11 Summary 164 References 165 Problems 166 Projects 167 5 Incident Wave Source Conditions Allen Taflove, Geoff Waldschmidt, Christopher Wagner, John Schneider, and Susan Hagness 169 5.1 Introduction 169 5.2 Pointwise E and H Hard Sources in One Dimension 169 5.3 Pointwise E and H Hard Sources in Two Dimensions 171 5.3.1 Green Function for the Scalar Wave Equation in Two Dimensions 171 5.3.2 Obtaining Comparative FDTD Data 172 5.3.3 Results for Effective Action Radius of a Hard Sourced Field Component 173 5.4 / and M Current Sources in Three Dimensions 175 5.4.1 Sources and Charging 176 5.4.2 Sinusoidal Sources 178 5.4.3 Transient (Pulse) Sources 178 5.4.4 Intrinsic Lattice Capacitance 179 5.4.5 Intrinsic Lattice Inductance 183 5.4.6 Impact upon FDTD Simulations of Lumped Element Capacitors and Inductors 183 5.5 The Plane Wave Source Condition 185 5.6 The Total Field / Scattered Field Technique: Ideas and One Dimensional Formulation 186 5.6.1 Ideas 186 5.6.2 One Dimensional Formulation 188 5.7 Two Dimensional Formulation of the TF/ SF Technique 193 5.7.1 Consistency Conditions 193 5.7.2 Calculation of the Incident Field 197 5.7.3 Illustrative Example 201 5.8 Three Dimensional Formulation of the TF/SF Technique 204 5.8.1 Consistency Conditions 204 5.8.2 Calculation of the Incident Field 210 5.9 Advanced Dispersion Compensation in the TF/SF Technique 213 5.9.1 Matched Numerical Dispersion Technique 214 5.9.2 Analytical Field Propagation 218 5.10 Scattered Field Formulation 220 5.10.1 Application to PEC Structures 220 5.10.2 Application to Lossy Dielectric Structures 221 5.10.3 Choice of Incident Plane Wave Formulation 223 5.11 Waveguide Source Conditions 223 5.11.1 Pulsed Electric Field Modal Hard Source 223 5.11.2 Total Field / Reflected Field Modal Formulation 225 5.11.3 Resistive Source and Load Conditions 225 5.12 Summary 226 References 227 Problems 227 Projects 228 6 Analytical Absorbing Boundary Conditions 229 6.1 Introduction 229 6.2 Bayliss Turkel Radiation Operators 230 6.2.1 Spherical Coordinates 231 6.2.2 Cylindrical Coordinates 234 6.3 Engquist Majda One Way Wave Equations 236 6.3.1 One Term and Two Term Taylor Series Approximations 237 6.3.2 Mur Finite Difference Scheme 240 6.3.3 Trefethen Halpern Generalized and Higher Order ABCs 243 6.3.4 Theoretical Reflection Coefficient Analysis 245 6.3.5 Numerical Experiments 247 6.4 Higdon Radiation Operators 252 6.4.1 Formulation 252 6.4.2 First Two Higdon Operators 253 6.4.3 Discussion 254 6.5 Liao Extrapolation in Space and Time 255 6.5.1 Formulation 255 6.5.2 Discussion 257 6.6 Ramahi Complementary Operators 259 6.6.1 Basic Idea 259 6.6.2 Complementary Operators 260 6.6.3 Effect of Multiple Wave Reflections 260 6.6.4 Basis of the Concurrent Complementary Operator Method 261 6.6.5 Illustrative FDTD Modeling Results Obtained Using the C COM 267 6.7 Summary 270 References 270 Problems 271 7 Perfectly Matched Layer Absorbing Boundary Conditions Stephen Gedney 273 7.1 Introduction 273 7.2 Plane Wave Incident upon a Lossy Half Space 274 7.3 Plane Wave Incident upon Berenger's PML Medium 276 7.3.1 Two Dimensional TE2 Case 276 7.3.2 Two Dimensional TMz Case 281 7.3.3 Three Dimensional Case 281 7.4 Stretched Coordinate Formulation of Berenger's PML 282 7.5 An Anisotropic PML Absorbing Medium 285 7.5.1 Perfectly Matched Uniaxial Medium 285 7.5.2 Relationship to Berenger's Split Field PML 288 7.5.3 A Generalized Three Dimensional Formulation 289 7.5.4 Inhomogeneous Media 290 7.6 Theoretical Performance of the PML 291 7.6.1 The Continuous Space 291 7.6.2 The Discrete Space 292 7.7 Complex Frequency Shifted Tensor 294 7.7.1 Introduction 294 7.7.2 Strategy to Reduce Late Time (Low Frequency) Reflections 296 7.8 Efficient Implementation of UPML in FDTD 297 7.8.1 Derivation of the Finite Difference Expressions 298 7.8.2 Computer Implementation of the UPML 301 7.9 Efficient Implementation of CPML in FDTD 302 7.9.1 Derivation of the Finite Difference Expressions 302 7.9.2 Computer Implementation of the CPML 307 7.10 Application of CPML in FDTD to General Media 310 7.10.1 Introduction 310 7.10.2 Example: Application of CPML to the Debye Medium 310 7.11 Numerical Experiments with PML 313 7.11.1 Current Source Radiating in an Unbounded Two Dimensional Region 313 7.11.2 Highly Elongated Domains and Edge Singularities 317 7.11.3 Microstrip Patch Antenna Array 320 7.11.4 Dispersive Media 322 7.12 Summary and Conclusions 324 References 324 Projects 327 8 Near to Far Field Transformation Allen Taflove, Xu Li, and Susan Hagness 329 8.1 Introduction 329 8.2 Two Dimensional Transformation, Phasor Domain 329 8.2.1 Application of Green's Theorem 330 8.2.2 Far Field Limit 332 8.2.3 Reduction to Standard Form 334 8.3 Obtaining Phasor Quantities Via Discrete Fourier Transformation 335 8.4 Surface Equivalence Theorem 338 8.5 Extension to Three Dimensions, Phasor Domain 340 8.6 Time Domain Near to Far Field Transformation 343 8.7 Modified NTFF Procedure to More Accurately Calculate Backscattering from Strongly Forward Scattering Objects 348 8.8 Summary 351 References 351 Project 352 9 Dispersive, Nonlinear, and Gain Materials Allen Taflove, Susan Hagness, Wojciech Gwarek, Masafumi Fujii, and Shih Hui Chang 353 9.1 Introduction 353 9.2 Generic Isotropic Material Dispersions 354 9.2.1 Debye Media 354 9.2.2 Lorentz Media 354 9.2.3 Drude Media 355 9.3 Piecewise Linear Recursive Convolution Method, Linear Material Case 355 9.3.1 General Formulation 356 9.3.2 Application to Debye Media 358 9.3.3 Application to Lorentz Media 358 9.3.4 Numerical Results 360 9.4 Auxiliary Differential Equation Method, Linear Material Case 361 9.4.1 Formulation for Multiple Debye Poles 361 9.4.2 Formulation for Multiple Lorentz Pole Pairs 363 9.4.3 Formulation for Multiple Drude Poles 365 9.4.4 Illustrative Numerical Results 367 9.5 Modeling of Linear Magnetized Ferrites 369 9.5.1 Equivalent RLC Model 370 9.5.2 Time Stepping Algorithm 371 9.5.3 Extension to the Three Dimensional Case, Including Loss 373 9.5.4 Illustrative Numerical Results 374 9.5.5 Comparison of Computer Resources 375 9.6 Auxiliary Differential Equation Method, Nonlinear Dispersive Material Case 376 9.6.1 Strategy 376 9.6.2 Contribution of the Linear Debye Polarization 377 9.6.3 Contribution of the Linear Lorentz Polarization 377 9.6.4 Contributions of the Third Order Nonlinear Polarization 378 9.6.5 Electric Field Update 380 9.6.6 Illustrative Numerical Results for Temporal Solitons 381 9.6.7 Illustrative Numerical Results for Spatial Solitons 383 9.7 Auxiliary Differential Equation Method, Macroscopic Modeling of Saturable, Dispersive Optical Gain Materials 387 9.7.1 Theory 387 9.7.2 Validation Studies 390 9.8 Auxiliary Differential Equation Method, Modeling of Lasing Action in a Four Level Two Electron Atomic System 394 9.8.1 Quantum Physics Basis 394 9.8.2 Coupling to Maxwell's Equations 398 9.8.3 Time Stepping Algorithm 398 9.8.4 Illustrative Results 400 9.9 Summary and Conclusions 402 References 404 Problems 405 Projects 406 10 Local Subcell Models of Fine Geometrical Features Allen Taflove, Malgorzata Celuch Marcysiak, and Susan Hagness 407 10.1 Introduction 407 10.2 Basis of Contour Path FDTD Modeling 408 10.3 The Simplest Contour Path Subcell Models 408 10.3.1 Diagonal Split Cell Model for PEC Surfaces 410 10.3.2 Average Properties Model for Material Surfaces 410 10.4 The Contour Path Model of the Narrow Slot 411 10.5 The Contour Path Model of the Thin Wire 415 10.6 Locally Conformal Models of Curved Surfaces 420 10.6.1 Yu Mittra Technique for PEC Structures 420 10.6.2 Illustrative Results for PEC Structures 421 10.6.3 Yu Mittra Technique for Material Structures 424 10.7 Maloney Smith Technique for Thin Material Sheets 427 10.7.1 Basis 427 10.7.2 Illustrative Results 430 10.8 Surface Impedance 432 10.8.1 The Monochromatic SIBC 434 10.8.2 Convolution Based Models of the Frequency Dependent SIBC 436 10.8.3 Equivalent Circuit Model of the Frequency Dependent SIBC 442 10.8.4 Sources of Error 445 10.8.5 Discussion 446 10.9 Thin Coatings on a PEC Surface 447 10.9.1 Method of Lee etal. 447 10.9.2 Method of Karkkainen 450 10.10 Relativistic Motion of PEC Boundaries 450 10.10.1 Basis 451 10.10.2 Illustrative Results 454 10.11 Summary and Discussion 458 References 458 Selected Bibliography 460 Projects 461 11 Nonuniform Grids, Nonorthogonal Grids, Unstructured Grids, and Subgrids Stephen Gedney, Faiza Lansing, and Nicolas Chavannes 463 11.1 Introduction 463 11.2 Nonuniform Orthogonal Grids 464 11.3 Locally Conformal Grids, Globally Orthogonal 471 11.4 Global Curvilinear Coordinates 471 11.4.1 Nonorthogonal Curvilinear FDTD Algorithm 471 11.4.2 Stability Criterion 477 11.5 Irregular Nonorthogonal Structured Grids 480 11.6 Irregular Nonorthogonal Unstructured Grids 486 11.6.1 Generalized Yee Algorithm 487 11.6.2 Inhomogeneous Media 491 11.6.3 Practical Implementation of the Generalized Yee Algorithm 493 11.7 A Planar Generalized Yee Algorithm 494 11.7.1 Time Stepping Expressions 495 11.7.2 Projection Operators 496 11.7.3 Efficient Time Stepping Implementation 498 11.7.4 Modeling Example: 32 GHz Wilkinson Power Divider 499 11.8 Cartesian Subgrids 501 11.8.1 Geometry 502 11.8.2 Time Stepping Scheme 503 11.8.3 Spatial Interpolation 504 11.8.4 Numerical Stability Considerations 505 11.8.5 Reflection from the Interface of the Primary Grid and Subgrid 505 11.8.6 Illustrative Results: Helical Antenna on Generic Cellphone at 900 MHz 508 11.8.7 Computational Efficiency 510 11.9 Summary and Conclusions 510 References 511 Problems 514 Projects 515 12 Bodies of Revolution Thomas Jurgens, Jeffrey Blaschak, and Gregory Saewert 517 12.1 Introduction 517 12.2 Field Expansion 517 12.3 Difference Equations for Off Axis Cells 519 12.3.1 Ampere' s Law Contour Path Integral to Calculate er 519 12.3.2 Ampere's Law Contour Path Integral to Calculate e^ 521 12.3.3 Ampere's Law Contour Path Integral to Calculate ez 523 12.3.4 Difference Equations 525 12.3.5 Surface Conforming Contour Path Integrals 528 12.4 Difference Equations for On Axis Cells 529 12.4.1 Ampere's Law Contour Path Integral to Calculate ez on the z Axis 529 12.4.2 Ampere's Law Contour Path Integral to Calculate e^ on the z Axis 532 12.4.3 Faraday's Law Calculation of hr on the z Axis 534 12.5 Numerical Stability ' 535 12.6 PML Absorbing Boundary Condition 536 12.6.1 BOR FDTD Background 536 12.6.2 Extension ofPML to the General BOR Case 537 12.6.3 Examples 543 12.7 Application to Particle Accelerator Physics 543 12.7.1 Definitions and Concepts 545 12.7.2 Examples 547 12.8 Summary 550 References 550 Problems 551 Projects 552 13 Periodic Structures James Maloney and Morris Kesler 553 13.1 Introduction 553 13.2 Review of Scattering from Periodic Structures 555 13.3 Direct Field Methods 559 13.3.1 Normal Incidence Case 559 13.3.2 Multiple Unit Cells for Oblique Incidence 560 13.3.3 Sine Cosine Method 562 13.3.4 Angled Update Method 563 13.4 Introduction to the Field Transformation Technique 567 13.5 Multiple Grid Approach 571 13.5.1 Formulation 571 13.5.2 Numerical Stability Analysis 573 13.5.3 Numerical Dispersion Analysis 574 13.5.4 Lossy Materials 575 13.5.5 Lossy Screen Example 577 13.6 Split Field Method, Two Dimensions 578 13.6.1 Formulation 578 13.6.2 Numerical Stability Analysis 580 13.6.3 Numerical Dispersion Analysis 581 13.6.4 Lossy Materials 582 13.6.5 Lossy Screen Example 583 13.7 Split Field Method, Three Dimensions 583 13.7.1 Formulation 584 13.7.2 Numerical Stability Analysis 589 13.7.3 UPML Absorbing Boundary Condition 590 13.8 Application of the Periodic FDTD Method 594 13.8.1 Electromagnetic Bandgap Structures 595 13.8.2 Frequency Selective Surfaces 597 13.8.3 Antenna Arrays 597 13.9 Summary and Conclusions 603 Acknowledgments 603 References 603 Projects 605 14 Antennas James Maloney, Glenn Smith, Eric Thiele, Om Gandhi, Nicolas Chavannes, and Susan Hagness 607 14.1 Introduction 607 14.2 Formulation of the Antenna Problem 607 14.2.1 Transmitting Antenna 607 14.2.2 Receiving Antenna 609 14.2.3 Symmetry 610 14.2.4 Excitation 611 14.3 Antenna Feed Models 612 14.3.1 Detailed Modeling of the Feed 613 14.3.2 Simple Gap Feed Model for a Monopole Antenna 614 14.3.3 Improved Simple Feed Model 617 14.4 Near to Far Field Transformations 621 14.4.1 Use of Symmetry 621 14.4.2 Time Domain Near to Far Field Transformation 622 14.4.3 Frequency Domain Near to Far Field Transformation 624 14.5 Plane Wave Source 625 14.5.1 Effect of an Incremental Displacement of the Surface Currents 625 14.5.2 Effect of an Incremental Time Shift 627 14.5.3 Relation to Total Field / Scattered Field Lattice Zoning 628 14.6 Case Study I: The Standard Gain Horn 628 14.7 Case Study II: The Vivaldi Slotline Array 634 14.7.1 Background 634 14.7.2 The Planar Element 635 14.7.3 The Vivaldi Pair 637 14.7.4 The Vivaldi Quad 639 14.7.5 The Linear Phased Array 640 14.7.6 Phased Array Radiation Characteristics Indicated by the FDTD Modeling 641 14.7.7 Active Impedance of the Phased Array 644 14.8 Near Field Simulations 647 14.8.1 Generic 900 MHz Cellphone Handset in Free Space 647 14.8.2 900 MHz Dipole Antenna Near a Layered Bone Brain Half Space 649 14.8.3 840 MHz Dipole Antenna Near a Rectangular Brain Phantom 650 14.8.4 900 MHz Infinitesimal Dipole Antenna Near a Spherical Brain Phantom 650 14.8.5 1.9 GHz Half Wavelength Dipole Near a Spherical Brain Phantom 652 14.9 Case Study III: The Motorola T250 Tri Band Phone 653 14.9.1 FDTD Phone Model 654 14.9.2 Measurement Procedures 656 14.9.3 Free Space Near Field Investigations and Assessment of Design Capabilities 656 14.9.4 Performance in Loaded Conditions (SAM and MRI Based Human Head Model) 657 14.9.5 Radiation Performance in Free Space and Adjacent to the SAM Head 659 14.9.6 Computational Requirements 661 14.9.7 Overall Assessment 661 14.10 Selected Additional Applications 661 14.10.1 Use of Electromagnetic Bandgap Materials 662 14.10.2 Ground Penetrating Radar 663 14.10.3 Antenna Radome Interaction 667 14.10.4 Biomedical Applications of Antennas 669 14.11 Summary and Conclusions 671 References 671 Projects 676 15 High Speed Electronic Circuits with Active and Nonlinear Components Melinda Piket May, Wojciech Gwarek, Tzong Lin Wu, Bijan Houshmand, Tatsuo Itoh, and Jamesina Simpson (HI 15.1 Introduction 677 15.2 Basic Circuit Parameters for TEM Striplines and Microstrips 679 15.2.1 Transmission Line Parameters 679 15.2.2 Impedance 680 15.2.3 S Parameters 680 15.2.4 Differential Capacitance 681 15.2.5 Differential Inductance 682 15.3 Lumped Inductance Due to a Discontinuity 682 15.3.1 Flux /Current Definition 684 15.3.2 Fitting Z( o) or S(a) to an Equivalent Circuit 684 15.3.3 Discussion: Choice of Methods 685 15.4 Inductance of Complex Power Distribution Systems 685 15.4.1 Method Description 685 15.4.2 Example: Multiplane Meshed Printed Circuit Board 687 15.4.3 Discussion 688 15.5 Parallel Coplanar Microstrips 688 15.6 Multilayered Interconnect Modeling 690 15.7 5 Parameter Extraction for General Waveguides 692 15.8 Digital Signal Processing and Spectrum Estimation 694 15.8.1 Prony's Method 695 15.8.2 Autoregressive Models 697 15.8.3 Pad6 Approximation 702 15.9 Modeling of Lumped Circuit Elements 706 15.9.1 FDTD Formulation Extended to Circuit Elements 706 15.9.2 The Resistor 708 15.9.3 The Resistive Voltage Source 708 15.9.4 The Capacitor 709 15.9.5 The Inductor 711 15.9.6 The Arbitrary Two Terminal Linear Lumped Network 711 15.9.7 The Diode 714 15.9.8 The Bipolar Junction Transistor 715 15.10 Direct Linking of FDTD and SPICE 717 15.10.1 Basic Idea 718 15.10.2 Norton Equivalent Circuit "Looking Into" the FDTD Space Lattice 719 15.10.3 Thevenin Equivalent Circuit "Looking Into" the FDTD Space Lattice 721 15.11 Case Study: A 6 GHz MESFET Amplifier Model 723 15.11.1 Large Signal Nonlinear Model 723 15.11.2 Amplifier Configuration 725 15.11.3 Analysis of the Circuit without the Packaging Structure 726 15.11.4 Analysis of the Circuit with the Packaging Structure 728 15.12 Emerging Topic: Wireless High Speed Digital Interconnects Using Defect Mode Electromagnetic Bandgap Waveguides 731 15.12.1 Stopband of the Defect Free Two Dimensional EBG Structure 732 15.12.2 Passband of the Two Dimensional EBG Structure with Waveguiding Defect 732 15.12.3 Laboratory Experiments and Supporting FDTD Modeling 734 15.13 Summary and Conclusions 736 Acknowledgments 737 References 737 Selected Bibliography 740 Projects 741 16 Photonics Geoffrey Burr, Susan Hagness, and Allen Taftove 743 16.1 Introduction 743 16.2 Introduction to Index Contrast Guided Wave Structures 743 16.3 FDTD Modeling Issues 744 16.3.1 Optical Waveguides 744 16.3.2 Material Dispersion and Nonlinearities 747 16.4 Laterally Coupled Microcavity Ring Resonators 747 16.4.1 Modeling Considerations: Two Dimensional FDTD Simulations 748 16.4.2 Coupling to Straight Waveguides 750 16.4.3 Coupling to Curved Waveguides 750 16.4.4 Elongated Ring Designs ("Racetracks") 752 16.4.5 Resonances of the Circular Ring 752 16.5 Laterally Coupled Microcavity Disk Resonators 756 16.5.1 Resonances 756 16.5.2 Suppression of Higher Order Radial Whispering Gallery Modes 760 16.6 Vertically Coupled Racetrack 761 16.7 Introduction to Distributed Bragg Reflector Devices 765 16.8 Application to Vertical Cavity Surface Emitting Lasers 765 16.8.1 Passive Studies 766 16.8.2 Active Studies: Application of the Classical Gain Model 767 16.8.3 Application of a New Semiclassical Gain Model 769 16.9 Quasi One Dimensional DBR Structures 770 16.10 Introduction to Photonic Crystals 772 16.11 Calculation of Band Structure 774 16.11.1 The "Order AT Method 775 16.11.2 Frequency Resolution 778 16.11.3 Filter Diagonalization Method 780 16.11.4 The Triangular Photonic Crystal Lattice 782 16.11.5 Sources of Error and Their Mitigation 784 16.12 Calculation of Mode Patterns 787 16.13 Variational Approach 790 16.14 Modeling of Defect Mode Photonic Crystal Waveguides 791 16.14.1 Band Diagram of a Photonic Crystal Slab 793 16.14.2 Band Diagram of a Photonic Crystal Waveguide 795 16.14.3 Intrinsic Loss in Photonic Crystal Waveguides 798 16.14.4 Transmission in Photonic Crystal Waveguides 803 16.14.5 Aperiodic Photonic Crystal Waveguides 806 16.14.6 Photonic Crystal Waveguide Extrinsic Scattering Loss from the Green Function 806 16.15 Modeling of Photonic Crystal Resonators 807 16.16 Modeling Examples of Photonic Crystal Resonators 810 16.16.1 Electrically Driven Microcavity Laser 810 16.16.2 Photonic Crystal Cross Waveguide Switch 812 16.17 Introduction to Frequency Conversion in Second Order Nonlinear Optical Materials 813 16.18 PSTD 4 Algorithm 813 16.19 Extension to Second Order Nonlinear Media 814 16.20 Application to a Nonlinear Waveguide with a QPM Grating 814 16.21 Application to Nonlinear Photonic Crystals 817 16.22 Introduction to Nanoplasmonic Devices 820 16.23 FDTD Modeling Considerations 820 16.24 FDTD Modeling Applications 821 16.25 Introduction to Biophotonics 822 16.26 FDTD Modeling Applications 822 16.26.1 Vertebrate Retinal Rod 822 16.26.2 Precancerous Cervical Cells 824 16.26.3 Sensitivity of Backscattering Signatures to Nanometer Scale Cellular Changes 827 16.27 PSTD Modeling Application to Tissue Optics 828 16.28 Summary 830 Acknowledgments 830 References 830 17 Advances in PSTD Techniques Qing Liu and Gang Zhao 847 17.1 Introduction 847 17.2 Approximation of Derivatives 847 17.2.1 Derivative Matrix for the Second Order Finite Difference Method 848 17.2.2 Derivative Matrices for Fourth Order and ATth Order Finite Difference Methods 849 17.2.3 Trigonometric Interpolation and FFT Method 850 17.2.4 Nonperiodic Functions and Chebyshev Method 851 17.3 Single Domain Fourier PSTD Method 854 17.3.1 Approximation of Spatial Derivatives 855 17.3.2 Numerical Stability and Dispersion 856 17.4 Single Domain Chebyshev PSTD Method 857 17.4.1 Spatial and Temporal Grids 857 17.4.2 Maxwell's Equations in Curvilinear Coordinates 858 17.4.3 Spatial Derivatives 860 17.4.4 Time Integration Scheme 861 17.5 Multidomain Chebyshev PSTD Method 861 17.5.1 Subdomain Spatial Derivatives and Time Integration 862 17.5.2 Subdomain Patching by Characteristics 863 17.5.3 Subdomain Patching by Physical Conditions 864 17.5.4 Filter Design for Corner Singularities 864 17.5.5 Multidomain PSTD Results for 2.5 Dimensional Problems 866 17.5.6 Multidomain PSTD Results for Three Dimensional Problems 868 17.6 Penalty Method for Multidomain PSTD Algorithm 868 17.7 Discontinuous Galerkin Method for PSTD Boundary Patching 87 3 17.7.1 Weak Form of Maxwell's Equations 873 17.7.2 Space Discretization and Domain Transformation 873 17.7.3 Mass Matrix and Stiffness Matrix 874 17.7.4 Flux on the Boundary 876 17.7.5 Numerical Results for DG PSTD Method 876 17.8 Summary and Conclusions 879 Appendix 17A: Coefficients for the Five Stage, Fourth Order Runge Kutta Method 879 References 880 18 Advances in Unconditionally Stable Techniques Hans De Raedt 883 18.1 Introduction 883 18.2 General Framework 883 18.3 Matrix Exponential Concepts 884 18.4 Product Formula Approach 887 18.4.1 The Classic Yee Algorithm as a Particular Realization 887 18.4.2 The ADI Method as a Second Realization 888 18.4.3 Unconditionally Stable Algorithms: Real Space Approach 889 18.4.4 Unconditionally Stable Algorithms: Fourier Space Approach 891 18.5 Chebyshev Polynomial Algorithm 892 18.6 Extension to Linear Dispersive Media 895 18.7 Extension to Perfectly Matched Layer Absorbing Boundary Conditions 898 18.8 Summary 899 Appendix 18 A: Some Technical Details 900 Appendix 18B: Stability Analysis of Equation (18.17) 902 Appendix 18C: Stability Analysis of Equation (18.19) 904 References 904 Projects 905 19 Advances in Hybrid FDTD FE Techniques Thomas Rylander, Fredrik Edelvik, Anders Bondeson, and Douglas Riley 907 19.1 Introduction 907 19.2 Time Domain Finite Elements 910 19.2.1 Coupled Curl Equations 910 19.2.2 Wave Equation 913 19.2.3 Equivalences Between Finite Elements and FDTD 917 19.3 Tetrahedral, Hexahedral (Brick), and Pyramidal Zeroth Order Edge and Facet Elements 918 19.3.1 Tetrahedral Finite Elements 919 19.3.2 Hexahedral (Brick) Finite Elements 921 19.3.3 Pyramidal Finite Elements 922 19.4 Stable Hybrid FDTD FE Interface 924 19.4.1 Spatial Discretization 924 19.4.2 Time Stepping on a Hybrid Space Lattice 927 19.4.3 Generalized Newmark Scheme 928 19.4.4 Proof of Stability 929 19.4.5 Alternative Time Stepping Schemes 930 19.4.6 Extensions of the Hybrid FDTD FE Concept 931 19.4.7 Reflection at the Interface of FDTD and FE Regions of a Hybrid Space Lattice 931 19.4.8 Scattering from the PEC Sphere 933 19.5 Mesh Generation Approaches 935 19.6 Subcell Wire and Slot Algorithms for Time Domain Finite Elements 936 19.6.1 Modeling Thin Wires 936 19.6.2 Modeling Thin Slots 939 19.6.3 Numerical Results for Thin Wires and Slots 941 19.7 Application to Advanced Scattering and Radiation Problems 943 19.7.1 Monostatic RCS of the NASA Almond 943 19.7.2 Bistatic RCS of the Saab Trainer Aircraft 945 19.7.3 Input Impedance of the Four Arm Sinuous Antenna 948 19.8 Summary 949 Acknowledgments 950 References 950 20 Advances in Hardware Acceleration for FDTD Ryan Schneider, Sean Krakiwsky, Laurence Turner, and Michal Okoniewski 955 20.1 Introduction 955 20.2 Background Literature 956 20.3 Fundamental Design Considerations 957 20.4 Conceptual Massively Parallel FPGA Implementation 958 20.5 Case Study of Using the FPGA as a Coprocessor 962 20.6 Performance of Custom Hardware Implementations 964 20.7 Fundamentals of Graphics Processor Units 965 20.7.1 Overview 965 20.7.2 Graphics Pipeline 965 20.7.3 Memory Interface 967 20.7.4 Programmable Fragment and Vertex Processors 968 20.8 Implementing FDTD on a Graphics Processor Unit 969 20.8.1 Initialization 969 20.8.2 Electric and Magnetic Field Updates 970 20.8.3 Boundaries 972 20.8.4 Source Excitation 974 20.8.5 Archiving Observation Nodes 975 20.8.6 Multipass Rendering 975 20.8.7 Display 977 20.9 Performance Measurements of the GPU Accelerator 977 20.10 Summary and Conclusions 978 References 978 Acronyms and Common Symbols 981 About the Authors 985 Index 997
any_adam_object 1
any_adam_object_boolean 1
author Taflove, Allen
Hagness, Susan C.
author_facet Taflove, Allen
Hagness, Susan C.
author_role aut
aut
author_sort Taflove, Allen
author_variant a t at
s c h sc sch
building Verbundindex
bvnumber BV021702542
classification_rvk UH 1000
ZN 3240
classification_tum ELT 044f
PHY 303f
ctrlnum (OCoLC)439544847
(DE-599)BVBBV021702542
discipline Physik
Elektrotechnik
Elektrotechnik / Elektronik / Nachrichtentechnik
discipline_str_mv Physik
Elektrotechnik
Elektrotechnik / Elektronik / Nachrichtentechnik
edition 3. ed.
format Book
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02488nam a2200613 c 4500</leader><controlfield tag="001">BV021702542</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20151105 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">060822s2005 ad|| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781580538329</subfield><subfield code="9">978-1-58053-832-9</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)439544847</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV021702542</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield><subfield code="a">DE-20</subfield><subfield code="a">DE-83</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-355</subfield><subfield code="a">DE-29T</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-384</subfield><subfield code="a">DE-11</subfield><subfield code="a">DE-91G</subfield></datafield><datafield tag="080" ind1=" " ind2=" "><subfield code="a">537</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UH 1000</subfield><subfield code="0">(DE-625)145634:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ZN 3240</subfield><subfield code="0">(DE-625)157303:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ELT 044f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">PHY 303f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Taflove, Allen</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Computational electrodynamics</subfield><subfield code="b">the finite-difference time-domain method</subfield><subfield code="c">Allen Taflove ; Susan C. Hagness</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">3. ed.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Boston [u.a.]</subfield><subfield code="b">Artech House</subfield><subfield code="c">2005</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XXII, 1006 S.</subfield><subfield code="b">Ill., graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Artech House antennas and propagation library</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Electrodynamics - Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Finite differences</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Time-domain analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Datenverarbeitung</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Electromagnetism</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Integro-differential equations</subfield><subfield code="x">Numerical solutions</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Maxwell equations</subfield><subfield code="x">Data processing</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Maxwell equations</subfield><subfield code="x">Numerical solutions</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Moments method (Statistics)</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Zeitbereich</subfield><subfield code="0">(DE-588)4130720-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Numerisches Verfahren</subfield><subfield code="0">(DE-588)4128130-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Maxwellsche Gleichungen</subfield><subfield code="0">(DE-588)4221398-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Elektrodynamik</subfield><subfield code="0">(DE-588)4014251-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Finite-Differenzen-Methode</subfield><subfield code="0">(DE-588)4194626-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Maxwellsche Gleichungen</subfield><subfield code="0">(DE-588)4221398-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Finite-Differenzen-Methode</subfield><subfield code="0">(DE-588)4194626-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Zeitbereich</subfield><subfield code="0">(DE-588)4130720-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Elektrodynamik</subfield><subfield code="0">(DE-588)4014251-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Numerisches Verfahren</subfield><subfield code="0">(DE-588)4128130-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hagness, Susan C.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HBZ Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&amp;doc_library=BVB01&amp;local_base=BVB01&amp;doc_number=014916470&amp;sequence=000002&amp;line_number=0001&amp;func_code=DB_RECORDS&amp;service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-014916470</subfield></datafield></record></collection>
id DE-604.BV021702542
illustrated Illustrated
index_date 2024-07-02T15:17:46Z
indexdate 2024-11-25T17:26:05Z
institution BVB
isbn 9781580538329
language English
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-014916470
oclc_num 439544847
open_access_boolean
owner DE-91
DE-BY-TUM
DE-20
DE-83
DE-703
DE-355
DE-BY-UBR
DE-29T
DE-19
DE-BY-UBM
DE-384
DE-11
DE-91G
DE-BY-TUM
owner_facet DE-91
DE-BY-TUM
DE-20
DE-83
DE-703
DE-355
DE-BY-UBR
DE-29T
DE-19
DE-BY-UBM
DE-384
DE-11
DE-91G
DE-BY-TUM
physical XXII, 1006 S. Ill., graph. Darst.
publishDate 2005
publishDateSearch 2005
publishDateSort 2005
publisher Artech House
record_format marc
series2 Artech House antennas and propagation library
spellingShingle Taflove, Allen
Hagness, Susan C.
Computational electrodynamics the finite-difference time-domain method
Electrodynamics - Mathematics
Finite differences
Time-domain analysis
Datenverarbeitung
Electromagnetism
Integro-differential equations Numerical solutions
Maxwell equations Data processing
Maxwell equations Numerical solutions
Moments method (Statistics)
Zeitbereich (DE-588)4130720-3 gnd
Numerisches Verfahren (DE-588)4128130-5 gnd
Maxwellsche Gleichungen (DE-588)4221398-8 gnd
Elektrodynamik (DE-588)4014251-6 gnd
Finite-Differenzen-Methode (DE-588)4194626-1 gnd
subject_GND (DE-588)4130720-3
(DE-588)4128130-5
(DE-588)4221398-8
(DE-588)4014251-6
(DE-588)4194626-1
title Computational electrodynamics the finite-difference time-domain method
title_auth Computational electrodynamics the finite-difference time-domain method
title_exact_search Computational electrodynamics the finite-difference time-domain method
title_exact_search_txtP Computational electrodynamics the finite-difference time-domain method
title_full Computational electrodynamics the finite-difference time-domain method Allen Taflove ; Susan C. Hagness
title_fullStr Computational electrodynamics the finite-difference time-domain method Allen Taflove ; Susan C. Hagness
title_full_unstemmed Computational electrodynamics the finite-difference time-domain method Allen Taflove ; Susan C. Hagness
title_short Computational electrodynamics
title_sort computational electrodynamics the finite difference time domain method
title_sub the finite-difference time-domain method
topic Electrodynamics - Mathematics
Finite differences
Time-domain analysis
Datenverarbeitung
Electromagnetism
Integro-differential equations Numerical solutions
Maxwell equations Data processing
Maxwell equations Numerical solutions
Moments method (Statistics)
Zeitbereich (DE-588)4130720-3 gnd
Numerisches Verfahren (DE-588)4128130-5 gnd
Maxwellsche Gleichungen (DE-588)4221398-8 gnd
Elektrodynamik (DE-588)4014251-6 gnd
Finite-Differenzen-Methode (DE-588)4194626-1 gnd
topic_facet Electrodynamics - Mathematics
Finite differences
Time-domain analysis
Datenverarbeitung
Electromagnetism
Integro-differential equations Numerical solutions
Maxwell equations Data processing
Maxwell equations Numerical solutions
Moments method (Statistics)
Zeitbereich
Numerisches Verfahren
Maxwellsche Gleichungen
Elektrodynamik
Finite-Differenzen-Methode
url http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=014916470&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA
work_keys_str_mv AT tafloveallen computationalelectrodynamicsthefinitedifferencetimedomainmethod
AT hagnesssusanc computationalelectrodynamicsthefinitedifferencetimedomainmethod