The field theoretic renormalization group in critical behavior theory and stochastic dynamics

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Vasilʹev, Aleksandr N. (VerfasserIn)
Format: Buch
Sprache:English
Russian
Veröffentlicht: Boca Raton [u.a.] Chapman & Hall/CRC Press 2004
Schlagworte:
Online-Zugang:Inhaltsverzeichnis
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nam a2200000 c 4500
001 BV021664277
003 DE-604
005 20110504
007 t|
008 060719s2004 xx d||| |||| 00||| eng d
020 |a 0415310024  |9 0-415-31002-4 
035 |a (OCoLC)54349621 
035 |a (DE-599)BVBBV021664277 
040 |a DE-604  |b ger  |e rakwb 
041 1 |a eng  |h rus 
049 |a DE-19  |a DE-83  |a DE-11 
050 0 |a QC20.7.R43 
082 0 |a 530.13/3  |2 22 
084 |a UG 3100  |0 (DE-625)145625:  |2 rvk 
084 |a UG 3500  |0 (DE-625)145626:  |2 rvk 
084 |a UO 4020  |0 (DE-625)146239:  |2 rvk 
084 |a UO 4080  |0 (DE-625)146247:  |2 rvk 
084 |a 81T17  |2 msc 
100 1 |a Vasilʹev, Aleksandr N.  |e Verfasser  |4 aut 
240 1 0 |a Kvantovopolevaja renormgruppa v teorii kritičeskogo povedenija i stochastičeskoj dinamike 
245 1 0 |a The field theoretic renormalization group in critical behavior theory and stochastic dynamics  |c A. N. Vasil'ev. Transl. by Patricia A. de Forcrand-Millard 
264 1 |a Boca Raton [u.a.]  |b Chapman & Hall/CRC Press  |c 2004 
300 |a XVI, 681 S.  |b graph. Darst. 
336 |b txt  |2 rdacontent 
337 |b n  |2 rdamedia 
338 |b nc  |2 rdacarrier 
500 |a Aus dem Russ. übers. - Bibliogr. S. 661 - 673 
650 7 |a Mecânica estatística  |2 larpcal 
650 7 |a Processos estocásticos  |2 larpcal 
650 7 |a Teoria quântica de campo  |2 larpcal 
650 4 |a Critical phenomena (Physics) 
650 4 |a Renormalization group 
650 4 |a Statistical physics 
650 4 |a Stochastic processes 
856 4 2 |m HBZ Datenaustausch  |q application/pdf  |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=014878739&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA  |3 Inhaltsverzeichnis 
943 1 |a oai:aleph.bib-bvb.de:BVB01-014878739 

Datensatz im Suchindex

_version_ 1819638786302148608
adam_text Titel: The field theoretic renormalization group in critical behavior theory and stochastic dynamics Autor: Vasilʹev, Aleksandr N Jahr: 2004 Contents PREFACE xiii CHAPTER 1 Foundations of the Theory of Critical Phenomena 1 1.1 Historical review....................................................1 1.2 Generalized homogeneity............................................13 1.3 The scaling hypothesis (critical scaling) in thermodynamics . . 15 1.4 The Ising model and thermodynamics of a ferromagnet.....17 1.5 The scaling hypothesis for the uniaxial ferromagnet..............19 1.6 The On-symmetric classical Heisenberg ferromagnet......22 1.7 The classical nonideal gas: the model and thermodynamics . . 23 1.8 The thermodynamical scaling hypothesis for the critical point of the liquid-gas transition ........................................27 1.9 The scaling hypothesis for the correlation functions.......31 1.10 The functional formulation ........................................35 1.11 Exact variational principle for the mean field..........37 1.12 The Landau theory..................................................40 1.13 The fluctuation theory of critical behavior............41 1.14 Examples of specific models........................................44 1.15 Canonical dimensions and canonical scale invariance......47 1.16 Relevant and irrelevant interactions. The logarithmic dimension............................................................49 1.17 An example of a two-scale model: the uniaxial ferroelectric . . 52 1.18 Ultraviolet multiplicative renormalization........................54 1.19 Dimensional regularization. Relation between the exact and formal expressions for one-loop integrals..........................58 1.20 The renormalization problem in dimensional regularization . . 62 1.21 Explicit renormalization formulas..................................66 1.22 The constants Z in the minimal subtraction scheme ......68 1.23 The relation between the IR and UV problems.........69 1.24 The differential RG equations......................................70 1.25 The RG functions in terms of the renormalization constants . . 72 1.26 Relations between the residues of poles in Z of various order in e. Representation of Z in terms of RG functions.......74 1.27 Relation between the renormalized and bare charges............75 1.28 Renormalization and RG equations for T TC .........77 1.29 Solution of the linear partial differential equations.......78 v CONTENTS 1.30 The RG equation for the correlator of the p4 model m zero field................................. 1.31 Fixed points and their classification ............... 1.32 Invariant charge of the RG equation for the correlator ..... 1.33 Critical scaling, anomalous critical dimensions, scaling function of the correlator .......................... 1.34 Conditions for reaching the critical regime. Corrections to scaling................................ 1.35 What is summed in the solution of the RG equation?...... 1.3G Algorithm for calculating the coefficients of e expansions of critical exponents and scaling functions ............. 1.37 Results of calculating the e expansions of the exponents of the On (p4 model in dimension d = 4 — 2e .............. 1.38 Summation of the e expansions. Results............. 1.39 The RG equation for F(o) (the equation of state)........ 1.40 Subtraction-scheme independence of the critical exponents and normalized scaling functions................. 1.41 The renormalization group in real dimension .......... 1.42 Multicharge theories........................ 1.43 Logarithmic corrections for e = 0................. 1.44 Summation of the gins contributions at £ — 0 using the RG equations.............................. CHAPTER 2 Functional and Diagrammatic Technique of Quantum Field Theory 115 2.1 Basic formulas ...........................115 2.2 The universal graph technique...................119 2.3 Graph representations of Green functions ............124 2.4 Graph technique for spontaneous symmetry breaking (t 0) . 127 2.5 One-irreducible Green functions..................129 2.6 Graph representations of T(a) and the functions Tn ......131 2.7 Passage to momentum space....................134 2.8 The saddle-point method. Loop expansion of V(A) ......137 2.9 Loop expansion of T(q)......................139 2.10 Loop calculation of T(a) in the On ip4 model..........141 2.11 The Schwinger equations......................145 2.12 Solutions of the equations of motion...............147 2.13 Green functions with insertion of composite operators.....149 2.14 Summary of definitions of various Green functions.......152 2.15 Symmetries, currents, and the energy-momentum tensor .... 153 2.16 Ward identities.................... 2.17 The relation between scale and conformal invariance......164 2.18 Conformal structures for dressed propagators and triple vertices................... 2.19 The large-n expansion in the On p4 model for T Tc.....168 81 82 84 86 89 90 92 93 96 100 101 104 107 109 112 CONTENTS vii 2.20 A simple method of constructing the large-n expansion.....174 2.21 The large-n expansion of the functionals W and F for A^a^n1/2............................176 2.22 The solution for arbitrary A, T in leading order in 1/n.....178 2.23 The A —? 0 asymptote. Singularity of the longitudinal susceptibility for T TC......................181 2.24 Critical behavior in leading order in 1/n.............182 2.25 A simplified field model for calculating the large-n expansions of critical exponents..................184 2.26 The classical Heisenberg magnet and the nonlinear a model . . 187 2.27 The large-n expansion in the nonlinear a model.........189 2.28 Generalizations: the CPn_1 and matrix a models........191 2.29 The large-n expansion for ( £2)3-type interactions........192 2.30 Systems with random admixtures.................193 2.31 The replica method for a system with frozen admixtures .... 196 CHAPTER 3 Ultraviolet Renormalization 199 3.1 Preliminary remarks........................199 3.2 Superficially divergent graphs. Classification of theories according to their rcnormalizability................201 3.3 Primitive and superficial divergences...............202 3.4 Renormalization of the parameters r and g in the one-loop approximation ...........................204 3.5 Various subtraction schemes. The physical meaning of the parameter r.............................205 3.6 The two-loop approximation....................208 3.7 The basic action and counterterms................210 3.8 The operators L, R, and Rr....................212 3.9 The Bogolyubov-Parasyuk R operation.............215 3.10 Recursive construction of L in terms of the subtraction operator K.............................217 3.11 The commutativity of L, R , and R with dT-type operators . . 219 3.12 The basic statements of renormalization theory.........220 3.13 Remarks about the basic statements...............222 3.14 Proof of the basic combinatorial formula for the R operation . 225 3.15 Graph calculations in arbitrary dimension............232 3.16 Dimensional regularization and minimal subtractions......236 3.17 Normalized functions........................238 3.18 The renormalization constants in terms of counterterms in the MS scheme...........................242 3.19 The passage to massless graphs..................243 3.20 The constants Z in three-loop order in the MS scheme for the On p4 model..........................247 3.21 Technique for calculating the ..................250 CONTENTS viii 3.22 Nonmultiplicativity of the renormalization in analytic regularization............................ 3.23 The inclusion of composite operators............... 3.24 The renormalized composite operator............... 3.25 Renormalization of the action and Green functions of the extended model........................... 3.26 Structure of the operator counterterms..............266 3.27 An example of calculating operator counterterms........269 3.28 Matrix multiplicative renormalization of families of operators . 273 3.29 UV finiteness of operators associated with the renormalized action and conserved currents...................275 3.30 The On (p4 model: renormalization of scalar operators with d*F = 2,3,4.............................278 3.31 Renormalization of conserved currents..............280 3.32 Renormalization of tensor operators with d*F = 4 in the On p 4 model................................281 3.33 The Wilson operator expansion for short distances.......283 3.34 Calculation of the Wilson coefficients in the one-loop approximation ...........................288 3.35 Expandability of multiloop counterterms L^7 in p and r ... . 291 3.36 Renormalization in the case of spontaneous symmetry breaking...............................293 CHAPTER 4 Critical Statics 299 4.1 General scheme for the RG analysis of an arbitrary model . . . 299 4.2 The On p4 model: the constants Z, RG functions, and 4 — £ expansion of the exponents.................301 4.3 Renormalization and the RG equations for the renormalized functional Wr{A) including vacuum loops............305 4.4 The On p4 model: renormalization and the RG equation for the free energy...........................308 4.5 General solution of the inhomogeneous RG equation for the free energy of the ip4 model and the amplitude ratio A+j A— in the specific heat ..........................399 4.6 RG equations for composite operators and coefficients of the Wilson operator expansion.....................312 4.7 Critical dimensions of composite operators............314 4.8 Correction exponents u associated with IR-irrelevant composite operators................................319 4.9 Example: the system F = {l,y 2} in the On tp4 model.....319 4.10 Second example: scalar operators with d*F = 4..........321 4.11 Determination of the critical dimensions of composite operators following Sec. 3.29 ....................................324 4.12 The On ip4 model: calculation of the 1- and 2-loop graphs of the renormalized correlator in the symmetric phase.......325 CONTENTS ix 4.13 £ expansion of the normalized scaling function..........329 4.14 Analysis of the r — 0 asymptote using the Wilson operator expansion..............................332 4.15 Goldstone singularities for T TC ................337 4.16 The two-charge p4 model with cubic symmetry.........344 4.17 RG functions and critical regimes.................348 4.18 The Ising model (uniaxial magnet) with random impurities. e1/2 expansions of the exponents.................350 4.19 Two-loop calculation of the e expansions of the exponents for a uniaxial ferroelectric.......................352 4.20 The rap4 interaction (modified critical behavior)........356 4.21 The pQ model in dimension d = 3 — 2e..............357 4.22 The p4 + p6 model.........................362 4.23 RG analysis of the tricritical asymptote in the p4 + p6 model . 364 4.24 Renormalization of the p3 model in dimension d = 6 — 2e ... 369 4.25 RG equations for the p3 model including vacuum loops .... 373 4.26 The 2 + e expansion in the nonlinear a model: multiplicative renormalizability of low-temperature perturbation theory . . . 376 4.27 Calculation of the constants Z and the RG functions in the one-loop approximation......................379 4.28 The Goldstone and critical asymptotes. 2 + e expansion of the critical exponents..........................381 4.29 The 1/n expansion of the critical exponents of the On p4 and a models...............................385 4.30 Calculation of 1/n expansions of the exponents in terms of the RG functions of the p4 model...................387 4.31 The analog of dimensional regularization and nonmultiplicative renormalization of the massless a model.............388 4.32 Critical scaling. Calculation of the critical dimensions from the Green functions...........................392 4.33 Calculation of the dimensions of fields and composite operators using counterterms of graphs in first order in 1/n........394 4.34 Examples..............................399 4.35 Calculation of the principal exponents using the self-consistency equations for the correlators....................405 4.36 The technique for calculating massless graphs..........410 4.37 Calculation of r i..........................425 4.38 Generalization of the self-consistency equations to the case of correction exponents........................428 4.39 Calculation of V2 and U ......................433 4.40 Calculation of 773 in the cr model by the conformal bootstrap technique..............................435 4.41 Conformal invariance in the critical regime ...........444 4.42 Generalization to composite operators..............449 4.43 Examples..............................454 CONTENTS 4.44 The chiral phase transition in the Gross-Neveu model.....451 4.45 Two-loop calculation of the RG functions of the GN model in dimension 2 . .........................* 4 46 The multiplicatively renormalizable two-charge GN model with c , , .......469 a field......................... 4.47 Proof of critical conformal invariance...............472 4.48 1/n expansion of the critical exponents of the GN model .... 476 4.49 Use of the 1/n expansions of exponents to calculate RG functions .............................. CHAPTER 5 Critical Dynamics 487 5.1 Standard form of the equations of stochastic dynamics.....487 5.2 Iterative solution of the stochastic equations...........490 5.3 Reduction of the stochastic problem to a quantum field model . 491 5.4 Some consequences of retardation.................495 5.5 Stability criterion for a system in stochastic dynamics.....497 5.6 Equations for equal-time correlation functions of the field (p . . 498 5.7 The Fokkcr-Planck equation for the equal-time distribution function of the field (p.......................500 5.8 Relation between dynamics and statics for the stochastic Langevin equation.........................501 5.9 General principles for constructing models of critical dynamics. The intermode interaction.....................503 5.10 Response to an external field...................506 5.11 The fluctuation-dissipation theorem...............507 5.12 Examples of actual models of critical dynamics.........509 5.13 The physical interpretation of models A-J............512 5.14 Canonical dimensions in dynamics................515 5.15 Analysis of the UV divergences and counterterms in dynamics . 517 5.16 Models A and B.........................521 5.17 Model C (slow heat conduction): statics.............527 5.18 Model C: dynamics....................................533 5.19 Model D........................................333 5.20 Models F and E..................................333 5.21 Model G.................. 5.22 Model J....................................3^ 5.23 Model H: determination of dynamical variables.........546 5.24 Model H: IR irrelevance of the sound modes in the regime ^ ^ V................................... 5.25 Model H: renormalization and RG analysis in the regime w ~ P ................................555 5.26 Sound propagation near the critical point..............534 CONTENTS xi CHAPTER 6 Stochastic Theory of Turbulence 581 6.1 The phenomenon of turbulence..................581 6.2 The stochastic Navier-Stokes equation. The Kolmogorov hypotheses .............................582 6.3 Choice of the random-force correlator ..............586 6.4 UV divergences, renormalization, and RG equations of the quantum field model........................589 6.5 General solution of the RG equations. IR scaling for fixed parameters go and ........................592 6.6 IR scaling at fixed parameters W and v$. Viscosity independence and the freezing of dimensions for e 2.....596 6.7 Renormalization of composite operators. Use of the Schwinger equations and Galilean invariance.................599 6.8 Renormalization of composite operators in the energy and momentum conservation laws...................603 6.9 Study of the m — 0 asymptote of the scaling functions of the pair velocity correlator using the SDE..............608 6.10 Summation of the contributions of dangerous operators and d[(pn in the dynamical velocity correlator............613 6.11 The problem of singularities for e — 2 in the massless model, e-expansion of the Kolmogorov constant.............616 6.12 Deviations from Kolmogorov scaling for composite operators . 621 6.13 Turbulent mixing of a scalar passive admixture.........625 6.14 Stochastic magnetic hydrodynamics (MHD)...........629 6.15 Critical dimensions in MHD....................636 6.16 The turbulent dynamo in gyrotropic MHD............640 6.17 Critical dimensions in the dynamo regime............644 6.18 Two-dimensional turbulence....................647 6.19 Langmuir turbulence of a plasma.................649 ADDENDUM 657 BIBLIOGRAPHY 661 SUBJECT INDEX 675
any_adam_object 1
author Vasilʹev, Aleksandr N.
author_facet Vasilʹev, Aleksandr N.
author_role aut
author_sort Vasilʹev, Aleksandr N.
author_variant a n v an anv
building Verbundindex
bvnumber BV021664277
callnumber-first Q - Science
callnumber-label QC20
callnumber-raw QC20.7.R43
callnumber-search QC20.7.R43
callnumber-sort QC 220.7 R43
callnumber-subject QC - Physics
classification_rvk UG 3100
UG 3500
UO 4020
UO 4080
ctrlnum (OCoLC)54349621
(DE-599)BVBBV021664277
dewey-full 530.13/3
dewey-hundreds 500 - Natural sciences and mathematics
dewey-ones 530 - Physics
dewey-raw 530.13/3
dewey-search 530.13/3
dewey-sort 3530.13 13
dewey-tens 530 - Physics
discipline Physik
format Book
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01845nam a2200457 c 4500</leader><controlfield tag="001">BV021664277</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20110504 </controlfield><controlfield tag="007">t|</controlfield><controlfield tag="008">060719s2004 xx d||| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0415310024</subfield><subfield code="9">0-415-31002-4</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)54349621</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV021664277</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1="1" ind2=" "><subfield code="a">eng</subfield><subfield code="h">rus</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-19</subfield><subfield code="a">DE-83</subfield><subfield code="a">DE-11</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QC20.7.R43</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">530.13/3</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UG 3100</subfield><subfield code="0">(DE-625)145625:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UG 3500</subfield><subfield code="0">(DE-625)145626:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UO 4020</subfield><subfield code="0">(DE-625)146239:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UO 4080</subfield><subfield code="0">(DE-625)146247:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">81T17</subfield><subfield code="2">msc</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Vasilʹev, Aleksandr N.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="240" ind1="1" ind2="0"><subfield code="a">Kvantovopolevaja renormgruppa v teorii kritičeskogo povedenija i stochastičeskoj dinamike</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">The field theoretic renormalization group in critical behavior theory and stochastic dynamics</subfield><subfield code="c">A. N. Vasil'ev. Transl. by Patricia A. de Forcrand-Millard</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Boca Raton [u.a.]</subfield><subfield code="b">Chapman &amp; Hall/CRC Press</subfield><subfield code="c">2004</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XVI, 681 S.</subfield><subfield code="b">graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Aus dem Russ. übers. - Bibliogr. S. 661 - 673</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Mecânica estatística</subfield><subfield code="2">larpcal</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Processos estocásticos</subfield><subfield code="2">larpcal</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Teoria quântica de campo</subfield><subfield code="2">larpcal</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Critical phenomena (Physics)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Renormalization group</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Statistical physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Stochastic processes</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HBZ Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&amp;doc_library=BVB01&amp;local_base=BVB01&amp;doc_number=014878739&amp;sequence=000001&amp;line_number=0001&amp;func_code=DB_RECORDS&amp;service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-014878739</subfield></datafield></record></collection>
id DE-604.BV021664277
illustrated Illustrated
indexdate 2024-12-23T19:28:09Z
institution BVB
isbn 0415310024
language English
Russian
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-014878739
oclc_num 54349621
open_access_boolean
owner DE-19
DE-BY-UBM
DE-83
DE-11
owner_facet DE-19
DE-BY-UBM
DE-83
DE-11
physical XVI, 681 S. graph. Darst.
publishDate 2004
publishDateSearch 2004
publishDateSort 2004
publisher Chapman & Hall/CRC Press
record_format marc
spellingShingle Vasilʹev, Aleksandr N.
The field theoretic renormalization group in critical behavior theory and stochastic dynamics
Mecânica estatística larpcal
Processos estocásticos larpcal
Teoria quântica de campo larpcal
Critical phenomena (Physics)
Renormalization group
Statistical physics
Stochastic processes
title The field theoretic renormalization group in critical behavior theory and stochastic dynamics
title_alt Kvantovopolevaja renormgruppa v teorii kritičeskogo povedenija i stochastičeskoj dinamike
title_auth The field theoretic renormalization group in critical behavior theory and stochastic dynamics
title_exact_search The field theoretic renormalization group in critical behavior theory and stochastic dynamics
title_full The field theoretic renormalization group in critical behavior theory and stochastic dynamics A. N. Vasil'ev. Transl. by Patricia A. de Forcrand-Millard
title_fullStr The field theoretic renormalization group in critical behavior theory and stochastic dynamics A. N. Vasil'ev. Transl. by Patricia A. de Forcrand-Millard
title_full_unstemmed The field theoretic renormalization group in critical behavior theory and stochastic dynamics A. N. Vasil'ev. Transl. by Patricia A. de Forcrand-Millard
title_short The field theoretic renormalization group in critical behavior theory and stochastic dynamics
title_sort the field theoretic renormalization group in critical behavior theory and stochastic dynamics
topic Mecânica estatística larpcal
Processos estocásticos larpcal
Teoria quântica de campo larpcal
Critical phenomena (Physics)
Renormalization group
Statistical physics
Stochastic processes
topic_facet Mecânica estatística
Processos estocásticos
Teoria quântica de campo
Critical phenomena (Physics)
Renormalization group
Statistical physics
Stochastic processes
url http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=014878739&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA
work_keys_str_mv AT vasilʹevaleksandrn kvantovopolevajarenormgruppavteoriikriticeskogopovedenijaistochasticeskojdinamike
AT vasilʹevaleksandrn thefieldtheoreticrenormalizationgroupincriticalbehaviortheoryandstochasticdynamics